Fast Regular Expression Matching
Using Dual Glushkov NFA

by

RYUTARO KURAI, NORIHITO YASUDA, HIROKI ARIMURA,
SHINOBU NAGAYAMA, AND SHIN-ICHI MINATO

Division of Computer Science
Report Series A
May 26, 2014

Hokkaido University
Graduate School of
Information Science and Technology
Fast Regular Expression Matching Using Dual Glushkov NFA

Ryutaro Kurai1,2 Norihito Yasuda1 Hiroki Arimura2
Shinobu Nagayama3 Shin-ichi Minato1,2

\textsuperscript{1) JST ERATO MINATO Discrete Structure Manipulation System Project, Japan
\textsuperscript{2) Graduate School of Information Science and Technology, Hokkaido University, Japan
\textsuperscript{3) Department of Computer and Network Engineering, Hiroshima City University, Japan

\{kurai,yasuda,minato\}@erato.ist.hokudai.ac.jp
arim@ist.hokudai.ac.jp, s_naga@hiroshima-cu.ac.jp

May 26, 2014

Abstract

This paper presents a new regular expression matching method by using Dual Glushkov NFA. Dual Glushkov NFA is the variant of Glushkov NFA, and it has the strong property that all the outgoing edges to a state of it have the same labels. We propose the new matching method Look Ahead Matching that suited to Dual Glushkov NFA structure. This method executes NFA simulation with reading two input characters at the one time. We use information of next character to narrow down the active states on NFA simulation. It costs additional working memory to apply Look Ahead Matching to ordinal Thompson NFA. However, we can use this method with no additional memory space if use it with Dual Glushkov NFA. Experiments also indicate that the combination of Dual Glushkov NFA with Look Ahead Matching outperforms the other methods on NFAs converted from practical regular expressions.

1 Introduction

1.1 Background

Regular expression matching is one of the fundamental research topics in computer science [13], since it plays such important role in emerging applications in large-scale information processing fields, such as: Network Intrusion Detection System (NIDS), Bioinformatics search engines, linguistic vocabulary, and pattern matching in cloud computing [9,11,14,15,17].

1.2 Problems with previous approaches

For regular expression matching, there are three well-known approaches: backtracking, DFA, and NFA. Among them, backtracking is the most widely used
in practical applications. However, this approach is so slow if it manipulates some difficult patterns and texts, like $a^n a^n$ as pattern and a^n as text, which triggers many backtracking on the input text [6]. The deterministic finite automaton (DFA) approach is extremely fast if the input regular expression can be compiled into a DFA of small size, but it is not practical if a given regular expression causes the exponential explosion of the number of states.

The Nondeterministic Finite Automaton (NFA) approach can avoid such explosion in the number of states, and shown to be faster than the naive backtracking approach for the case that the backtracking approach suffer from many near-misses. Unfortunately, NFA approach is not so fast in practice. One of the major reasons is the cost of maintaining a set of active states; every time next input letter comes, NFA has to update the all the active states to the next states or to just discard them. If the number of active states becomes large, the updating cost will also increase.

We can further classify the NFA into three types; Thompson NFA, Glushkov NFA and Dual Glushkov NFA. The most popular one is Thompson NFA, which is easy to construct, and its number of edges and states are constant multiple of associated regular expression’s length. Thompson NFA includes many of epsilon transitions. Those transitions make many of active states when we simulate such NFA.

Glushkov NFA is the other popular NFA. It has strong property that it has no epsilon transition and its all the incoming edges to a state of Glushkov NFA have the same labels. Dual Glushkov NFA is a variant of Glushkov NFA, but has a special feature that is worth our attention. In an opposed manner of the Glushkov NFA, all the outgoing edges from a state of Dual Glushkov NFA have the same labels.

1.3 Speed-up methods

We can simulate Glushkov NFA faster than Thompson NFA because of its property that it has no epsilon edge. The property causes less active states. Nevertheless, we have to manipulate amount of active state, and it slows down matching speed, if we treat complex regular expression. To cope with this problem, we propose a new method Look Ahead Matching.

