
TCS -TR-A-13-66

TCS Technical Report

Z-Skip-Links for Fast ZDD Traversal

in Handling Large-Scale Sparse Datasets (Revised Ed.)

by

Shin-ichi Minato

Division of Computer Science

Report Series A

June 18, 2013

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682





Z-Skip-Links for Fast ZDD Traversal

in Handling Large-Scale Sparse Datasets (Revised Ed.)∗

Shin-ichi Minato†

Division of Computer Science
Hokkaido University

Sapporo 060-0814, Japan

June 18, 2013

(Abstract) ZDD (Zero-suppressed Binary Decision Diagram) is known as an ef-
ficient data structure for representing and manipulating large-scale sets of combi-
nations. In this article, we propose a method of using Z-Skip-Links to accelerate
ZDD traversals for manipulating large-scale sparse datasets. We discuss average
case complexity analysis of our method, and present the optimal parameter set-
ting. Our method can be easily implemented into the existing ZDD packages just
by adding one link per ZDD node. Experimental results show that we obtained
dozens of acceleration ratio for the instances of the large-scale sparse datasets
including thousands of items.

1 Introduction

A set of combinations is one of the most fundamental model of discrete structure for
solving combinatorial problems in various applications. Binary Decision Diagram
(BDD) [2], a state-of-the-art data structure of Boolean function representation,
is sometimes used for solving combinatorial problems because n-input Boolean
functions have one-to-one correspondence to the sets of combinations considering
n items. Zero-suppressed BDD (ZDD) [9] is a variant of BDD, customized for
manipulating sets of combinations. ZDDs have been successfully applied not only
for VLSI design but also for various real-life applications, such as data mining,
system diagnosis, and network analysis.

Recently, processing of “Big Data” have attracted a great deal of attention, and
we often deal with a large-scale sparse dataset, which has more than thousand or
ten thousands of items as the columns of a dataset. If we represent such data using

∗This is a revised edition of TCS-TR-A-13-63.
†He also works for ERATO MINATO Discrete Structure Manipulation System Project, Japan

Science and Technology Agency.

1



2 Shin-ichi Minato

Figure 1: Binary Decision Tree, BDD and ZDD.

a ZDD, the height of ZDD grows as large as the number of items, and the depth
of recursive operations also becomes very large. Thus, ZDD-based manipulation is
usually not very efficient for such large-scale sparse datasets.

In this paper, we propose an idea of attaching a “Z-Skip-Link” to each ZDD node
for accelerating the traversal of ZDDs of large-scale sparse datasets. It consumes
only a constant size of additional memory, and can easily be implemented into a
conventional BDD/ZDD package. We also show the average-case computation time
of traversing ZDDs, in order to evaluate the effect of Z-Skip-Links and their optimal
setting of the skip length. In the practical case of sparse datasets with thousands
of items, our experiments show that the use of Z-Skip-Links makes the membership
operations 10 to 30 times faster than using conventional ZDD operations.

In the rest of this paper, we first explain the basic properties of ZDDs and what
is the problem in manipulating large-scale sparse datasets. We then present an
idea of Z-Skip-Links and average-case complexity analysis. Finally we describe the
algorithm implementation and the experimental results.

2 Preliminary – Basic Properties of ZDDs

A Binary Decision Diagram (BDD) [2] is a graph representation for a Boolean
function. As illustrated in Fig. 1, it is derived by reducing a binary decision tree,
which represents a decision making process that depends on some input variables.
In this graph, we may find the following two types of decision nodes:

(a) Redundant node: A decision node whose two child nodes are identical.

(b) Equivalent nodes: Two or more decision nodes having the same variable and
the same pair of child nodes.

If we find such types of nodes, we can reduce the graph without changing the
semantics (in other words, we can compress the graph). If we fix the order of input
variables and apply the two reduction rules as much as possible, then we obtain a



Z-Skip-Links for Fast ZDD Traversal in Handling Large-Scale Sparse Datasets (Revised Ed.) 3

Figure 2: ZDD reduction rule.

canonical form for a given Boolean function [1]. Such a data structure is called an
Ordered BDD (OBDD), but in this article we will just call it a BDD.

