
TCS -TR-A-14-70

TCS Technical Report

Verifying Distribution Networks for Secure Restoration

by Enumerating All Critical Failures

by

Takeru Inoue, Norihito Yasuda, Shunsuke Kawano,

Yuji Takenobu, Shin-ichi Minato, and

Yasuhiro Hayashi

Division of Computer Science

Report Series A

January 28, 2014

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682

Verifying Distribution Networks for Secure Restoration

by Enumerating All Critical Failures

Takeru Inoue∗† Norihito Yasuda†‡ Shunsuke Kawano§

Yuji Takenobu§ Shin-ichi Minato‡† Yasuhiro Hayashi§

January 28, 2014

Abstract

If several feeders are cut in a severe accident, distribution networks should
be restored by reconfiguring switches automatically with smart grid technolo-
gies. Although there have been several restoration algorithms developed to
find the new network configuration, they might fail to restore the whole net-
work if the cut critically damaged the network. The networks design has to
guarantee that it is restorable under any possible cut for secure power de-
livery, but it is computationally hard task to examine all possible cuts in a
large-scale network with complex electrical constraints. This paper presents
a novel method to find all the critical (unrestorable) cuts with great effi-
ciency to verify the network design. Our method first runs a fast screening
algorithm based on hitting set enumeration; the algorithm selects suspicious
cuts without naively examining all possible cuts. Next, unrestorable cuts are
identified from the suspicious ones with another algorithm, which strictly tests
the restorability of the network under each suspicious cut without redundantly
repeating heavy power flow calculations. Thorough experiments on two dis-
tribution networks reveal that our method can find thousands of unrestorable
cuts from the trillions of possible cuts in a large 432-bus network with no
significant false negatives. This is the first work to reveal the vulnerability of
a large-scale distribution network extensively.

1 Introduction

Distribution networks consist of several feeders with many switches. The feeder

lines are often cut accidentally by heavy equipment, natural disasters, or inten-

tional attacks, which causes blackouts along the affected feeders. In response to

∗takeru.inoue@ieee.org
†ERATO MINATO Discrete Structure Manipulation System Project, Japan Science and Tech-

nology Agency, Sapporo, Japan.
‡Graduate School of Information Science and Technology, Hokkaido University, Sapporo,

Japan.
§Faculty of Science and Engineering, Waseda University, Tokyo, Japan.

1

2 T. Inoue, N. Yasuda, S. Kawano, Y. Takenobu, S. Minato, and Y. Hayashi

S/S	

Switch	

Section	

Figure 1: Unrestorable cutset found in a distribution network [1]. Given that
line sections indicated by the scissors are cut, the whole network would be still
physically connected but no feasible configuration could be found due to the voltage
drop constraint. We cannot deliver power to some intact sections, though they have
paths to the substation (S/S).

the blackouts, operators attempt to restore the network, providing power to down-

stream of the affected feeders, by network reconfiguration, that is, by changing

the open/close status of switches. In the restoration process, sections containing

the cut are located, and are isolated by opening neighboring switches. Then, the

downstream sections, which have not been cut but are disconnected from the net-

work by the isolation process, are connected to a neighbor feeder through a tie

switch. The new restored configuration must satisfy operational constraints such

as the radiality of feeders, line capacity, and voltage drop. Secure and automated

restoration is a key motivation to introduce the smart grid technologies.

The restoration process has been well studied, and several restoration algorithms

have been proposed [11, 16, 10, 9, 15, 14]; given a set of line sections that have

been cut, the algorithms efficiently find a series of switching operations leading to

a new feasible (constraint-conformant) configuration. These algorithms, however,

can fail to restore all the intact sections. This is because no feasible configura-

tion might remain in the affected network whose topology has been changed by

the cuts. Here, we focus on an unrestorable cutset, which is defined as a set of

cuts such that some intact sections cannot be energized after the cuts have been

made due to the absence of feasible configurations. Figure 1 gives an example of

an unrestorable cutset found in the well-known distribution network introduced

by Baran and Wu [1]. An unrestorable cutset may cause a long-term blackout on

several intact sections. Unfortunately, restoration algorithms cannot resolve this

Verifying Distribution Networks for Secure Restoration by Enumerating All Critical Failures 3

issue, because no feasible configuration exists in the network given the presence of

an unrestorable cutset. Since the root cause of this issue is the absence of feasi-

ble configurations, this is an issue of network design at deployment time, not an

issue for the restoration algorithms. If the network were verified not contain an

unrestorable cutset, restoration algorithms could identify a new feasible configu-

ration in an emergency. We need to find all unrestorable cutsets and to eliminate

them for secure power delivery before deploying the new distribution network.

Only a few papers have investigated efficient techniques related to finding un-

restorable cutsets. The reliability-network-equivalent method [2] calculates the

availability of each load point in a distribution network, but it does not find un-

restorable cutsets explicitly since the calculation method depends on probability

propagation. Reference [9] examined feeder lines to be cut for availability calcula-

tion, but it checks them one by one naively and so it does not scale to support large

networks. Reference [4] focused on N − 1 security to ensure whether a network

would be feasible under a cutset of any single line, but did not deal with a cutset

of multiple lines.

Finding all unrestorable cutsets is a computationally tough problem, because

the number of possible cutsets increases quite rapidly with network size and cutset

size; i.e., assume there are n line sections in a network and k of the n sections

can be cut at a time, we have to examine
(
n
k

)
= O(nk) combinations of sections

to find all unrestorable cutsets. The naive approach, which examines all possible

combinations, clearly does not scale well. As will be presented in this paper, lines

separated by 18 switches can form an unrestorable cutset, and so we have to deal

with a network of large n without dividing it into small pieces. In addition, k can

be larger than one, because several lines can be cut in a short time by a large-scale

disaster or a series of terror attacks.

We face another issue; we have to conduct a feasibility test for every cutset

to check whether the network can deliver power to all intact sections under the

cutset. Since the search space is non-convex due to the complex constraints of the

distribution network [8], the test is also computationally intractable.

This paper proposes a novel method that efficiently finds (nearly) all unrestorable

cutsets. Our method avoids the computation issues by employing a compressed

data structure named the zero-suppressed binary decision diagram, or ZDD [12],

which allows us to represent a huge non-convex space in a compressed manner,

and also to execute efficient algebra on the compressed space. ZDDs have been

successfully applied to the loss minimization problem of distribution networks [6]; a

non-convex space of 1070 configurations were efficiently handled to find an optimal

configuration.

Our method is two-fold.

• First, our method efficiently selects unrestorable cutest candidates (suspi-

cious cutsets), which greatly reduces the number of cutsets to be tested rig-

orously. We employ the hitting set enumeration with ZDDs [17] for this

4 T. Inoue, N. Yasuda, S. Kawano, Y. Takenobu, S. Minato, and Y. Hayashi

S/S 1	

e1	

e2	

S/S 3	

e3	

e4	

e5	

S/S 2	
 S/S 4	

(1) Finding all feasible configurations	

C1 = {e1, e4 }
C2 = { e2, e3 }
C3 = {e1, e5}	

(2) Enumerating all hitting sets	

{e1, e2 }
{e1, e3 }
{ e2, e4, e5}
{ e3, e4, e5}	

(3) Testing cutsets only near hitting set switches	

Only minimal sets are shown
for space limits	

Figure 2: Basic idea to identifying potential unrestorable cutsets. (1) We represent
a feasible configuration by a set of closed switches; e.g, two switches e1 and e4 are
closed in feasible configuration C1. (2) All hitting sets of the feasible configurations
are enumerated; e.g. switches {e1, e2} form a hitting set, since at least one of them
is closed in all feasible configurations C1–C3. Opening all switches in the hitting
set makes the network infeasible. (3) Cutting all lines near hitting set switches
is also likely to make the network infeasible. We focus only on such cutsets and
ignore others.

reduction; this approach finds sets of switches that are closed in common

in all feasible configurations (Figure 2). In other words, if all switches in

the set were to be opened, the network would lose all feasible configurations.