That is the new matching method that reads two characters of the input text at one time. We call the first of the two characters the “current character”, and second one the “next character”. Ordinary matching methods read only current character, and calculate NFA active states from current active states and the character. Our method uses the next character to narrow down the active state size. We set states active only if the states have incoming edge labeled by first character and outgoing edge labeled by second character. However, fast matching by two input characters creates large memory demands if we use the Glushkov NFA. To treat this problem, we employ a Dual Glushkov NFA. The structure of Dual Glushkov NFA is similar to that of Glushkov NFA, but is better suited to building an index of transitions for look ahead matching. We have to make transitions table for combination of two characters to enable this new matching method. We can generate such table without additional space if we use the above Dual Glushkov NFA’s property. Therefore, we propose the new look ahead matching method by using Dual Glushkov NFA.
1.4 Main Results

In this paper we propose a new matching method created by combining Dual Glushkov NFA and look ahead matching. Then we compare our proposal against other methods such as original Thompson NFA, Glushkov NFA, and a combination of Glushkov NFA and look ahead matching. For reference, we also compare our method with NR-grep [10]. In most cases our method is faster than Thompson NFA or Glushkov NFA. Our method is only slightly slower than the combination of Glushkov NFA and look ahead matching, but it uses far less memory.

1.5 Related Works

Many regular expression matching engines use the backtracking approach. They traverse the syntax tree of a regular expression, and backtrack if they fail to find a match. Backtracking has a small memory footprint and high throughput for small and simple regular expressions. However, in worst case, it takes exponential time in the size of the regular expression [6].

Another approach, compiling regular expression has been used from the 1970s [2]. Such an algorithm converts a regular expression into an NFA, which is then converted into a DFA. This intermediate NFA (called Thompson NFA) has linear size memory in the length of the input regular expression. However, the final subset-constructed DFA takes exponential space in the size of the NFA and overflows the main memory of even recent computers.

In recent years, NFA evaluation for regular expression matching has been attracting much attention. Calculations performed on GPU, FPGA, or some special hardware can’t use abundant memory, but their calculation speed is much faster and concurrency is larger than typical computers. Therefore, using just the basic approach is adopted in some fields [5, 7]. Cox proposed the NFA based regular expression library RE2 [1]. For fast evaluation, it caches a DFA generated from an NFA on the fly. RE2 seems to be the only NFA based library that is being used widely; it has guaranteed computation time due to the NFA-oriented execution model.

Berry and Sethi popularized Glushkov NFA [3]. Navarro has finely researched Glushkov NFA and its applications [10, 12]. And Brüggemann-Klein and Wood showed the relationship between Thompson NFA and Glushkov NFA [4].

1.6 Organization

Sec. 2 briefly introduces regular expression matching, non-deterministic automata, and their evaluation. Sec. 3 presents our methods including preprocessing and runtime methods. Sec. 4 shows the results of computer experiments on NFA evaluation. Sec. 5 concludes this paper.
2 Preliminaries

2.1 Thompson NFA

The NFA constructed by Thompson’s algorithm for regular expression R is called the Thompson NFA (or T-NFA, for short). It precisely handles the language statement $\Sigma^*L(R)$, which represents the substring match of R against a substring of a text.

Formally, the T-NFA N_R for R is a 5-tuple $N_R = (V, \Sigma, E, I, F)$, where V is a set of states, Σ is an alphabet of letters, $E \subseteq V \times \Sigma \cup \{\epsilon\} \times V$ is a set of letter- and ϵ-edges, called the transition relation, I and $F \subseteq V$ are the sets of initial and final states respectively. Each edge $e \in E$ is called a letter-transition if its label is a letter c in Σ, and an ϵ-transition the label is ϵ. Each edge is described as $(s, c, t) \in E$, in this expression, s and t mean source state and target state.

The T-NFA N_R for R has nested structure associated with the parse tree for R. Let the length of associated regular expression be m. It has at most $2m$ states, and every state has in-degree and out-degree of two or less. Specifically, state s in V can have at most one letter-transition or two ϵ-transitions from s.

We show an example of T-NFA when $R = (AT|GA)((AG|TAA)^*)$ in Fig. 1.