The compression ratio of a BDD depends on the properties of Boolean function
to be represented, but it can be 10 to 100 times more compact in some practical
cases. In addition, we can systematically construct a BDD that is the result of a
binary logic operation (i.e., AND or OR) for a given pair of BDDs. This algorithm
is based on a recursive procedure with hash table techniques, and it is very efficient
when the BDDs have a good compression ratio. The computation time is bounded
by the product of the BDD sizes of the two operands, and in many practical cases,
it is linearly bounded by the sum of input and output BDD sizes [12].

Zero-suppressed BDDs (ZDDs, or ZBDDs) [9] are a variant of BDDs, customized
to manipulate sets of combinations. An example is shown in Fig.1. ZDDs are based
on special reduction rules that differ from the ordinary ones. As shown in Fig. 2,
we delete all nodes whose 1-edge directly points to the 0-terminal node, but do not
delete the nodes which would be deleted in an ordinary BDD. Similarly to ordinary
BDDs, ZDDs give compact canonical representations for sets of combinations. We
can construct ZDDs by applying algebraic set operations such as union, intersection
and difference, which correspond to logic operations in BDDs.

The zero-suppressing reduction rule is extremely effective if we are handling a
set of sparse combinations. If the average appearance ratio of each item is 1%,
ZDDs are possibly up to 100 times more compact than ordinary BDDs. Such
situations often appear in real-life problems, for example, in a supermarket, the
number of items in a customer’s basket is usually much less than the number of
all the items displayed.

Recently, ZDD has become more widely known, since D. E. Knuth intensively
discussed ZDD-based algorithms in the latest volume of his famous series of books
[6]. The original BDD was invented and developed for VLSI logic design, but ZDD
is now recognized as the most important variant of BDD, and is widely used in
various kinds of problems in computer science [3, 7, 8, 5].



4 Shin-ichi Minato

(a) Large-scale sparse dataset. (b) ZDD

Figure 3: Large-scale sparse dataset and ZDD.

3 Problem for Handling Large-Scale Sparse Datasets

Recently, some kinds of Big Data are regarded as a large-scale sparse dataset, which
is a set of many combinations each of which selects a few items out of thousands of
ones, as illustrated in Fig. 3(a). There are so many practical examples, such as the
basket data in a supermarket, the word-correlation dataset in a natural language,
the key word lists in document database, grouping of Internet web pages, and SNPs
(mutation points) of human gene data.

If we represent such a large-scale sparse dataset using a ZDD, each path from the
root node to the 1-terminal node corresponds to one combination in the dataset,
as shown in Fig. 3(b). Namely, the number of such paths in the ZDD equals the
number of combinations in the dataset, and the 1-edges on each path represent the
occurrence of items in a combination. Since the zero-suppression rule automatically
deletes the ZDD nodes corresponding to the items not occurring in the combination,
the ZDD size is bounded by the total number of item occurrences in the datasets. If
there are many partially similar patterns of combinations, the paths in the ZDD are
shared with each other, and in such cases very large compression ratio is obtained.
For example, LCM-ZDD method [10] efficiently generates nearly a billion patterns
of frequent itemsets by using only thousands of ZDD nodes.

Such data compression is one of the big advantage of using ZDDs, however,
there is a hidden problem that the height of the ZDD must be n if the dataset
contains n relevant items. If we represent a large-scale and sparse dataset using
thousands of items, the ZDD becomes a very unbalanced form as shown in Fig. 4,
such that we need more than thousand hops for 0-edge traversal while only a few
hops needed for 1-edge side to reach a terminal node. Unfortunately, such type of
datasets often appear in real-life applications. In general, ZDD-based operations
require a computation time linear in the height of the ZDD. The membership
testing operation is especially inefficient in this case because thousands of steps of
ZDD traversal is needed to check the existence of the k-th item’s decision node,
even if the membership query has only a combination with a few items. It means



Z-Skip-Links for Fast ZDD Traversal in Handling Large-Scale Sparse Datasets (Revised Ed.) 5

Figure 4: An example of very unbal-
anced ZDD. Figure 5: ZDD with Z-Skip-Links.

that the ZDD-based operation could be hundreds or more times slower than a naive
data structure based on arrays and linked lists.