This observation leads to our basic idea; cutting lines near the switches of a

hitting set is likely to trigger the same consequence, and so we will test only

such suspicious cutsets and can ignore the others. (Section 3.3)

• Second, our method tests the suspicious cutsets rigorously and identifies truly

unrestorable cutsets. In advance, we built two ZDDs, which represent the

topological constraints (radiality) and the electrical constraints (line capac-

ity and voltage drop). After updating just the topological constraints for

each suspicious cutset, we conduct the satisfiability test without re-executing

complex power flow calculations required for the electrical constraints. (Sec-

tion 3.2)

We conduct comprehensive computer experiments to evaluate our method with

Verifying Distribution Networks for Secure Restoration by Enumerating All Critical Failures 5

C1 = {e1, e4}	

v1	

v2	

v3	

v4	

v5	

v6	

e1	

e2	

e3	

e4	

e5	

U = {v1, v3}	

v1	

v2	

v3	

v4	

v5	

v6	

e1	

e2	

e3	

e4	

e5	

Figure 3: Graph representation of distribution network in Figure 2. In graph
G = (V,E), vertex v ∈ V and edge e ∈ E represent a line section and switch,
respectively, while subgraph C ⊆ E can be a feasible configuration. Our problem
is to find every unrestorable cutset U ⊆ V .

the well-known Baran and Wu network [1] as well as a large-scale network developed

by Fukui University and Tokyo Electric Power Company [3]; the large-scale network

closely models a typical Japanese distribution network and includes 432 buses. The

results show a remarkable reduction in the number of tests, five orders of magnitude

lower. Moreover, each test is completed in less than five seconds on average even

in the large-scale network. Finally, thousands of unrestorable cutsets are found in

the large-scale network.

The rest of this paper is organized as follows. Section 2 defines our problem,

and Section 3 describes the algorithms used to find unrestorable cutsets. Section

4 reports our experiments and the results, and Section 5 concludes this paper.

2 Problem statement

We first describe our network model. A distribution network consists of feeders

with switches. Each part of a feeder separated by switches is called a line sec-

tion, and it has load and impedance. Given the status of all switches, the network

configuration is uniquely determined. A configuration that complies with the topo-

logical constraints consists of radial feeders (loop-free), each of which is connected

exclusively to a feeding point at a substation. All line sections must be energized

unless they have not been cut. The electrical constraints including line capacity

and voltage drop are also set.

Following our past work [6], we represent the distribution network as a graph,

G = (V,E), as shown in Figure 3. A switch is represented by an edge, e ∈ E,

while a line section is a vertex, v ∈ V . If a switch is open, the corresponding

edge is removed. In this graph representation, a configuration is represented by

a subset of edges that have not been removed; a subset of edges is simply called

a subgraph in this paper, unless otherwise confusing. A subgraph representing

a feasible configuration is noted by C ⊆ E. The topological constraints require

feasible subgraph C to be a spanning forest rooted to substations (a forest means

a set of disjoint trees), because each feeder has to be a tree and be rooted on a

6 T. Inoue, N. Yasuda, S. Kawano, Y. Takenobu, S. Minato, and Y. Hayashi

feeding point, and every vertex has to be covered by a tree. Feasible subgraph C

also satisfies the electrical constraints. A set of all feasible subgraphs in graph G

is noted by C(G) and we have,

C(G) = {C ⊆ E : is feasible(C)},

where argument G will be omitted when it is obvious from the context.

Our definition of cutset is different from that of the graph theory, though it

shares the flavor of a vertex cutset. A cutset in this paper refers to a set of vertices

(line sections) that are being cut at the same time. We give a formal definition of

an unrestorable cutset as follows; given an unrestorable cutset, U ⊆ V , and a set

of such cutsets, U 3 U , it is defined as,

U = {U ⊆ V : G′ = (V \ U,E \ edges(U)), |C(G′)| = 0},

where G′ is a subgraph without vertices U and their edges (i.e., we cut sections

of U and isolate them by opening neighboring switches), and the last term means

that G′ has no feasible configuration and cannot deliver power to all intact sections.

An unrestorable cutset might not make the rest of graph physically disconnected,

since it is possible for a configuration to fail to satisfy the electrical constraints

even if the graph can be connected.

Our goal is to find U efficiently. We only consider line failures, since they are

much more frequent than other failures like capacitor banks and switches.

3 Finding unrestorable cutsets

This section describes our method that finds unrestorable cutsets. Section 3.1

reviews our past work that enumerates all feasible configurations [6]. Section 3.2

describes a test algorithm to identify unrestorable cutsets from suspicious cutsets,

which are selected by the algorithm described in Section 3.3.

3.1 Enumerating all feasible configurations

We briefly describe our past work [6]. We first find a set of all topologically-

feasible configurations Ct(G), and also find another set of all electrically-feasible

configurations Ce(G),

Ct(G) = {C ⊆ E : is topol feasible(C)}, (1)

Ce(G) = {C ⊆ E : is elec feasible(C)}.

A set of configurations satisfying all the constraints, C(G), is given as the intersec-

tion of both sets,

C(G) = Ct(G) ∩ Ce(G). (2)

Verifying Distribution Networks for Secure Restoration by Enumerating All Critical Failures 7

These three sets are represented as ZDDs, which are built by algorithms presented

in [6, III.A], [6, III.B], and [12]. The set size, |C(G)|, can be calculated by another

algorithm[7]. Finding Ce(G) is the most time-consuming process and it takes more

than 100 times longer than the other calculation processes, since it involves complex

power flow calculations. We assume that Ce(G) and C(G) have been obtained before

the following algorithms.

3.2 Testing network feasibility for suspicious cutsets

Algorithm 1 is unrestorable

Input: G, Ce(G), S
Output: r // indicates S is unrestorable or not
G′ = (V \ S,E \ edges(U))
Ct(G′) = {C ⊆ E \ edges(S) : is topol feasible(C)}
C(G′) = Ct(G′) ∩ Ce(G)
if |C(G′)| = 0 then // if G′ has no feasible configuration
r = True

else
r = False

end if

We describe an algorithm to determine whether a given suspicious cutset is

unrestorable in Algorithm 1. Given suspicious cutset S by the algorithm of Sec-

tion 3.3, we isolate vertices of S by removing their neighboring edges (imitating the

opening of the corresponding switches) which yields another graph, G′. We then

run the algorithm of (1) that finds topologically-feasible configurations Ct(G′) with

G′. We also run the intersection algorithm of (2) over Ct(G′) and Ce(G). Finally,

we count the number of feasible configurations |C(G′)| to know whether the given

cutset is unrestorable.

This algorithm is very efficient, because it does not involve the time-consuming

power flow calculation required for Ce(G); it is calculated before this algorithm.

Ce(G) includes electrically feasible configurations with and without S, but con-

figurations with S cannot be realized in the modified graph G′, from which S’s

vertices are removed. These impossible configurations are, however, eliminated by

intersection with Ct(G′), which does not include configurations that use S.