2.2 Glushkov NFA

Another popular method of constructing an NFA from a regular expression is Glushkov’s algorithm [3]. We call the automaton constructed by this method Glushkov NFA (also known as Position Automata); abbreviated here to G-NFA. However, G-NFA can also be converted from T-NFA by using the algorithm in Fig. 4 (Brüggegman-Klein and Wood showed in [4]). This algorithm removes the ϵ-transitions from T-NFA by canonical rule. For instance, we show the new edges that skip ϵ-transition by the bold edges in Fig. 2 and the fully converted G-NFA from T-NFA in Fig. 3. Both examples show NFAs that precisely handle $R = (AT|GA)((AG|TAA)^*)$.

2.3 G-NFA Properties

G-NFA has some very interesting properties.

- It has no ϵ-transitions. We call this property ϵ-free.
- For any state, the state’s incoming edges are labeled by the same character.
• It has only one initial state.
• It has one or more final states.
• It’s number of states is $\tilde{m} + 1$. \tilde{m} is the length of the associated regular expression, but the number excludes the special symbols like “*”, “(”, or “+”.
• The number of transitions is \tilde{m}^2 at worst.

2.4 Dual Glushkov NFA

A variation of G-NFA is Dual Glushkov NFA (also called Dual Position Automata [16]), we call it Dual G-NFA for short. The algorithm that converts T-NFA into Dual G-NFA (Fig. 7) is similar to the algorithm that converts T-NFA into G-NFA (fig. 4).

When we convert T-NFA into G-NFA, we generate a skip edge as follows. First, we search the path that started by epsilon-path and ended only one character-edge. Then we create skip edge from the start state to the end state for each such path. The label of new skip edge is taken from the last edge of the path.

When we convert T-NFA into Dual G-NFA, we generate a skip edge as follows. First, we search the path that started only one character-edge and ended epsilon-path. Then we create skip edge from the start state to the end
procedure BuildG-NFA\(N = (V, \Sigma, E, I, F)\)
\[V' \leftarrow \emptyset, E' \leftarrow \emptyset, F' \leftarrow F \]
\(GlushkovState \leftarrow V \setminus \bigcup_{s' : \exists s \in V, (s, \epsilon, s') \in E} s' \)
for all \(s \in GlushkovState\) do
\(s' \in Eclos\)e\((s)\) do
\(I\)f \(s' \in F\) then
\(F' \leftarrow F' \cup \{s'\}\)
end if
for \((s', \text{char}, t) \in E\) do
\(I\)f \(\text{char} \neq \epsilon\) then
\(E' \leftarrow E' \cup \{(s, \text{char}, t)\}\)
end if
end for
end for
return \((V', \Sigma, E', I, F')\)
end procedure

procedure Eclos\(\)e\((s \in E)\)
\(Closure \leftarrow \{s\}\)
for \((s, \text{char}, t) \in E\) do
\(I\)f \(\text{char} = \epsilon\) then
\(Closure \leftarrow Closure \cup Eclos\)e\((t)\)
end if
end for
return \(Closure\)
end procedure

Figure 4: Algorithm Converting T-NFA to G-NFA

6
state for each such path. The label of new skip edge is taken from the first edge of the path.

In addition, an original T-NFA has same number of outgoing and incoming edges for all section of T-NFA. In fact, Conjunction, Concatenation, and Kleene Closure section of T-NFA have same in-degree and out-degree. Because of this T-NFA’s property, we can consider that above “Dual G-NFA” is dual of “G-NFA”.

For instance, we show the new edges that skip ε-transition by bold edges in Fig. 5, and the fully converted Dual G-NFA from TNGA in Fig. 6. Both examples show NFAs that precisely handle $R = (AT|GA)((AG|TAA)^*)$.

2.5 Dual G-NFA Properties

Dual G-NFA has properties similar to those of G-NFA.