In this paper, we propose a practical method for addressing this problem for
handling large-scale sparse datasets using ZDDs.

4 Z-Skip-Links

4.1 Basic Idea

Conventional ZDD operation linearly traverses the cascade of 0-edges, and it re-
quires O(n) steps in average to check the existence of a ZDD node with a given item
where n is the height of the very unbalanced ZDD. If we prepare a table of pointers
to the descendant ZDD nodes indexed by the item IDs, we can directly jump to
the destination node in O(1) steps. However, we have to prepare such a pointer
table for each ZDD nodes as the start point, so additional memory requirement
becomes O(n) words per ZDD nodes, and the total memory requirement becomes
O(nG), where G is ZDD size. This is an unacceptable memory increase for large
n as hundreds or thousands.

Our basic idea is to attach only one pointer to each ZDD node, as illustrated
in Fig. 5. The pointer, named Z-Skip-Link, indicates a descendant node reachable
by a cascade of 0-edges of a given length. When we want to search a ZDD node
with the t-th level, we first refer the Z-Skip-Link at the root node and check the
level of the pointed node s. If s is still higher than t, we execute the jump by the
Z-Skip-Link and continue the search from there. If s is exceedingly lower than t,
we cancel the jump and descend the 0-edges for one step, and then continue the
search at the next node.

Our method is quite simple, but the reachability is clearly guaranteed as or-
dinary linear search. The search time can be reduced as much as the total jump



6 Shin-ichi Minato

Figure 6: Basic Model with a Number Line.

length of Z-Skip-Links. The additional memory requirement is just a constant
factor for the ZDD size. Since the Z-Skip-Links do not have any side-effect to
the ZDD operations, they can be easily implemented in a conventional BDD/ZDD
package without any significant modification to the basic data structure and oper-
ation codes.

The key issue of this method is the design of the skip length of Z-Skip-Links.
The longer skip length gets the more saving time, but a too long skip length may
increase the probability of exceeding the target reducing the chance of speed up.
In this article, we discuss the average case analysis of time complexity and the
optimal skip length for a given n.

4.2 Basic Model and Average Search Cost

For analyzing average search cost, we consider the model of a number line as shown
in Fig. 6. There are n positions on the line from 1 to n, where the start position is
n, and the target position is t. We define a skip length function J(x) to represent
the skip length at the current position x (1 ≤ x ≤ n). The first skip length should
be J(n) and the second length becomes J(n − J(n)). We repeat the jumps until
passing through the target t, and after that we execute a linear search from the
last position. In this model, we do not know t beforehand, thus we assume that t

has a discrete uniform distribution between 1 and n. Here, we define C1(n) as the
average number of jumps, and C2(n) as the average number of moves in the linear
search. Our objective is to design a good skip length function J(x) to minimize
the total average cost C(n) = C1(n) + C2(n). The function J(x) cannot depend
on t but may depend on n.

At first, we assume the simple skip length function with a constant α ≥ 1:

J(x) =
⌈

1
α

x

⌉
. (1)

For example, α = 4 means that we skip 1/4 distance of the remaining search
range. Then, we get the average search cost C(n) as follows. (Detailed calculation
is shown in Appendix.)

C(n) = α +
n

2(2α− 1)
(2)



Z-Skip-Links for Fast ZDD Traversal in Handling Large-Scale Sparse Datasets (Revised Ed.) 7

Figure 7: Two-Phase Model.

If we set α = 16, we get C(10000) ≈ 177.3, which is 28.2 times faster than ordinary
linear search.

