
TCS -TR-A-14-75

TCS Technical Report

An Efficient Method of Indexing All Topological

Orders for a Given DAG

by

Yuma Inoue and Shin-ichi Minato

Division of Computer Science

Report Series A

July 17, 2014

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682

An Efficient Method of Indexing All Topological Orders

for a Given DAG

Yuma Inoue
Division of Computer Science

Graduate School of Info. Sci. and Tech.

Hokkaido University

Sapporo 060-0814, Japan

Shin-ichi Minato∗

Division of Computer Science

Graduate School of Info. Sci. and Tech.

Hokkaido University

Sapporo 060-0814, Japan

July 17, 2014

Abstract

Topological orders of a directed graph are an important concept of graph
algorithms. The generation of topological orders is useful for designing graph
algorithms and solving scheduling problems. In this paper, we generate and
index all topological orders of a given graph. Since topological orders are per-
mutations of vertices, we can use the data structure πDD, which generates and
indexes a set of permutations. In this paper, we propose Rot-πDDs, which are
a variation of πDDs based on a different interpretation. Compression ratios
of Rot-πDDs for representing topological orders are theoretically improved
from the original πDDs. We propose an efficient method for constructing a
Rot-πDD based on dynamic programming approach. Computational experi-
ments show the amazing efficiencies of a Rot-πDD: a Rot-πDD for 3.7× 1041

topological orders has only 2.2× 107 nodes and is constructed in 36 seconds.
In addition, the indexed structure of a Rot-πDD allows us to fast post-process
such as edge addition and random samplings.

1 Introduction

Topological sort is one of the classical and important concepts of graph algorithms.

Vertex orders obtained by topological sort are used to analyze characteristics of

a directed graph structure and support graph based algorithms [6]. Furthermore,

topological orders are equivalent to linear extensions of a poset, i.e., total orders

which are in no contradiction with the partially ordered set defined by directed

edges of a graph. Thus, topological sort plays an important role in several re-

search areas such as discrete mathematics and computer science, and has many

applications such as graph problems and scheduling problems [14].

∗He also works for JST ERATO Minato Project.

1

2 Yuma Inoue and Shin-ichi Minato

Linear time algorithms calculating a topological order are classical and well-

known algorithms, and dealt with by Cormen et al. [6]. In recent researches,

two derived problems are mainly discussed. One of these is an online topological

sort, i.e., calculation of a topological order on a dynamic graph. Bender et al. [2]

proposed a topological sort algorithm which allows edge insertions, and Pearce et

al. [13] proposed an algorithm which can also handle edge deletions. Another one

is the enumeration problem of all topological orders. Ono et al. [12] presented

a worst case constant delay time generating algorithm using family trees. The

complexity of the counting problem has been studied from several aspects since

Brightwell et al. [3] proved that it is #P -complete. Bubley et al. [4] proposed a

randomized algorithm to approximate the number of all linear extensions. Li et

al. [10] provided an experimentally fast algorithm counting all topological orders

based on Divide & Conquer method. There are many polynomial time counting

algorithms when we restrict the graph structure or fix some graph parameters, e.g.,

trees and bounded poset width [1, 5].

In this paper, we deal with both of these problems. That is, our goal is gen-

eration of all topological orders of given graphs and manipulation of these orders

when the graph is dynamically changed, e.g., edge addition. In addition, we implic-

itly store all topological orders as a compressed data structure in order to handle

graphs that are as large as possible. Experimental results, which will be described

later, show that our algorithm and data structure work very well: 3.7× 1041 topo-

logical orders of a directed graph with 50 vertices are generated in 36 seconds, and

the compressed data size is only about 1 gigabyte. Furthermore, an edge addition

query for a directed graph with 25 vertices is done in 1 second.

Our method is based on an indexed data structure compactly representing a

set of permutations, permutation decision diagram, also called πDD or PiDD [11].

Although a πDD can be used to achieve our purpose, compression ratio and query

processing are not efficient enough practically or theoretically. Thus, we developed

a new variation of πDD, named Rot-πDD (Rotation-based πDD). The key idea

of our modification is a direct construction of a decision diagram based on the

dynamic programming approach. This modification realizes the practical efficiency

of compression and query processing, which are also bounded theoretically.

Our contributions in this paper are summarized as follows.

• We provide the first algorithm for implicit generation of all topological orders

with dynamic manipulation.

• Time and space for construction and query processing of our algorithm are

efficient experimentally and theoretically, while it is difficult to estimate the

size and computation time of decision diagrams in general.