3.3 Selecting suspicious cutsets

We describe an algorithm to select suspicious cutsets, which will be tested by Al-

gorithm 1. We first consider hypothetical switch failures such that the distribution

network would be infeasible if the switches could not be closed. Figure 2 gives

an example. This network has feasible configurations, but none of them can be

realized if switches e1 and e2 are kept open, since at least one of them must be

8 T. Inoue, N. Yasuda, S. Kawano, Y. Takenobu, S. Minato, and Y. Hayashi

4

We describe an algorithm to determine whether a given
suspicious cut is unrestorable in Algorithm 1. Given suspicious
cut S by the algorithm of Section III-C, we isolate vertices
of S by removing their neighboring edges (imitating to open
the corresponding switches), and we get another graph G0. We
then run the algorithm of (1) that finds topologically-feasible
configurations Ct(G

0) with the modified graph G0. We also
run the intersection algorithm of (2) over Ct(G

0) and Ce(G).
Finally, we count the number of feasible configurations |C(G0)|
to know whether the given cut is unrestorable.

This algorithm is very efficient, because it does not in-
volve the time-consuming power flow calculation required for
Ce(G), which has been calculated before this algorithm. This
Ce(G) might include impossible configurations that rely on
vertices removed as S, but these impossible configurations
are eliminated in taking the intersection, because they are not
included in Ct(G

0).

C. Selecting suspicious cuts

We describe another algorithm to efficiently select suspi-
cious cuts, which will be tested by the algorithm in Sec-
tion III-B. We first consider hypothetical switch failures
such that the distribution network would be infeasible if the
switches could not be closed. Figure 2 gives an example. This
network has feasible configurations, but none of them can be
realized if switches e1 and e3 are kept open, since at least
one of them must be closed in any feasible configuration. A
set of these switches is called a hitting set for the feasible
configurations. We give a rigorous definition here. A hitting set
for C is a set, H ✓ E, such that H has non-empty intersection
with every configuration C 2 C. A set of hitting sets, H, is
given by,

H = {H ✓ E : H \ C 6= ; 8C 2 C}.

The hitting set gives us a powerful clue to find unrestorable
cuts. Our basic idea is like this; a network that opens a
switch has a similar topology with the network that cuts a
line connected to the switch, as shown in Figure 2 (3). Based
on this idea, we give the following theorem (a sketch of proof
is given in Appendix).

Theorem. Any unrestorable cut is induced from at least one
of hitting sets,

8U 2 U , 9H 2 H : U 2 cut from hit(H),

where function cut from hit(H) generates combinations of
vertices connected to edge e 2 H ,

cut from hit(H) 3 {v 2 vertex(e) 8e 2 H}.

We define a suspicious cut as a cut induced from a hitting
set by cut from hit. This theorem allows us to ignore un-
suspicious cuts without the risk of overlooking unrestorable
ones, because all unrestorable cuts are suspicious cuts. We test
only the suspicious cuts by the algorithm of Section III-B, and
determine whether they are unrestorable. Since the opposite of
this theorem is not true (a hitting set induces unrestorable cuts

Algorithm 2 find unrestorable
Input: C(G)
Output: U

U = ;
H = hitting sets(C(G))
for H 2 H do // for each hitting set

for S 2 cut from hit(H) do // for each suspicious cut
if is unrestorable(S) then

U = U [{S}
end if

end for
end for

only, is not true), we cannot skip the tests against suspicious
cuts.

We present the complete algorithm to find all unrestorable
cuts U in Algorithm 2. This algorithm first obtains a set of
hitting sets H for feasible configurations C by [11]. We test
only suspicious cuts induced from the hitting sets. Our method
reduces the number of feasibility tests compared to a naive
brute-force approach, which performs a test for every cut.

D. Scalability improvement techniques

We show two techniques that make our method more
scalable.

1) Cut size limit: We put an upper limit on the cut size,
which is the number of vertices (line sections) in a cut,
based on the maximum number of lines cut at a time. Since
the number of hitting sets increases with their size rapidly,
this limitation greatly reduces the number of hitting sets to
examine. We have an efficient algorithm to restrict the hitting
set size [15]. In order to identify unrestorable cut U , we only
need to examine hitting sets of |H|  |U |(d�1), where d is the
maximum vertex degree in the graph, thanks to the following
Lemma (details are discussed in Appendix).

Lemma. An unrestorable cut U is induced from hitting sets
of |H|  |U |(d � 1).

2) Minimal cuts only: We only focus on minimal un-
restorable cuts; minimal cut U is a cut that does not include
any other cut, that is, U 6� U 0 8U 0 2 U . Given U is an
unrestorable cut, any superset of it, U 00 � U , is clearly
unrestorable, and so we do not have to care it. Since non-
minimal hitting sets can yield non-minimal unrestorable cuts,
we test suspicious cuts induced only from minimal hitting
sets. Reference [11] also proposed an algorithm that efficiently
selects minimal hitting sets.

Minimalizing makes our method more efficient, but it can
introduce the risk of overlooking some unrestorable cuts;
if no unrestorable cut is found from a hitting set, some
unrestorable cuts can be found from a superset of the hitting
set, which is not minimal. This is a tradeoff between the
efficiency and accuracy. We will evaluate two our methods
in the experiments; one examines minimal hitting sets only

4

We describe an algorithm to determine whether a given
suspicious cut is unrestorable in Algorithm 1. Given suspicious
cut S by the algorithm of Section III-C, we isolate vertices
of S by removing their neighboring edges (imitating to open
the corresponding switches), and we get another graph G0. We
then run the algorithm of (1) that finds topologically-feasible
configurations Ct(G

0) with the modified graph G0. We also
run the intersection algorithm of (2) over Ct(G

0) and Ce(G).
Finally, we count the number of feasible configurations |C(G0)|
to know whether the given cut is unrestorable.

This algorithm is very efficient, because it does not in-
volve the time-consuming power flow calculation required for
Ce(G), which has been calculated before this algorithm. This
Ce(G) might include impossible configurations that rely on
vertices removed as S, but these impossible configurations
are eliminated in taking the intersection, because they are not
included in Ct(G

0).

C. Selecting suspicious cuts

We describe another algorithm to efficiently select suspi-
cious cuts, which will be tested by the algorithm in Sec-
tion III-B. We first consider hypothetical switch failures
such that the distribution network would be infeasible if the
switches could not be closed. Figure 2 gives an example. This
network has feasible configurations, but none of them can be
realized if switches e1 and e3 are kept open, since at least
one of them must be closed in any feasible configuration. A
set of these switches is called a hitting set for the feasible
configurations. We give a rigorous definition here. A hitting set
for C is a set, H ✓ E, such that H has non-empty intersection
with every configuration C 2 C. A set of hitting sets, H, is
given by,

H = {H ✓ E : H \ C 6= ; 8C 2 C}.

The hitting set gives us a powerful clue to find unrestorable
cuts. Our basic idea is like this; a network that opens a
switch has a similar topology with the network that cuts a
line connected to the switch, as shown in Figure 2 (3). Based
on this idea, we give the following theorem (a sketch of proof
is given in Appendix).

Theorem. Any unrestorable cut is induced from at least one
of hitting sets,

8U 2 U , 9H 2 H : U 2 cut from hit(H),

where function cut from hit(H) generates combinations of
vertices connected to edge e 2 H ,

cut from hit(H) 3 {v 2 vertex(e) 8e 2 H}.

We define a suspicious cut as a cut induced from a hitting
set by cut from hit. This theorem allows us to ignore un-
suspicious cuts without the risk of overlooking unrestorable
ones, because all unrestorable cuts are suspicious cuts. We test
only the suspicious cuts by the algorithm of Section III-B, and
determine whether they are unrestorable. Since the opposite of
this theorem is not true (a hitting set induces unrestorable cuts

Algorithm 2 find unrestorable
Input: C(G)
Output: U

U = ;
H = hitting sets(C(G))
for H 2 H do // for each hitting set

for S 2 cut from hit(H) do // for each suspicious cut
if is unrestorable(S) then

U = U [{S}
end if

end for
end for

only, is not true), we cannot skip the tests against suspicious
cuts.