- It is ε-free.
- For any state, the state’s outgoing edges are labeled by same character.
- It has only one final state.
- It has one or more initial states.
procedure BuildDualG-NFA(\(N = (V, \Sigma, E, I, F)\))

\[V' \leftarrow \emptyset, E' \leftarrow \emptyset, I' \leftarrow \emptyset \]

\[\text{DualGlushkovState} \leftarrow V \setminus \bigcup_{s' \in V, \exists s \in E_{s', \varepsilon, s}} \{s'\} \]

for \(s \in \text{Eclose}(I)\) do
 if \(s \in \text{DualGlushkovState}\) then
 \(I' \leftarrow I' \cup \{s\}\)
 end if
end for

for all \(s \in \text{DualGlushkovState}\) do
 for \((s, \text{char}, t) \in E\) do
 for \(t' \in \text{Eclose}(t)\) do
 if \(t \neq t'\) and \(\text{char} \neq \varepsilon\) and \(t' \in \text{DualGlushkovState}\) then
 \(E' \leftarrow E' \cup \{(s, \text{char}, t')\}\)
 end if
 end for
 \(E' \leftarrow E' \cup \{(s, \text{char}, t)\}\)
 end for
end for

return \((V', \Sigma, E', I', F')\)

end procedure

Figure 7: Algorithm Converting T-NFA to Dual G-NFA

- It’s number of states is \(\tilde{m} + 1\).
- The number of transitions is \(\tilde{m}^2\) at worst.

There is a duality between G-NFA and Dual G-NFA in the sense of the properties of initial states, final states, and labels of edge.

2.6 Regular Expression Matching Method

For both G-NFA and Dual G-NFA, \(\varepsilon\)-free NFAs have the same simulation algorithm like that of Fig.8.

This algorithm reads input character \(t_n\) one by one, then searches for a state that has outgoing edge labeled \(t_n\) from current active state set (CurrentActive in Fig. 8). For fast search we use the index created by BuildIndex. If such states are found, we add a transitive state to next state set (NextActive in Fig. 8). At the end of a step, we check if the NextActive includes a final state. If a final state is found, we recognize that the input characters match a given regular expression.

3 Our Method

3.1 Look ahead matching

The above NFA simulation method reads input characters one by one, and calculates state transitions. However, it is quite easy to read a next input character. We consider how to more effectively calculate state transitions. Let
procedure G-NFACOUNTMATCHING \(N = (V, \Sigma, E, I, F), T = \{t_1, t_2, t_3, \ldots, t_n\}\)
\begin{align*}
CurrentActive & \leftarrow \emptyset \\
NextActive & \leftarrow \emptyset \\
MatchCount & \leftarrow 0 \\
Index & \leftarrow \text{BuildIndex}(E) \\
\text{for } pos \in 1 \ldots n \text { do} \\
\quad CurrentActive & \leftarrow CurrentActive \cup I \\
\quad \text{for } s \in \text{CurrentActive} \text { do} \\
\quad \quad NextActive & \leftarrow NextActive \cup Index[t_{pos}][s] \\
\quad \text{end for} \\
\quad \text{if } NextActive \cap F \neq \emptyset \text { then} \\
\quad \quad MatchCount & \leftarrow MatchCount + 1 \\
\quad \text{end if} \\
\quad \text{Swap(CurrentActive, NextActive)} \\
\quad NextActive & \leftarrow \emptyset \\
\text{end for} \\
\text{return } MatchCount \\
\end{align*}
end procedure

procedure BuildIndex \((V, \Sigma, E)\)
\begin{align*}
\text{for } s \in V \text { do} \\
\quad \text{for } char \in \Sigma \text { do} \\
\quad \quad Index[char][s] & \leftarrow \emptyset \\
\quad \text{end for} \\
\text{end for} \\
\text{for } (s, char, t) \in E \text { do} \\
\quad Index[char][s] & = Index[char][s] \cup \{t\} \\
\text{end for} \\
\text{return } Index \\
\end{align*}
end procedure

Figure 8: Regular Expression Matching Using NFA
the current input character be \(t_i \), next input character \(t_{i+1} \). When we know \(t_{i+1} \), we want to treat the states that satisfy the next formula as active states.

\[
\text{LookAheadActive}(s, t_i, t_{i+1}) = \{ s' : (s, t_i, s') \in E, (s', t_{i+1}, s'') \in E \}
\]

And we formally define normal active states as follows.

\[
\text{Active}(s, t_i) = \{ s' : (s, t_i, s') \in E \}
\]

For any \(\text{LookAheadActive}(s, t_i, t_{i+1}) \), the size of \(\text{LookAheadActive}(s, t_i, t_{i+1}) \) is equal or less than the size of \(\text{Active}(s, t_i) \). Because of this difference in size of active states, we consider that look ahead matching can calculate transitions faster than normal matching. We formally show this algorithm in Fig. 9.