The rest of this paper is organized as follows. Section 2 introduces a precise

definition of topological sort and algorithms for counting, which will be used in our

algorithm. Section 3 introduces πDDs and our modified version (Rot-πDDs) for

An Efficient Method of Indexing All Topological Orders for a Given DAG 3

5

2
1

6

4

3 5

2
1

6

4

3
(a) (b)

Figure 1: (a) A DAG and (b) the subgraph induced by the vertex set {2, 5, 6}.

generation of all topological orders. Our algorithm for construction of a Rot-πDD is

also presented in Section 3. In Section 4, we prove the theoretical bound of the time

complexity of our algorithm and the size of the new permutation decision diagram

for all topological orders. Section 5 presents experimental results of generation

and query processing, comparing with existing πDD and other existing methods.

Section 6 gives some consequences of this paper.

2 Topological Orders

We define a directed graph G = (V,E), where V is a vertex set and E is a directed

edge, i.e., E ⊆ {(u, v) | u, v ∈ V }. Note that (u, v) is an ordered pair of two

vertices. Let n be the number of vertices and m be the number of edges. Without

loss of generality, we can assume V = {1, 2, . . . , n}.
A topological order of a graph G is an ordering v1v2 . . . vn of all vertices such

that vi must precede vj if (vi, vj) ∈ E. For example, the graph in Fig. 1(a) has

four topological orders: 526413, 526431, 562413, and 562431.

A directed graph is a DAG (Directed Acyclic Graph) if the graph has no cycle.

In this paper, we assume that given graphs are DAGs because we can determine

whether or not a graph has cycles in linear time, and if so, there is no topological

order.

There are many linear time algorithms for computing a topological order of a

given graph [9, 15]. One of the key ideas is deleting vertices whose out-degree is 0.

If there is no edge from v, v can be the rightmost element in a topological order,

because there is no element that must be preceded by v. We delete such v and

its incident edges, i.e., after the deletion of v, we can consider only the subgraph

induced by the vertex subset V \ {v}. Then, we repeat the same procedure for

the induced subgraph and obtain a topological order of the induced subgraph

recursively. Finally, we concatenate a topological order of the induced subgraph

and v to obtain a topological order of the given graph. The time complexity of

this algorithm is O(n+m).

Similarly, an algorithm counting all topological orders of a given graph can be

designed recursively. Let G(X) denote the subgraph of G induced by the vertex

subset X. For each recursion, we assume that the current vertex subset is V ′.

Then, for each vertex v whose out-degree is 0 in G(V ′), we sum up the numbers

of all topological orders of G(V ′ \ {v}). The time complexity of this algorithm is

4 Yuma Inoue and Shin-ichi Minato

O((n + m)TO(G)), where TO(G) is the number of the topological orders of the

graph G. Since TO(G) = O(n!), the time complexity is O((n + m)n!). We can

improve this complexity by a dynamic programming (DP) approach.

For example, in Fig. 1(a), we can delete vertices {1, 3, 4} in the order 134 or 314.

(Note that a deletion order is the reverse of a topological order.) Then we obtain

the same induced subgraph on {2, 5, 6}. Although TO(G({2, 5, 6})) is not changed,
we redundantly count TO(G({2, 5, 6})) in each recursion of 134 and 314. Thus,

by memorizing the calculation result TO(G(V ′)) for G(V ′) at the first calculation,

we can avoid duplicated calculations for each G(V ′). In other words, this is a

top-down DP, which recursively calculates TO(G(V ′)) =
∑

v∈V ′
0
TO(G(V ′ \ {v})),

where V ′
0 is the set of vertices whose out-degree is 0 in G(V ′). We define valid

induced subgraphs of G as induced subgraphs G(V ′) that can appear in the above

DP recursion. Let IS(G) denote the number of valid induced subgraphs of G.

Then, this DP algorithm uses O((n+m)IS(G)) time and O(IS(G)) space. In the

worst case, IS(G) = 2n, which is the number of all subsets of V . Therefore, we

improve the complexity from factorial O((n+m)n!) to exponential O((n+m)2n).

The idea of valid induced subgraphs is equivalent to upsets in a poset in the

talk of Cooper [5]. Cooper provided another upper bound O(nw) of IS(G), where

w is the width of a poset corresponding to G. The proof of this bound and more

precise analyses will be described in Section 4.