We present the complete algorithm to find all unrestorable
cuts U in Algorithm 2. This algorithm first obtains a set of
hitting sets H for feasible configurations C by [11]. We test
only suspicious cuts induced from the hitting sets. Our method
reduces the number of feasibility tests compared to a naive
brute-force approach, which performs a test for every cut.

D. Scalability improvement techniques

We show two techniques that make our method more
scalable.

1) Cut size limit: We put an upper limit on the cut size,
which is the number of vertices (line sections) in a cut,
based on the maximum number of lines cut at a time. Since
the number of hitting sets increases with their size rapidly,
this limitation greatly reduces the number of hitting sets to
examine. We have an efficient algorithm to restrict the hitting
set size [15]. In order to identify unrestorable cut U , we only
need to examine hitting sets of |H|  |U |(d�1), where d is the
maximum vertex degree in the graph, thanks to the following
Lemma (details are discussed in Appendix).

Lemma. An unrestorable cut U is induced from hitting sets
of |H|  |U |(d � 1).

2) Minimal cuts only: We only focus on minimal un-
restorable cuts; minimal cut U is a cut that does not include
any other cut, that is, U 6� U 0 8U 0 2 U . Given U is an
unrestorable cut, any superset of it, U 00 � U , is clearly
unrestorable, and so we do not have to care it. Since non-
minimal hitting sets can yield non-minimal unrestorable cuts,
we test suspicious cuts induced only from minimal hitting
sets. Reference [11] also proposed an algorithm that efficiently
selects minimal hitting sets.

Minimalizing makes our method more efficient, but it can
introduce the risk of overlooking some unrestorable cuts;
if no unrestorable cut is found from a hitting set, some
unrestorable cuts can be found from a superset of the hitting
set, which is not minimal. This is a tradeoff between the
efficiency and accuracy. We will evaluate two our methods
in the experiments; one examines minimal hitting sets only

Subsets of edges E	
 Cutsets (subsets of vertices V)	

cut_from_hit	

44

We describe an algorithm to determine whether a given
suspicious cut is unrestorable in Algorithm 1. Given suspicious
cut S by the algorithm of Section III-C, we isolate vertices
of S by removing their neighboring edges (imitating to open
the corresponding switches), and we get another graph G0. We
then run the algorithm of (1) that finds topologically-feasible
configurations Ct(G

0) with the modified graph G0. We also
run the intersection algorithm of (2) over Ct(G

0) and Ce(G).
Finally, we count the number of feasible configurations |C(G0)|
to know whether the given cut is unrestorable.

This algorithm is very efficient, because it does not in-
volve the time-consuming power flow calculation required for
Ce(G), which has been calculated before this algorithm. This
Ce(G) might include impossible configurations that rely on
vertices removed as S, but these impossible configurations
are eliminated in taking the intersection, because they are not
included in Ct(G

0).

C. Selecting suspicious cuts

We describe another algorithm to efficiently select suspi-
cious cuts, which will be tested by the algorithm in Sec-
tion III-B. We first consider hypothetical switch failures
such that the distribution network would be infeasible if the
switches could not be closed. Figure 2 gives an example. This
network has feasible configurations, but none of them can be
realized if switches e1 and e3 are kept open, since at least
one of them must be closed in any feasible configuration. A
set of these switches is called a hitting set for the feasible
configurations. We give a rigorous definition here. A hitting set
for C is a set, H ✓ E, such that H has non-empty intersection
with every configuration C 2 C. A set of hitting sets, H, is
given by,

H = {H ✓ E : H \ C 6= ; 8C 2 C}.

The hitting set gives us a powerful clue to find unrestorable
cuts. Our basic idea is like this; a network that opens a
switch has a similar topology with the network that cuts a
line connected to the switch, as shown in Figure 2 (3). Based
on this idea, we give the following theorem (a sketch of proof
is given in Appendix).

Theorem. Any unrestorable cut is induced from at least one
of hitting sets,

8U 2 U , 9H 2 H : U 2 cut from hit(H),

where function cut from hit(H) generates combinations of
vertices connected to edge e 2 H ,

cut from hit(H) 3 {v 2 vertex(e) 8e 2 H}.

We define a suspicious cut as a cut induced from a hitting
set by cut from hit. This theorem allows us to ignore un-
suspicious cuts without the risk of overlooking unrestorable
ones, because all unrestorable cuts are suspicious cuts. We test
only the suspicious cuts by the algorithm of Section III-B, and
determine whether they are unrestorable. Since the opposite of
this theorem is not true (a hitting set induces unrestorable cuts

Algorithm 2 find unrestorable
Input: C(G)
Output: U

U = ;
H = hitting sets(C(G))
for H 2 H do // for each hitting set

for S 2 cut from hit(H) do // for each suspicious cut
if is unrestorable(S) then

U = U [{S}
end if

end for
end for

only, is not true), we cannot skip the tests against suspicious
cuts.

We present the complete algorithm to find all unrestorable
cuts U in Algorithm 2. This algorithm first obtains a set of
hitting sets H for feasible configurations C by [11]. We test
only suspicious cuts induced from the hitting sets. Our method
reduces the number of feasibility tests compared to a naive
brute-force approach, which performs a test for every cut.

D. Scalability improvement techniques

We show two techniques that make our method more
scalable.

1) Cut size limit: We put an upper limit on the cut size,
which is the number of vertices (line sections) in a cut,
based on the maximum number of lines cut at a time. Since
the number of hitting sets increases with their size rapidly,
this limitation greatly reduces the number of hitting sets to
examine. We have an efficient algorithm to restrict the hitting
set size [15]. In order to identify unrestorable cut U , we only
need to examine hitting sets of |H|  |U |(d�1), where d is the
maximum vertex degree in the graph, thanks to the following
Lemma (details are discussed in Appendix).

Lemma. An unrestorable cut U is induced from hitting sets
of |H|  |U |(d � 1).

2) Minimal cuts only: We only focus on minimal un-
restorable cuts; minimal cut U is a cut that does not include
any other cut, that is, U 6� U 0 8U 0 2 U . Given U is an
unrestorable cut, any superset of it, U 00 � U , is clearly
unrestorable, and so we do not have to care it. Since non-
minimal hitting sets can yield non-minimal unrestorable cuts,
we test suspicious cuts induced only from minimal hitting
sets. Reference [11] also proposed an algorithm that efficiently
selects minimal hitting sets.

Minimalizing makes our method more efficient, but it can
introduce the risk of overlooking some unrestorable cuts;
if no unrestorable cut is found from a hitting set, some
unrestorable cuts can be found from a superset of the hitting
set, which is not minimal. This is a tradeoff between the
efficiency and accuracy. We will evaluate two our methods
in the experiments; one examines minimal hitting sets only

4

We describe an algorithm to determine whether a given
suspicious cut is unrestorable in Algorithm 1. Given suspicious
cut S by the algorithm of Section III-C, we isolate vertices
of S by removing their neighboring edges (imitating to open
the corresponding switches), and we get another graph G0. We
then run the algorithm of (1) that finds topologically-feasible
configurations Ct(G

0) with the modified graph G0. We also
run the intersection algorithm of (2) over Ct(G

0) and Ce(G).
Finally, we count the number of feasible configurations |C(G0)|
to know whether the given cut is unrestorable.

This algorithm is very efficient, because it does not in-
volve the time-consuming power flow calculation required for
Ce(G), which has been calculated before this algorithm. This
Ce(G) might include impossible configurations that rely on
vertices removed as S, but these impossible configurations
are eliminated in taking the intersection, because they are not
included in Ct(G

0).