Let us consider the optimal α for a given n. The derivative of C(n) with respect
to α can be written as:

d

dα
C(n) = 1− n

(2α− 1)2

and it becomes zero, thus:

αopt =
1
2

(√
n + 1

)
, Copt(n) =

√
n +

1
2

(3)

are obtained. In other words, we can accelerate up to
√

n

2 times in average from
linear search. When n = 10000, we get αopt = 50.5 and Copt(10000) = 100.5, about
50 times faster than linear search.

4.3 Two-Phase Model

The above discussion assumed a uniform skip length function, but we may improve
the performance if we use different forms of skip length functions for different
positions. Figure 7 illustrates our idea of the two-phase model, using the two
types of skip length functions J1(x) and J2(x) for an even number x and an odd
number x, respectively. J1(x) provides long jumps and J2(x) provides middle
length jumps. We first repeat long jumps with J1(x) until passing through the
target t, next we repeat middle jumps with J2(x), and after that we execute a
linear search. We set that both J1(x) and J2(x) return an even number of skip
length, and thus destination of J1 is always a position of J1, and J2 also going to
a J2 position.

We also analyzed the average case search cost in this two-phase model. We
assume the same skip length as 1/α of remaining search range for both J1(x)
and J2(x). Then C(n) is described as follows. (Detailed calculation is shown in
Appendix.)

C(n) = 2α +
n

2(2α− 1)2
(4)



8 Shin-ichi Minato

If we set α = 16, we get C(10000) ≈ 37.2, which is about 134 times faster than
ordinary linear search.

Similarly to the uniform model, we can calculate optimal α for a given n.

αopt =
1
2

(
3
√

n + 1
)

, Copt(n) =
3
2

3
√

n + 1 (5)

When n = 10000, we get αopt = 11.27 and Copt(10000) ≈ 33.3, about 150 times
faster than linear search.

In the above discussion, we ignored at most 2 steps which are required for
changing J1 and J2 positions, so we must add a small constant factor for exact
analysis. Anyway, we can significantly improve the performance only using two
different skip length functions without any additional memory requirement.

4.4 k-Phase Model

Extending the two-phase model, we can consider k types of skip length functions,
by classifying the position x into k groups by x modulo k. If we write C(k)(n) for
the average search cost for k-phase model, it can be described as:

C(k)(n) = kα +
n

2(2α− 1)k
(6)

and optimal α is obtained as:

αopt =
1
2

(
n

1
k+1 + 1

)
, C

(k)
opt(n) =

k + 1
2

n
1

k+1 +
k

2
(7)

For example, when k = 4, we get

αopt =
1
2

(
5
√

n + 1
)

, C
(4)
opt(n) =

5
2

5
√

n + 2. (8)

Next, let us consider the optimal k for given n. The detailed calculation is
shown in Appendix and we can obtain the following result.

kopt =
ln n

ln c
− 1, C

(kopt)
opt (n) =

(
c + 1
2 · ln c

)
ln n− 1

2
, (9)

where c is a constant nearby 3.6. Consequently, the average search cost of the
Z-Skip-Links is theoretically shown as O(log n), if we use optimal k.

In the case of n = 65536, we get kopt ≈ 8 and C
(kopt)
opt (65536) ≈ 19.4. However,

even for k = 4 we can achieve C
(4)
opt(65536) ≈ 24.97, which is more than 1300 times

faster than ordinary linear search. We can conclude that, for up to n = 100000,
4-phase model is sufficiently effective for practical applications.



Z-Skip-Links for Fast ZDD Traversal in Handling Large-Scale Sparse Datasets (Revised Ed.) 9

150
200
250
300
350
400
C(n)

(1/16) x
2 sqrt(x)
2-phase

0
50

100
150

0 20000 40000 60000 80000 100000 120000
n

4-phase

Figure 8: Computational Experiments.

Figure 9: An Example of Skip List [11].

4.5 Computational Experiments

To confirm the above theoretical analysis, we conducted computational experi-
ments. For a given n, we counted the number of moves to t, and computed average
moves C(n) for all t from 1 to n. In this experiments we tested four kinds of skip
length functions as 1

16x, 2
√

x, the optimal 2-phase model, and the optimal 4-phase
model. Figure 8 shows the results. We can observe that the results are very close
to theoretical formulas up to n = 100000.