The problem of this matching method is the large size of the state transition table associated with \(t_i \) and \(t_{i+1} \). The state transition table has duplicate transitions and costs \(O(|E|^2) \) space to build from G-NFA.

For example, we show the transition table of Fig. 1 as Table 1. This table has 19 records, more than the number of original G-NFA’s transitions. The difference is due to the duplication of transitions.

<table>
<thead>
<tr>
<th>id</th>
<th>(t_i)</th>
<th>(t_{i+1})</th>
<th>source state</th>
<th>target state</th>
<th>(t_i)</th>
<th>(t_{i+1})</th>
<th>source state</th>
<th>target state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>A</td>
<td>3</td>
<td>15</td>
<td>A</td>
<td>T</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>A</td>
<td>5</td>
<td>22</td>
<td>A</td>
<td>T</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>A</td>
<td>6</td>
<td>22</td>
<td>A</td>
<td>T</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>A</td>
<td>13</td>
<td>22</td>
<td>G</td>
<td>A</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>A</td>
<td>15</td>
<td>22</td>
<td>G</td>
<td>A</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>T</td>
<td>3</td>
<td>65</td>
<td>A</td>
<td>G</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>A</td>
<td>4</td>
<td>76</td>
<td>T</td>
<td>A</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>A</td>
<td>12</td>
<td>64</td>
<td>T</td>
<td>A</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>A</td>
<td>14</td>
<td>65</td>
<td>A</td>
<td>A</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>T</td>
<td>4</td>
<td>10</td>
<td>A</td>
<td>A</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>T</td>
<td>14</td>
<td>13</td>
<td>A</td>
<td>A</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>T</td>
<td>0</td>
<td>13</td>
<td>T</td>
<td>*</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>G</td>
<td>A</td>
<td>11</td>
<td>13</td>
<td>T</td>
<td>T</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>G</td>
<td>A</td>
<td>0</td>
<td>14</td>
<td>A</td>
<td>*</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>G</td>
<td>T</td>
<td>11</td>
<td>15</td>
<td>A</td>
<td>*</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>A</td>
<td>G</td>
<td>5</td>
<td>16</td>
<td>G</td>
<td>*</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>G</td>
<td>6</td>
<td>17</td>
<td>G</td>
<td>T</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>A</td>
<td>G</td>
<td>13</td>
<td>18</td>
<td>G</td>
<td>*</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>A</td>
<td>G</td>
<td>15</td>
<td>19</td>
<td>G</td>
<td>T</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1: Look Ahead Transition Table for G-NFA and Dual G-NFA

Table 2: Look Ahead Transition Table for Dual G-NFA

3.2 Dual G-NFA Look Ahead Transition Function

As shown in the above section, Dual G-NFA has the very desirable property that all outgoing edge of a state have the same label. Because of this property,
procedure Dual G-NFACountLookAheadMatching(N = (V, Σ, E, I, F), T = t₁, t₂, t₃, ..., tₙ)
 CurrentActive ← ∅
 NextActive ← ∅
 MatchCount ← 0
 (Index, FinalIndex) ← BuildLookAheadIndex(E)
 for pos ∈ 1...n − 1 do
 CurrentActive ← CurrentActive ∪ I
 for s ∈ CurrentActive do
 for (t ∈ Index[tpos][tpos+1][s]) do
 NextActive ← NextActive ∪ {t}
 end for
 end for
 for s ∈ CurrentActive do
 for (t ∈ FinalIndex[tpos+1][s]) do
 NextActive ← NextActive ∪ {t}
 end for
 end for
 if NextActive ∩ F ≠ ∅ then
 MatchCount ← MatchCount + 1
 end if
 Swap(CurrentActive, NextActive)
 end for
 NextActive ← ∅
end procedure