C. Selecting suspicious cuts

We describe another algorithm to efficiently select suspi-
cious cuts, which will be tested by the algorithm in Sec-
tion III-B. We first consider hypothetical switch failures
such that the distribution network would be infeasible if the
switches could not be closed. Figure 2 gives an example. This
network has feasible configurations, but none of them can be
realized if switches e1 and e3 are kept open, since at least
one of them must be closed in any feasible configuration. A
set of these switches is called a hitting set for the feasible
configurations. We give a rigorous definition here. A hitting set
for C is a set, H ✓ E, such that H has non-empty intersection
with every configuration C 2 C. A set of hitting sets, H, is
given by,

H = {H ✓ E : H \ C 6= ; 8C 2 C}.

The hitting set gives us a powerful clue to find unrestorable
cuts. Our basic idea is like this; a network that opens a
switch has a similar topology with the network that cuts a
line connected to the switch, as shown in Figure 2 (3). Based
on this idea, we give the following theorem (a sketch of proof
is given in Appendix).

Theorem. Any unrestorable cut is induced from at least one
of hitting sets,

8U 2 U , 9H 2 H : U 2 cut from hit(H),

where function cut from hit(H) generates combinations of
vertices connected to edge e 2 H ,

cut from hit(H) 3 {v 2 vertex(e) 8e 2 H}.

We define a suspicious cut as a cut induced from a hitting
set by cut from hit. This theorem allows us to ignore un-
suspicious cuts without the risk of overlooking unrestorable
ones, because all unrestorable cuts are suspicious cuts. We test
only the suspicious cuts by the algorithm of Section III-B, and
determine whether they are unrestorable. Since the opposite of
this theorem is not true (a hitting set induces unrestorable cuts

Algorithm 2 find unrestorable
Input: C(G)
Output: U

U = ;
H = hitting sets(C(G))
for H 2 H do // for each hitting set

for S 2 cut from hit(H) do // for each suspicious cut
if is unrestorable(S) then

U = U [{S}
end if

end for
end for

only, is not true), we cannot skip the tests against suspicious
cuts.

We present the complete algorithm to find all unrestorable
cuts U in Algorithm 2. This algorithm first obtains a set of
hitting sets H for feasible configurations C by [11]. We test
only suspicious cuts induced from the hitting sets. Our method
reduces the number of feasibility tests compared to a naive
brute-force approach, which performs a test for every cut.

D. Scalability improvement techniques

We show two techniques that make our method more
scalable.

1) Cut size limit: We put an upper limit on the cut size,
which is the number of vertices (line sections) in a cut,
based on the maximum number of lines cut at a time. Since
the number of hitting sets increases with their size rapidly,
this limitation greatly reduces the number of hitting sets to
examine. We have an efficient algorithm to restrict the hitting
set size [15]. In order to identify unrestorable cut U , we only
need to examine hitting sets of |H|  |U |(d�1), where d is the
maximum vertex degree in the graph, thanks to the following
Lemma (details are discussed in Appendix).

Lemma. An unrestorable cut U is induced from hitting sets
of |H|  |U |(d � 1).

2) Minimal cuts only: We only focus on minimal un-
restorable cuts; minimal cut U is a cut that does not include
any other cut, that is, U 6� U 0 8U 0 2 U . Given U is an
unrestorable cut, any superset of it, U 00 � U , is clearly
unrestorable, and so we do not have to care it. Since non-
minimal hitting sets can yield non-minimal unrestorable cuts,
we test suspicious cuts induced only from minimal hitting
sets. Reference [11] also proposed an algorithm that efficiently
selects minimal hitting sets.

Minimalizing makes our method more efficient, but it can
introduce the risk of overlooking some unrestorable cuts;
if no unrestorable cut is found from a hitting set, some
unrestorable cuts can be found from a superset of the hitting
set, which is not minimal. This is a tradeoff between the
efficiency and accuracy. We will evaluate two our methods
in the experiments; one examines minimal hitting sets only

Subsets of edges E� Cuts (subsets of vertices V)�

Set of suspicious cuts�cut_from_hit�

Fig. 4. A set of unrestorable cuts, U , is a subset of suspicious sets, which
is projected from a set of hitting sets, H, by function cut from hit. All
unrestorable cuts are, therefore, generated just from hitting sets.

and e2 are kept open, since at least one of them must be closed
in any feasible configuration. A set of these switches is called
a hitting set for the feasible configurations. We give a rigorous
definition here. A hitting set for C is a set, H ✓ E, such that
H has non-empty intersection with every configuration C 2 C.
A set of hitting sets, H, is given by,

H = {H ✓ E : H \ C 6= ; 8C 2 C}.

The hitting set gives us a powerful clue to find unrestorable
cuts. Our basic idea is like this; a network that opens a
switch has a similar topology with the network that cuts a
line connected to the switch, as shown in Figure 2 (3). Based
on this idea, we give a theorem to find all unrestorable cuts
from hitting sets. As preparation for the theorem, we define a
function named cut from hit that generates cuts from a hitting
set,

cut from hit(H) 3 S = {v 2 vertex(e) 8e 2 H},

where the cut consists of vertices connected to hitting set
edges, and it is called a suspicious cut, S. In other words,
a set of suspicious sets, S are projected from a set of hitting
sets, H, by function cut from hit,

S = {S 2 cut from hit(H) : 8H 2 H},

as shown in Figure 4.

Theorem. Any unrestorable cut is a suspicious cut, as shown
in Figure 4 (a sketch of proof is given in Appendix).

This theorem implies that all unrestorable cuts are generated
from hitting sets,

8U 2 U , 9H 2 H : U 2 cut from hit(H),

and it allows us to ignore unsuspicious cuts without the risk of
overlooking unrestorable ones. We test only the suspicious cuts
by Algorithm 1, and determine whether they are unrestorable.
Since the opposite of this theorem is not true (a hitting set
generates unrestorable cuts only, is not true), we cannot skip
the tests.

We present the complete algorithm to find all unrestorable
cuts U in Algorithm 2. This algorithm first obtains a set
of hitting sets H for feasible configurations C by [11]. We
test only suspicious cuts generated from the hitting sets. Our
method reduces the number of feasibility tests compared to a

Algorithm 2 find unrestorable
Input: C(G)
Output: U

U = ;
H = hitting sets(C(G))
for H 2 H do // for each hitting set

for S 2 cut from hit(H) do // for each suspicious cut
if is unrestorable(S) then

U = U [{S}
end if

end for
end for

naive brute-force approach, which performs a test for every
cut.

D. Scalability improvement techniques

We show two techniques that make our method more
scalable.

1) Cut size limit: We put an upper limit on the cut size,
which is the number of vertices (line sections) in a cut,
based on the maximum number of lines cut at a time. Since
the number of hitting sets increases with their size rapidly,
this limitation greatly reduces the number of hitting sets to
examine. We have an efficient algorithm to restrict the hitting
set size [15]. In order to identify unrestorable cut U , we only
need to examine hitting sets of |H|  |U |(d�1), where d is the
maximum vertex degree in the graph, thanks to the following
Lemma (details are discussed in Appendix).

Lemma. An unrestorable cut U is generated from hitting sets
of |H|  |U |(d � 1).

2) Minimal cuts only: We only focus on minimal un-
restorable cuts; minimal cut U is a cut that does not include
any other cut, that is, U 6� U 0 8U 0 2 U . Given U is an
unrestorable cut, any superset of it, U 00 � U , is clearly
unrestorable, and so we do not have to care it. Since non-
minimal hitting sets can yield non-minimal unrestorable cuts,
we test suspicious cuts generated only from minimal hitting
sets. Reference [11] also proposed an algorithm that efficiently
selects minimal hitting sets.