4.6 Related Work

Our method is related to Skip List proposed by Pugh [11] in 1990. Skip List is
a quick access technique used for sorted linear linked list. It equips probabilistic
distributed skip pointers as shown in Fig. 9. It is known that the average access
time is O(log n). From this viewpoint, Z-Skip-Links can be regarded as a kind
of Skip List technique deterministically attached to all ZDD nodes. However, our
method is not limited to a simple linear list but applicable to the complex ZDD
structure including a large number of paths shared with each other.



10 Shin-ichi Minato

Table 1: Look-up Table for Skip Length Function.
range of x J1(x) J2(x) J3(x) J4(x)

5− 15 4 − − −
16− 63 8 4 − −

64− 255 64 16 8 4
256− 511 128 32 8 4

512− 1023 256 64 16 4
1, 024− 2047 512 128 32 8
2, 048− 4095 1,024 256 64 8

4, 096− 8, 191 2,048 512 64 8
8, 192− 32, 767 4,096 512 64 8

32, 768− 65, 535 8,192 1,024 128 16

5 Algorithm Implementation

5.1 Implementation to Conventional BDD/ZDD Package

Most of conventional BDD/ZDD packages use short int (16 bit integer) for item
IDs, so we assumed n up to 65535. For this range, we know that 4-phase is effective
enough, so we adopted the 4-phase model. It is time consuming to calculate 5

√
n

many times, so we approximate it by table look-up. The table is shown in Table.
1

Also, most of conventional BDD/ZDD Packages have an internal table called
“operation cache,” which stores the recent operations and their results by a hash-
key with the pointers to the operand ZDDs and operation IDs. Our Z-Skip-Links
can be easily implemented using the framework of the operation cache, and we
needed only 100 lines of additional C++ codes for processing Z-Skip-Links.

Here we explain the algorithm of fast ZDD traversal using Z-Skip-Links, and
the preprocessing algorithm for constructing Z-Skip-Links for all ZDD nodes.

5.2 ZDD Traversal Using Z-Skip-Links

Figure 10 shows pseudo code of ZDescend(F, t). For given root node of ZDD F

and the target item-ID t, this algorithm returns the pointer to a ZDD node which
is the first meet such that the item ID is equal or lower than t when descending
0-edges starting from F . In this codes, cache(”ZSkip at F”) means to refer the
operation cache. This algorithm enjoys the benefit of Z-Skip-Links, however, even
if Z-Skip-Lists are not prepared yet, it returns correct result by linear search.

5.3 Construction of Z-Skip-Links

Figure 11 shows pseudo codes of SetZSkip(F ). This algorithm constructs Z-Skip-
Links for all internal nodes of ZDD F by using a recursive procedure. At first,
we check the operation cache and if a Z-Skip-Link is already constructed, the



Z-Skip-Links for Fast ZDD Traversal in Handling Large-Scale Sparse Datasets (Revised Ed.) 11

ZDescend(F, t)
{ while(F.top > t)
{ G← cache(“ZSkip at F”) ;

if (G exists and G.top ≥ t) F ← G ;
else F ← (0-Child of F ) ;

}
return F ;

}
Figure 10: ZDD Traversal Using Z-Skip-Links.

SetZSkip(F )
{ if (F.top ≤ 4) return ;

if (cache(“ZSkip at F”) exists) return ;
SetZSkip(0-Child of F ) ;
t← (F.top− J(F.top)) ; /* Destination from

F */
G← ZDescend(F, t) ;
cache(“ZSkip at F”) ← G ;
SetZSkip(1-Child of F ) ;

}
Figure 11: Construction of Z-Skip-Links.

procedure terminates. Otherwise, it recursively calls itself on the 0-child node
to construct Z-Skip-Links for all descendant nodes. After that, we compute the
skip length and find the destination node by using ZDescend procedure, and then
register it to the operation cache.