procedure BuildLookAheadIndex(V, Σ, E, F)
 for s ∈ V do
 for char₁ ∈ Σ do
 for char₂ ∈ Σ do
 Index[char₁][char₂][s] = ∅
 end for
 FinalIndex[char₁][s] = ∅
 end for
 end for
 for (s, char₁, t) ∈ E do
 for (t, char₂, t’) ∈ E do
 Index[char₁][char₂][s] = Index[char₁][char₂][s] ∪ {t}
 end for
 if t ∩ F ≠ ∅ then
 FinalIndex[char₁][s] = FinalIndex[char₁][s] ∪ {t}
 end if
 end for
end procedure

Figure 9: Look Ahead Regular Expression Matching Using Dual G-NFA
when the source state and \(t_i \) are given, the pairs of \(t_{i+1} \) and the target state are determined uniquely. Therefore, the transition tables size is \(O(|E|) \). This is effectively smaller than G-NFA’s size of \(O(|E|^2) \).

For instance, we show the transition table of Fig. 6 in table 2. This table has 17 records, equaling the number of original Dual G-NFA’s transitions. A final state of Dual G-NFA has no outgoing edge, so we show the “\(*\)” on \(t_{i+1} \) column for the transitions that go to final state.

4 Experiments and Results

To confirm the efficiency of Dual G-NFA with Look Ahead matching (for short, Dual G-NFA with LA), we conducted three experiments. All experiments use “English.100MB” text in Pizza&Chili Corpus [8] as the input texts, and we compared our method with G-NFA, and G-NFA with Look ahead matching (for short G-NFA with LA). For reference, the results of a simple T-NFA implementation by Russ Cox [6], and NR-grep, a bit parallel implementation of G-NFA by Gonzalo Navarro are shown. All experiments were executed 10 times and shown time is average.

The first experiment examines fixed string patterns. In this experiment, patterns were generated as follows. \(n \) words were randomly chosen from a word dictionary and then words were joined by conjunction character “\(|\)”. We used /usr/share/dict/words file on Mac OS X 10.9.2 as the word dictionary. None of words included special characters of regular expressions like “\(*\)”, “\(?\)”, or “\(+\)”. Thus, the Aho-Corasick algorithm is clearly the most suited method for this problem. However, to measure trends of our methods, we make this experiment.

Table. 3 shows the time (in seconds) needed to convert regular expression to NFAs. From Table. 3, the needed time is far little time from matching time. T-NFA (by Cox) was so fast to measure the converting time accurately (It was under micro seconds).

<table>
<thead>
<tr>
<th>(n)</th>
<th>G-NFA</th>
<th>Dual G-NFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>immeasurable</td>
<td>immeasurable</td>
</tr>
<tr>
<td>40</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>60</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>80</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>100</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>120</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>140</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>160</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>180</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>200</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Table 3: Needed time converting regular expression to NFAs in (seconds)

Fig. 10 shows the time (in seconds) needed to match the whole text. From Fig. 10, the time taken linearly increases with the number of words with T-NFA, G-NFA or Dual G-NFA. In contrast, G-NFA with LA or Dual G-NFA with LA, which uses look ahead matching method took constant time regardless of \(n \). We assume this is because look ahead matching kept the active state size small.
NR-grep couldn’t treat large regular expressions, so we only measured patterns for \(n = 20, 40, \) and \(60; \)

Fig. 11 shows the average active state size, total number of active states divided by the number of all input characters. As the graph shows, there is strong correlation between the average active state size and matching time.

In the second experiment, we generated patterns as follows. We inserted special symbols of regular expressions such as “\(*\)”, “\?\)”, or “\+\) into the words used in the first experiment. Insert positions were randomly selected excluding the first and last word positions. We then joined these generated regular expression patterns by conjunction. In this case, the Aho-Corasick algorithm is clearly the most suited method since the pattern is a set of fixed string. However, we can see the basic speed of pattern matching by treating the pattern as a regular expression.