Minimalizing makes our method more efficient, but it can
introduce the risk of overlooking some unrestorable cuts;
if no unrestorable cut is found from a hitting set, some
unrestorable cuts can be found from a superset of the hitting
set, which is not minimal. This is a tradeoff between the
efficiency and accuracy. We will evaluate two our methods
in the experiments; one examines minimal hitting sets only
(minimalizing), while the other cares supersets of the minimal
hitting sets (no minimalizing).

IV. EXPERIMENTS

Our method is applied to two datasets, a traditional small
distribution network in Section IV-A and a large-scale network
closely modeling a typical Japanese distribution network in

Figure 4: A set of unrestorable cutsets, U , is a subset of suspicious sets, S, which is
projected from a set of hitting sets, H, by function cut from hit. All unrestorable
cutsets are, therefore, mapped just from hitting sets.

closed in any feasible configuration. A set of these switches is called a hitting set

for the feasible configurations. We give a rigorous definition here. A hitting set

for C is set H ⊆ E where H has non-empty intersection with every configuration

C ∈ C. A set of hitting sets, H, is given by,

H = {H ⊆ E : H ∩ C 6= ∅ ∀C ∈ C}.

The hitting set gives us a powerful clue for finding unrestorable cutsets. Our

basic idea works as follows; a network that opens a switch has a similar topology

with the network that cuts a line connected to the switch, as shown in Figure 2

(3). Based on this idea, we give a theorem to find all unrestorable cutsets from

hitting sets. As preparation for the theorem, we define a suspicious cutset, S ∈ S,

which is mapped from a hitting set by a function named cut from hit,

S = {S ∈ cut from hit(H) : ∀H ∈ H},

as shown in Figure 4. The function cut from hit is defined by,

cut from hit(H) =
∏
e∈H

vertices(e)

where
∏

Ai represents a Cartesian product of sets Ai. In the example of Figs. 2

and 3, we have,

cut from hit({e1, e2}) = {v1, v2} × {v2, v3}
= {{v1, v2}, {v1, v3}, {v2}, {v2, v3}}.

Suspicious cutset S can also be called a hitting vertex set, since it consists of

vertices connected to edges of a hitting set.

Theorem. A set of unrestorable cutsets, U , is a subset of suspicious cutsets, S,

as shown in Figure 4 (a sketch of proof is given in the Appendix).

This theorem means that all unrestorable cutsets are mapped from hitting sets,

U ⊆ {U ∈ cut from hit(H) : ∀H ∈ H},

Verifying Distribution Networks for Secure Restoration by Enumerating All Critical Failures 9

and it allows us to ignore unsuspicious cutsets without the risk of overlooking un-

restorable ones. We test only the suspicious cutsets by Algorithm 1, and determine

whether they are unrestorable. We cannot skip the tests, since the opposite of this

theorem is not true (a hitting set can be mapped to restorable cutsets as well).

This is because loads are reduced given a suspicious cutset due to the blackout of

isolated sections, while it is not reduced for a hitting set that isolates no section.

Algorithm 2 find unrestorable

Input: C(G)
Output: U
U = ∅
H = hitting sets(C(G))
for H ∈ H do // for each hitting set
for S ∈ cut from hit(H) do // for each suspicious cutset

if is unrestorable(S) then
U = U ∪ {S}

end if
end for

end for

We present Algorithm 2 to find all unrestorable cutsets U . This algorithm

first obtains a set of hitting sets H for feasible configurations C by [17]. We test

suspicious cutsets, S’s, mapped from the hitting sets. Our method reduces the

number of feasibility tests compared to the naive brute-force approach, which tests

each cutset.

3.4 Scalability improvement techniques

We show two techniques that make our method more scalable.

3.4.1 Cutset size limit

We put an upper limit on the cutset size, which is the number of vertices (line

sections) in a cutset, based on the maximum number of lines cut at a time. Since

the number of hitting sets rapidly increases with their size, this limitation greatly

reduces the number of hitting sets to be examined. We can efficiently restrict the

hitting set size [7]. In order to identify unrestorable cutset U , we only need to

examine hitting sets of |H| ≤ |U |(d− 1), where d is the maximum vertex degree in

the graph, thanks to the following Lemma (details are discussed in the Appendix).

Lemma. Unrestorable cutset U is mapped from hitting sets of |H| ≤ |U |(d− 1).

10 T. Inoue, N. Yasuda, S. Kawano, Y. Takenobu, S. Minato, and Y. Hayashi

3.4.2 Minimal cutsets only

We only focus on minimal unrestorable cutsets; minimal unrestorable cutset U is a

cutset that does not include any other unrestorable cutset, that is, U 6⊃ U ′ ∀U ′ ∈ U .

Since non-minimal hitting sets can yield non-minimal unrestorable cutsets, we

test suspicious cutsets mapped only from minimal hitting sets; hitting sets which

are supersets of another hitting set are ignored. Reference [17] also proposed an

algorithm that efficiently selects minimal hitting sets.

Minimalization makes our method more efficient, but it can introduce the risk of

overlooking some unrestorable cutsets. Suppose no unrestorable cutset were found

from a hitting set, and some unrestorable cutsets were found from a superset of

the hitting set. This super hitting set would not be minimal and thus would not be

examined, and so this unrestorable cutset could be never found. This is a tradeoff

between efficiency and accuracy, and is evaluated in the experiments.

4 Experiments

Our method is applied to two datasets, a traditional small distribution network in

Section 4.1 and a large-scale network closely modeling a typical Japanese distribu-

tion network in Section 4.2. We evaluate our two methods of Algorithm 2 in the

experiments; one examines minimal hitting sets only (minimalization), while the

other considers supersets of the minimal hitting sets (no minimalization). These

methods are compared against the naive brute-force approach, in which feasibility

tests are performed on every cutset. The tests generated by our methods and the

naive method are executed with Algorithm 1. Our methods were implemented

with the efficient graph library named Graphillion [5]. We performed power flow

calculation based on [13], but our method is not limited to any specific power flow

model. The experiments were conducted using a single core of an Intel Xeon CPU

E7-8837 (2.67GHz).

4.1 32-bus network

The first dataset represents the 32-bus network introduced by Baran and Wu [1].

It has 37 switches and only a single substation. This network is a single-phase

alternating current system. The sending line voltage is 12.66 kV, and the maximum

voltage drop must be within 10 % of the sending voltage. This dataset has no line

current constraint. The maximum degree, d, is 3 in the graph representation. The

results include unrestorable cutsets of size four or less, |U | ≤ 4, since we found no

minimal unrestorable cutset greater than four.

Figure 5 shows the number of tests performed by each method. Our two meth-

ods grew much more slowly than the naive method. Our method with minimal-

ization performed only 88 % fewer tests than the naive method. Many innocent

Verifying Distribution Networks for Secure Restoration by Enumerating All Critical Failures 11

1

10

100

1000

10000

100000

0 1 2 3 4 5

of

 te
st

s	

Cut size	

Naive method
Our method (no minimalization)
Our method (minimalization)

Figure 5: The number of tests versus the cutset size in the 32-bus network. The
number of tests is defined as the number of suspicious cutsets |S| in our method
or
(
n
k

)
(k is the cutset size) in the naive method. Our methods conducted much

fewer tests than the naive method.

1

10

100

1000

10000

0 5 10

of

 m
in

im
al

 h
itt

in
g

se
ts
	

Set size	

Figure 6: The number of minimal hitting sets |H| versus their size, |H|, in the
32-bus network. It is much smaller than the number of tests performed by the
naive method (Figure 5). This is the reason why many unsuspicious cutsets were
filtered out in our method.

cutsets were filtered out without performing feasibility tests by our methods1. In

order to investigate this great reduction in depth, we plot the number of minimal

hitting sets in Figure 6. Only a couple of thousand sets were found, a lot fewer than

the possible edge combinations. This result indicates that our method successfully

selected a small number of suspicious cutsets by utilizing the minimal hitting sets.