The number of recursive calls of SetZSkip is bounded by the number of F ’s
ZDD nodes if operation cache works well. SetZSkip also calls ZDescend procedure,
so we need several steps to reach the destination node. In the range of n ≤ 65536,
ZDescend procedure requires about 20 to 30 steps in average, therefore, the total
computation time will be several ten times of the number of ZDD nodes. This
would be feasible overhead if we repeat the search process many times for a large-
scale sparse dataset.

6 Experimental Results

We implemented the algorithms and conducted experiments for performance eval-
uation. The specification of our PC is as follows. Intel Core i7 2700K 3.5GHz,
32GB memory, OpenSuSE Linux 12.1 (64bit), GNU C++ 4.6.2. We used our own
BDD/ZDD package written in C and C++.



12 Shin-ichi Minato

Table 2: Results for Random-Generated Sparse Datasets.
ZDD CPU time(sec) accel.

n m nodes pre- search old net gross
prc. x10000 x10000

1,000 10,000 10,011 0.004 0.012 0.158 13.2 9.9
2,000 20,000 20,181 0.005 0.013 0.390 30.0 21.7
5,000 50,000 50,683 0.007 0.018 1.025 56.9 41.0

10,000 100,000 101,521 0.026 0.021 2.055 97.9 43.7
20,000 200,000 203,272 0.058 0.029 4.499 155.1 51.7
50,000 500,000 508,335 0.170 0.028 14.393 514.0 72.7

Table 3: Results for Frequent Itemset Datasets.
ZDD CPU time(sec) accel.

θ n m nodes pre- search old net gross
prc. x10000 x10000

100 932 11,928 2,298 0.001 0.009 0.094 10.4 9.4
50 1,597 70,713 6,059 0.001 0.011 0.169 15.4 14.1
20 2,434 63,4065 30,410 0.007 0.012 0.268 22.3 14.1
10 2,885 4,440,335 93,899 0.021 0.012 0.328 27.3 9.9
5 3,129 26,946,004 353,091 0.050 0.015 0.393 26.2 6.0

6.1 Membership Testing for Random-Generated Sparse Datasets

We applied our method to the randomly generated large-scale sparse datasets.
We generated a ZDD for the dataset D(n,m) including m combinations each of
which constructed randomly selecting two items out of n items. Next we also
randomly generated a two item pattern p and evaluated the computation time for
the membership testing if p is in D(n,m). We executed SetZSkip procedure for the
ZDD as preprocessing and then repeated the membership testing 10000 times with
different p’s. We compared our method with conventional ZDD-based membership
operation as D(n,m) ∩ p(n).

The experimental results are shown in Table 2. Here “pre-prc.” means the
time for preprocessing, “old” means conventional method. “accel.” means the
ratio of acceleration, “net” means ignoring preprocessing time, and “gross” means
including preprocessing time. From the result, if we ignore the preprocessing time,
the acceleration ratio reaches more than 500 times when n = 50000. Even including
preprocessing time, we are more than 70 times faster than conventional method.
The experimental results show that our method is effective when implementing on
the practical BDD/ZDD package.

6.2 Membership Testing for Frequent Itemset Datasets

Next we applied our method to the frequent itemset data, which are dealt with in
the basic problem of data mining. We used a dataset “BMS-WebView2” chosen
from the KDD benchmark [4]. This data is known as the access log of web pages



Z-Skip-Links for Fast ZDD Traversal in Handling Large-Scale Sparse Datasets (Revised Ed.) 13

at an Internet shopping site, This dataset has 3340 items and 77512 transactions
(combinations), but only 4.6 items appears in average per transaction, so it has
very sparse combinations. We applied LCM-ZDD method[10] to this dataset and
generated a ZDD Dθ including all frequent itemset patterns with a given minimum
support θ. For example, D5 includes 26946004 patterns and there are 3129 relevant
items. The number of ZDD nodes are only 353091, so it has very good compression
rate.