Fig. 12 shows the results. The trends resemble those of first experiment. G-NFA-Look-Ahead or Dual G-NFA-Look-Ahead was superior in terms of calculation time.

In the third experiment, we challenged our method with some actual regular expression patterns in Table 4. First pattern “suffix” matches to words that have some specific suffixes. There were 35 suffixes. Second pattern “prefix” matches to words that have some specific prefixes. There were 32 prefixes. Third pattern “name” matches to some people’s names. The names were combination of ten common given names and ten common surnames. Forth pattern “user”
matches to popular expression of user and computer name. Fifth pattern “title” matches all capital strings like a chapter title in books. These patterns include character classes like “[a-zA-Z]”.

<table>
<thead>
<tr>
<th>pattern</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>[a-zA-Z]+(able</td>
</tr>
<tr>
<td>prefix</td>
<td>(in</td>
</tr>
<tr>
<td>names</td>
<td>(Jackson</td>
</tr>
<tr>
<td>user</td>
<td>[a-zA-Z]+@[a-zA-Z]+</td>
</tr>
<tr>
<td>title</td>
<td>([A-Z]+)*</td>
</tr>
</tbody>
</table>

Table 4: Regular expression patterns used in third experiment.

As shown in Table 5, Dual G-NFA with LA is the fastest in some cases, once again to the reduction in active state size. Look ahead methods never match slower than T-NFA, G-NFA and Dual G-NFA. If that input consists of only small regular expression like pattern “name”, “user” or “title”, NR-grep is the fastest. For such patterns, bit parallel method implemented in NR-grep can manipulate G-NFAs effectively.
<table>
<thead>
<tr>
<th>pattern</th>
<th>T-NFA (by Cox)</th>
<th>ngrep</th>
<th>G-NFA</th>
<th>G-NFA with LA</th>
<th>Dual G-NFA</th>
<th>Dual G-NFA with LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>suffix</td>
<td>113.48</td>
<td>20.24</td>
<td>9.74</td>
<td>7.51</td>
<td>106.64</td>
<td>3.35</td>
</tr>
<tr>
<td>prefix</td>
<td>14.33</td>
<td>5.295</td>
<td>2.74</td>
<td>3.97</td>
<td>78.39</td>
<td>3.82</td>
</tr>
<tr>
<td>names</td>
<td>12.95</td>
<td>0.216</td>
<td>2.97</td>
<td>2.74</td>
<td>3.21</td>
<td>2.76</td>
</tr>
<tr>
<td>user</td>
<td>78.14</td>
<td>0.08</td>
<td>12.11</td>
<td>7.41</td>
<td>185.22</td>
<td>3.36</td>
</tr>
<tr>
<td>title</td>
<td>38.88</td>
<td>0.186</td>
<td>2.93</td>
<td>2.38</td>
<td>2.68</td>
<td>2.21</td>
</tr>
</tbody>
</table>

Table 5: Needed time (sec) to matching with whole text

<table>
<thead>
<tr>
<th>pattern</th>
<th>G-NFA</th>
<th>G-NFA with LA</th>
<th>Dual G-NFA</th>
<th>Dual G-NFA with LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>suffix</td>
<td>2.33</td>
<td>1.65</td>
<td>50.44</td>
<td>1.15</td>
</tr>
<tr>
<td>prefix</td>
<td>1.50</td>
<td>1.15</td>
<td>8.11</td>
<td>0.33</td>
</tr>
<tr>
<td>names</td>
<td>1.01</td>
<td>1.00</td>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>user</td>
<td>1.77</td>
<td>1.59</td>
<td>40.67</td>
<td>0.59</td>
</tr>
<tr>
<td>title</td>
<td>1.03</td>
<td>1.01</td>
<td>0.75</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 6: Average active state

5 Conclusion

We proposed the new regular expression matching method that based on Dual G-NFA and Look Ahead Matching. We have shown that Dual G-NFA can construct a look ahead matching index without additional space. Simulations have shown the effectiveness of look ahead matching in accelerating NFA. From the experimental results, our method can be useful for regular expression matching in practical usage. G-NFAs are used in some bit parallel methods, so we now plan to apply bit parallel techniques to Dual G-NFA methods.

References