The number of tests performed by our minimalization method can be greater or

smaller than the number of minimal hitting sets. This is because a single hitting

set can be mapped to multiple suspicious cutsets by function cut from hit, and also

1Our methods involve nearly the same number of tests as the naive method when the cutset
size is one. This is because every pair of neighboring switches in straight line forms a hitting set,
which generates a suspicious cutset from only the intermediate section. Our focus is, however, on
the scaling of test numbers against the cutset size, and our methods are much more efficient than
the naive method for larger cutsets.

12 T. Inoue, N. Yasuda, S. Kawano, Y. Takenobu, S. Minato, and Y. Hayashi

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n	

Distance between lines in unrestorable cut	

Figure 7: Probability distribution of distance between line sections in a minimal
unrestorable cutset, in the 32-bus network. Some minimal unrestorable cutsets
include line sections separated by ten switches, and so we have to address cutsets
across a wide area.

Table 1: The number of minimal unrestorable cutsets found in 32-bus network

Naive method and our
method (no minimalization) Our method (minimalization)

|U | = 1 3 3
2 76 76
3 69 69
4 55 47

some hitting sets share common suspicious cutsets. We found no minimal hitting

set of greater than six, as shown in the figure. This is because most big hitting

sets include smaller ones, so of course they are not minimal.

The great reduction in the number of tests cannot be achieved just by ignoring

line sections far apart. Figure 7 shows distance distribution between line sections

in a minimal unrestorable cutset, where the distance is measured by the number of

switches between line sections. Line sections in a minimal unrestorable cutset are

separated by up to ten switches; actually, the diameter (the maximum distance)

of the network is equal to ten. This result implies that we are not allowed to use

the distance for filtering out innocent cutsets. Sophisticated methods like ours are

required to efficiently find unrestorable cutsets.

Table 1 shows the number of minimal unrestorable cutsets found by each method;

an example of unrestorable cutset found is shown in Figure 1. Our method with

minimalization overlooked eight unrestorable cutsets (55−47 = 8), but it found 96

% of them with 88% fewer tests. The probability of finding a minimal unrestorable

cutset per test is 3.8 % in our minimalization method, while it is 0.49 % in the naive

method. Our method found most of the unrestorable cutsets with high efficiency.

This is a good tradeoff between the performance and accuracy.

Verifying Distribution Networks for Secure Restoration by Enumerating All Critical Failures 13

0
10
20
30
40
50
60
70
80

1 2 3 4

of

 u
nr

es
to

ra
bl

e
cu

ts
	

Cut size	

Electrical constraints
Topological constraints

Figure 8: Causes of the unrestorable cutsets in the 32-bus network. Unrestorable
cutsets can make the network disconnected topologically, or can make it electrically
infeasible without disconnection.

Table 2: Computation time for 32-bus network

Algorithm 1 (average per test) 10.7 msec
Algorithm 2 5.55 sec

Figure 8 clarifies the causes of the unrestorable cutsets. The label “topological

constraints” means that the network would be disconnected by the cutsets, while

the label “electrical constraints” indicates that the network cannot satisfy the

electrical constraints even though it can be connected. Our method found both

types of unrestorable cutsets. The topologically unrestorable cutsets make the

network physically disconnected. We found many small unrestorable cutsets caused

by the electrical constraints, unlike the Fukui-TEPCO network as will be shown;

this implies that the network might be so poorly designed that it is likely cause

power supply shortages, which makes the constraints too strict.

We also evaluate the performance of our method (Table 2). Testing a suspicious

cutset by Algorithm 1 requires only 10.7 msec on average, due to our efficient

feasibility test algorithm that involves no power flow calculation. Total CPU time

needed for Algorithm 2 is 5.55 seconds. The maximum amount of memory used

by our method is 66.7 MB. Calculating feasible configurations, Ce and C, requires

a few hours, as shown in [6].

4.2 Fukui-TEPCO network

We consider the 432-bus network with 468 switches, which was developed in 2006 by

Fukui University and Tokyo Electric Power Company (TEPCO) [3]. The network

is modeled as a three-phase alternating current system, and consists of residen-

tial, industrial, and commercial areas. Among the hourly load profiles, we used

the peak load, which imposes the severest electrical constraints on the network.

14 T. Inoue, N. Yasuda, S. Kawano, Y. Takenobu, S. Minato, and Y. Hayashi

Table 3: Specification of Fukui-TEPCO network

Number of buses 432
Number of switches 468
Total load 287 MW
Line capacity 390 A
Sending line voltage 6.6 kV
Maximum voltage drop 0.3 kV
Max degree, d 3

1

100

10000

1000000

100000000

1E+10

0 1 2 3 4 5

of

 te
st

s	

Cut size	

Naive method
Naive method (18-switch limit)
Our method (minimalization)

Figure 9: The number of tests versus cutset size for the Fukui-TEPCO network.
Our method shows a remarkable reduction in test number, several orders of mag-
nitude, even though the naive method took advantage of the distance limit of line
sections.

The specification is given in Table 32. To the best of our knowledge, there is no

benchmark network that matches this size and specificity. We conducted the ex-

periments with just our method of minimalization, since other methods did not

scale to handle this large-scale network. We examined unrestorable cutsets of size

four or less, |U | ≤ 4, due to the scalability limit.

Figure 9 shows the number of tests. The numbers for the naive methods were

just counted without testing. Our method reduced the number of tests by five

orders of magnitude compared to the naive method, since the number of minimal

hitting sets smaller than nine was 10,539, many fewer than the possible edge com-

binations. Figure 10 shows the distance distribution of line sections in a minimal

unrestorable cutset. Our method found unrestorable cutsets consisting of line sec-

tions separated by up to 18 switches, which implies the naive method can work

more efficiently with this distance limit. However, it still has to examine 226 times

more cutsets than our method, as shown in Figure 9, and so our method outper-

formed the naive method even with the distance limit. It is worth noting that the

2The dataset of Fukui-TEPCO network is available from http://www.hayashilab.sci.

waseda.ac.jp/RIANT/riant_test_feeder.html

Verifying Distribution Networks for Secure Restoration by Enumerating All Critical Failures 15

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0 5 10 15 20

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n	

Distance between lines in unrestorable cut	

Figure 10: Probability distribution of distance between lines in a minimal un-
restorable cutset, in the Fukui-TEPCO network. There are unrestorable cutsets
with lines separated by 18 switches.

0

200

400

600

800

1000

1200

1400

1 2 3 4

of

 u
nr

es
to

ra
bl

e
cu

ts

Cut size

Electrical constraints

Topological constraints

Figure 11: The number of minimal unrestorable cutsets |U| found by our method,
versus their size |U |, in the Fukui-TEPCO network. Their causes are also shown.

distance limit has been revealed by our method, and so we could not apply the

limit to the naive method without our method.

The number of minimal unrestorable cutsets found by our method is shown in

Figure 11 together with their causes. In contrast to Fig. 8, we found that the elec-

trical constraints caused only a few small unrestorable cutsets whose sizes are less

than three. However, the network has relatively many topologically unrestorable

cutsets that are small, which means the network is topologically not robust. This

is because the network is not tightly connected compared to the 32-bus network;

their average degrees are 2.17 and 2.25, respectively. We evaluated the coverage

of our method using random sampling as follows. We selected 4,771,000 cutsets

uniformly and randomly, and found 1,450 minimal unrestorable ones from those

selected. Our method did not overlook any of them, which proves its high accuracy.