Then, we also randomly generated a two item pattern p, and similarly evaluated
the computation time for the membership testing if p is in Dθ. Table 2 shows that
our method is 10 to 27 times faster than conventional method without considering
preprocessing time, and 6 to 14 times faster considering preprocessing time.

7 Summary

We proposed Z-Skip-Links to accelerate the traversal of ZDDs of large-scale sparse
datasets. It consumes only a constant size of additional memory, and can easily
be implemented into a conventional BDD/ZDD package. We have analyzed the
average-case computation time and clarified the optimal settings. Our experiments
show that the use of Z-Skip-Links makes the membership operations much faster
than using conventional ZDD operations when handling large-scale sparse datasets.
We expect that our method will widen the effective applications of ZDDs in the
era of Big Data.

Acknowledgment

The author would like to thank a reviewer of ESA 2013 who corrected an error of
calculation in the probabilistic analysis. The author also thanks to the members
of ERATO Minato Project and Algorithm Laboratory with Prof. Zeugmann for
the fruitful discussions and technical comments.

References

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
C-27(6):509–516, 1978.

[2] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, 1986.

[3] Olivier Coudert. Solving graph optimization problems with ZBDDs. In Proc.
of ACM/IEEE European Design and Test Conference (ED&TC ’97), pages
224–228, 1997.



14 Shin-ichi Minato

[4] B. Goethals and M. J. Zaki. Frequent itemset mining dataset repos-
itory, 2003. Frequent Itemset Mining Implementations (FIMI’03),
http://fimi.cs.helsinki.fi/.

[5] M. Ishihata, Y. Kameya, T. Sato, and S. Minato. Propositionalizing the EM
algorithm by BDDs. In Proc. of 18th International Conference on Inductive
Logic Programming (ILP 2008), 9 2008.

[6] D. E. Knuth. The Art of Computer Programming: Bitwise Tricks & Tech-
niques; Binary Decision Diagrams, volume 4, fascicle 1. Addison-Wesley,
2009.

[7] E. Loekit and J. Bailey. Fast mining of high dimensional expressive contrast
patterns using zero-suppressed binary decision diagrams. In Proc. of 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD2006), pages 307–316, 2006.

[8] S. Minato, K. Satoh, and T. Sato. Compiling bayesian networks by sym-
bolic probability calculation based on zero-suppressed BDDs. In Proc. of 20th
International Joint Conference of Artificial Intelligence (IJCAI-2007), pages
2550–2555, 2007.

[9] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinato-
rial problems. In Proc. of 30th ACM/IEEE Design Automation Conference
(DAC’93), pages 272–277, 1993.

[10] Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura. LCM over ZBDDs: Fast
generation of very large-scale frequent itemsets using a compact graph-based
representation. In Proc. of 12th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD 2008), (LNAI 5012, Springer), pages 234–
246, 2008.

[11] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Algo-
rithms and Data Structures, 33(6):668–676, 1990.

[12] Ryo Yoshinaka, Jun Kawahara, Shuhei Denzumi, Hiroki Arimura, and Shin-
ichi Minato. Counterexamples to the long-standing conjecture on the complex-
ity of bdd binary operations. Information Processing Letters, 112(16):636–640,
2012.



Z-Skip-Links for Fast ZDD Traversal in Handling Large-Scale Sparse Datasets (Revised Ed.) 15

Appendix

A Calculation in Average-Case Analysis

A.1 Calculation of C(n) in Basic Model

As the target t is assumed discrete uniform distribution from 1 to n, the proba-
bility of passing through the target by a jump becomes 1/α if x is enough large.
Therefore, C1(n), the average number of jumps from n, can be described as follows.

C1(n) = 1 · 1
α

+ 2 · 1
α

(
1− 1

α

)
+ 3 · 1

α

(
1− 1

α

)2

+ . . .

=
∞∑
i=1

i · 1
α

(
1− 1

α

)i−1

= α (10)

Namely, if we use the skip length function J(x) = x/α, C1(x) becomes constant
value α for any large number n. When α = 4, we need only 4 times of jumps in
average to reach vicinity to the target even if n = 10000.