Table 4 shows the calculation time. Testing a suspicious cutset by Algorithm 1

required only 4.81 seconds on average. Total CPU time for Algorithm 2 was 98,733

seconds (about a day). The maximum amount of memory used through our method

16 T. Inoue, N. Yasuda, S. Kawano, Y. Takenobu, S. Minato, and Y. Hayashi

Table 4: Computation time for Fukui-TEPCO network

Algorithm 1 (average per test) 4.81 sec
Algorithm 2 98,733 sec

is 334 GB. This calculation time is long but acceptable, since it would be performed

only once at the design stage (the naive method is, of course, unacceptable, be-

cause it takes a year even with the distance limit). Calculating a set of feasible

configurations C requires a few hours as shown in [6].

5 Conclusions

In this paper, we have introduced an efficient method to find unrestorable cutsets

exhaustively. Although unrestorable cutsets have not gathered much attention in

the research community, it is a crucial tool with which to guarantee the restorability

of distribution networks. Finding all unrestorable cutsets is a computationally

tough problem, but we tackled it with efficient algorithms based on hitting sets

and ZDDs; we first select a small number of suspicious cutsets from the many

ones possible by using hitting sets, and performed feasibility tests against the

selected cutsets with ZDD algorithms without complex power flow calculation.

Experiments showed our method reduced the number of tests by five orders of

magnitude (relative to the naive approach) with no significant false negatives.

Each test was executed in just a few seconds in our method. Our work uncovered

the vulnerability of a large-scale distribution network thoroughly for the first time

ever.

In future work, we will consider the significance of each unrestorable cutset;

e.g., the number of intact sections that cannot be restored under the cutset. We

also will develop an optimal strategy to redesign the distribution network based

on the significance of the failure and fixing cost.

We believe that our hitting set approach to vulnerability analysis offers gener-

ality to some extent and it can be successfully applied to other complex systems.

Acknowledgement

We would like to thank Takahisa Toda for his energetic support in implementing

his hitting set enumeration algorithm.

Verifying Distribution Networks for Secure Restoration by Enumerating All Critical Failures 17

References

[1] M. Baran and F. Wu. Network reconfiguration in distribution systems for

loss reduction and load balancing. IEEE Transactions on Power Delivery,

4(2):1401–1407, 1989.

[2] R. Billinton and P. Wang. Reliability-network-equivalent approach to

distribution-system-reliability evaluation. IEE Proceedings of Generation,

Transmission and Distribution, 145(2):149–153, 1998.

[3] Y. Hayashi, S. Kawasaki, J. Matsuki, H. Matsuda, S. Sakai, T. Miyazaki,

and N. Kobayashi. Establishment of a standard analytical model of distribu-

tion network with distributed generators and development of multi evaluation

method for network configuration candidates. IEEJ Transactions on Power

and Energy, 126(10):1013–1022, 2006. in Japanese.

[4] Y. Hayashi and J. Matsuki. Loss minimum configuration of distribution system

considering N-1 security of dispersed generators. IEEE Transactions on Power

Systems, 19(1):636 – 642, 2004.

[5] T. Inoue, H. Iwashita, J. Kawahara, and S. Minato. Graphillion: Software

library designed for very large sets of graphs in Python. Technical report,

Hokkaido University, Division of Computer Science, TCS Technical Reports,

TCS-TR-A-13-65, 2013.

[6] T. Inoue, K. Takano, T. Watanabe, J. Kawahara, R. Yoshinaka, A. Kishimoto,

K. Tsuda, S. Minato, and Y. Hayashi. Distribution loss minimization with

guaranteed error bound. IEEE Transactions on Smart Grid, 5(1):102–111,

2014.

[7] D. E. Knuth. The Art of Computer Programming: Combinatorial Algorithms

Part 1, volume 4A. Addison-Wesley, USA, 2011.

[8] J. Lavaei, A. Rantzer, and S. Low. Power flow optimization using positive

quadratic programming. In Proceedings of the 18th IFAC World Congress,

2011.

[9] W. Li, P. Wang, Z. Li, and Y. Liu. Reliability evaluation of complex radial

distribution systems considering restoration sequence and network constraints.

IEEE Transactions on Power Delivery, 19(2):753 – 758, 2004.

[10] W.-M. Lin and H.-C. Chin. A new approach for distribution feeder recon-

figuration for loss reduction and service restoration. IEEE Transactions on

Power Delivery, 13(3):870–875, 1998.

[11] C.-C. Liu, S. Lee, and S. Venkata. An expert system operational aid for

restoration and loss reduction of distribution systems. IEEE Transactions on

Power Systems, 3(2):619 –626, 1988.

18 T. Inoue, N. Yasuda, S. Kawano, Y. Takenobu, S. Minato, and Y. Hayashi

[12] S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial prob-

lems. In Proceedings of Conference on Design Automation, pages 272–277,

1993.

[13] K. Nara, A. Shiose, M. Kitagawa, and T. Ishihara. Implementation of ge-

netic algorithm for distribution systems loss minimum re-configuration. IEEE

Transactions on Power Systems, 7(3):1044–1051, 1992.

[14] C. Nguyen and A. Flueck. Agent based restoration with distributed energy

storage support in smart grids. IEEE Transactions on Smart Grid, 3(2):1029–

1038, 2012.

[15] R. Perez-Guerrero, G. Heydt, N. Jack, B. Keel, and A. Castelhano. Opti-

mal restoration of distribution systems using dynamic programming. IEEE

Transactions on Power Delivery, 23(3):1589–1596, 2008.

[16] D. Shirmohammadi. Service restoration in distribution networks via network

reconfiguration. IEEE Transactions on Power Delivery, 7(2):952 –958, 1992.

[17] T. Toda. Hypergraph transversal computation with binary decision diagrams.

In Experimental Algorithms, volume 7933 of Lecture Notes in Computer Sci-

ence, pages 91–102. Springer, 2013.

We give a sketch of proof for Theorem in Section 3.3.

Sketch of proof. We prove it by contradiction. Suppose the Theorem is false; there

exists unrestorable cutset U that cannot be any suspicious cutset, which is mapped

from a hitting set. This means that any combination of U ’s neighboring edges is

not a hitting set, and so the network must be feasible upon removal of these edges.

We analyze the following two cases; when removing vertices U and their edges, the

network is (a) physically disconnected or (b) connected but does not satisfy the

electrical constraint.

• (a) Removing some of U ’s edges, the network can be disconnected, and so

it is infeasible, as shown in Figure 12 (a). This is a contradiction. (Strictly,

let d be the maximum degree of a vertex in U , it is required to remove d− 1

edges from each vertex of U at most to make the network disconnected.)

• (b) Removing some of U ’s edges, the network does not satisfy the electri-

cal constraint and is infeasible, because it has more load than the network

without U does, as shown in Figure 12 (b). This is a contradiction. (In this

case, removing just a single edge from each vertex of U is enough to make

the network electrically infeasible.)

We have the Lemma shown in Section 3.4 from the proof, since unrestorable

cutset U is mapped from hitting sets of |U |(d− 1) or less edges.

Verifying Distribution Networks for Secure Restoration by Enumerating All Critical Failures 19

U	

Disconnected	

(a) Disconnected when removing U	

H	

Disconnected	

(b) Electrically infeasible when removing U	

U	
 H	

Overloaded feeder	
 Higher load imposed	

Figure 12: (left) Networks without vertices of U and their edges, and (right) those
without some of U ’s edges (H). If the left networks are infeasible, the right net-
work (a) is disconnected or (b) suffers from higher load, and so they must be also
infeasible and a set of these edges is a hitting set.