Next, let us consider C2(n). Here R1(n) denotes the average length of the last
jump, then it is written as:

R1(n) =
1
α

n · 1
α

+
1
α

(
1− 1

α

)
n · 1

α

(
1− 1

α

)
+

1
α

(
1− 1

α

)2

n · 1
α

(
1− 1

α

)2

+ . . .

=
∞∑
i=1

n

(
1
α

)2 (
1− 1

α

)2(i−1)

=
n

2α− 1
(11)

At the position of just before the last jump, the target t is located in the distance
of 0 to R1(n)− 1. As we assume t has uniform distribution, we get:

C2(n) =
R1(n)

2
=

n

2(2α− 1)

and thus,

C(n) = C1(n) + C2(n) = α +
n

2(2α− 1)
(12)

is obtained.



16 Shin-ichi Minato

A.2 Calculation of C(n) in Two-Phase Model

Here we assume the same skip length as 1/α of remaining search range for both
J1(x) and J2(x). Then we can write as:

J1(x) =
⌈

1
α

x

⌉
, J2(x) =

⌈
1
α

R1(x)
⌉

(13)

(R1(n) is the average length of the last jump of J1, and it becomes the initial
search range of J2.)

Let us consider C1(n), C2(n), and C3(n) when using such J1(x) and J2(x). First,
J1’s condition is completely same as the basic model,

C1(n) = α, R1(n) =
n

2α− 1

as well as equation 10, 11.

Next, we consider C2(n), however, it jumps 1/α distance as well as J1, we also
get C2(n) = α. R2(n) is obtained by substituting R1(n) into n:

R2(n) =
R1(n)
2α− 1

=
n

(2α− 1)2

and thus,

C3(n) =
R2(n)

2
=

n

2(2α− 1)2

Consequently, the total cost is:

C(n) = C1(n) + C2(n) + C3(n) = 2α +
n

2(2α− 1)2
(14)

Let us calculate optimal α for a given n in a similar way as the basic model.
The derivative of C(n) with respect to α is written as:

d

dα
C(n) = 2− 2n

(2α− 1)3

and it must be zero, then:

αopt =
1
2

(
3
√

n + 1
)

, Copt(n) =
3
2

3
√

n + 1 (15)

are obtained.



Z-Skip-Links for Fast ZDD Traversal in Handling Large-Scale Sparse Datasets (Revised Ed.) 17

A.3 Calculation of C
(kopt)
opt (n) in k-Phase Model

The average cost in k-phase model is written as:

C(k)(n) = kα +
n

2(2α− 1)k
(16)

For calculating optimal α, the derivative of C(k)(n) with respect to α can be written
as:

d

dα
C(k)(n) = k − kn

(2α− 1)k+1

and it should be zero, then:

αopt =
1
2

(
n

1
k+1 + 1

)
, C

(k)
opt(n) =

k + 1
2

n
1

k+1 +
k

2
(17)

are obtained.

Next, let us consider the optimal k for given n. If we set 1
k+1 = t, then we can

rewrite C
(k)
opt(n) as:

C
(k)
opt(n) =

1
2

(
nt + 1

t
− 1

)
.

Then calculate the derivative by t,

d

dt
C

(k)
opt(n) =

(t · ln n− 1)nt − 1
2t2

and it should be zero, then:

t · lnn = 1 +
1
nt

should be satisfied. Here we assume that the optimal t will have a form as ln c
ln n ,

where c is a constant number. Then, the above equation can be rewritten as:

ln c = 1 +
1
c

.

Since
(
ln e < 1 + 1

e

)
and

(
ln e2 > 1 + 1

e2

)
, the solution of this equation must be

found between e and e2. By numerical calculation, we can see that c ≈ 3.6.
Consequently, we can obtain the following result.

kopt =
ln n

ln c
− 1, C

(kopt)
opt (n) =

(
c + 1
2 · ln c

)
ln n− 1

2
, (18)

where c is a constant nearby 3.6 which satisfies
(
ln c = 1 + 1

c

)
.