Here, we remember our goal in this paper again. Our goal is generating and

indexing all topological orders, which are permutations of vertices. Thus, it is rea-

sonable to expect that a compressed and indexed data structure for permutations

can be useful for this purpose. And if we can compress permutations in the same

way as the above DP, the compression size is bounded by IS(G) = O(min{2n, nw}),
which can be quite smaller than TO(G).

3 Permutation Decision Diagrams

In this section, we introduce a compressed and indexed data structure for permu-

tations, πDD, and discuss whether or not compression of a πDD is suitable for the

DP approach.

3.1 Existing Permutation Decision Diagrams: πDDs

First, we define some notations about permutations. A permutation of length n,

or n-permutation, is a numerical sequence π = π1π2 . . . πn such that all elements

are distinct and πi ∈ {1, 2, . . . , n} for each i. The identity permutation of length

n is denoted by en, which satisfies eni = i for each 1 ≤ i ≤ n.

We define a swap τi,j as the exchange of the ith element and the jth element.

Any n-permutation can be uniquely decomposed into a sequence of at most n− 1

swaps. This swap sequence is defined as the series of swaps to obtain an objective

An Efficient Method of Indexing All Topological Orders for a Given DAG 5

10

τ1,6 10

τ3,6 τ3,5
τ1,5

τ2,3

τ1,3
τ2,3

τ1,2
1 0

Figure 2: The πDD representing
{526413, 526431, 562413, 562431}.

0

τx,y

P0

(1) merging rule (2) deletion rule

0 1 0 1

P1P0 P1 P0

P0

τx,y τx,y τx,y

Figure 3: Two reduction rules of
πDDs.

n-permutation π from the identity permutation en by a certain algorithm. The

algorithm repeats swaps to move πk to the kth position, where k runs from right

to left. For example, we consider a decomposition of the permutation π = 43152

into a swap sequence. We start with e5 = 12345. The 5th element of π is 2 and

2 is the 2nd element of en, hence we swap the 2nd element and the 5th element,

and obtain 15342 = τ2,5. Next, since the 4th element of π is 5, and 5 is the 2nd

element, we then obtain 14352 = τ2,5 · τ2,4. Repeating this procedure, we finally

obtain π = 43152 = τ2,5 · τ2,4 · τ1,3 · τ1,2.

A πDD is a data structure representing a set of permutations canonically [11],

and has efficient set operations for permutation sets. πDDs consist of five compo-

nents: nodes with a swap label, 0-edges, 1-edges, the 0-sink, and the 1-sink. Fig. 2

shows the πDD representing topological orders of the graph in Fig. 1(a).

Each internal node has exactly a 0-edge and a 1-edge. Each path in a πDD

represents a permutation: if a 1-edge originates from a node with label τx,y, the

decomposition of the permutation contains τx,y, while a 0-edge from τx,y means

that the decomposition excludes τx,y. If a path reaches the 1-sink, the permutation

corresponding to the path is in the set represented by the πDD. On the other hand,

if a path reaches the 0-sink, the permutation is not in the set.

A πDD becomes a compact and canonical form by applying the following two

reduction rules (Fig. 3):

(1) Merging rule: share all nodes which have the same labels and child nodes.

(2) Deletion rule: delete all nodes whose 1-edge points to the 0-sink.

Although the size of a πDD (i.e. the number of nodes in a πDD) can grow

exponentially (O(2n
2
)) with respect to the length of permutations, in many prac-

tical cases, πDDs demonstrate high compression ratio. In addition, πDDs support

efficient set operations such as union, intersection, and set difference. The compu-

tation time of πDD operations depends on the size of πDDs, not on the number of

permutations in the sets represented by the πDDs.

6 Yuma Inoue and Shin-ichi Minato

1

ρ1,6 10

0

ρ3,6 ρ2,5
ρ1,5

ρ2,4

ρ1,3
ρ1,2

Figure 4: The Rot-πDD representing {526413, 526431, 562413, 562431}.

3.2 DP Approach and πDDs

Now, we consider whether or not we can directly construct a πDD in the same way

as the DP approach described in Section 2.

Here, we note that the swap decomposition algorithm behaves as deletions of

a vertex on an induced subgraph. We can represent the current recursive state in

DP procedure as a permutation, i.e., let k be the number of vertices of the current

induced subgraph, then the k-prefix of an n-permutation represents the vertex set

of the induced subgraph, and the (n− k)-suffix of the permutation represents the

reverse order of deletions. Furthermore, a deletion of a vertex v can be described

as a swap τi,k, where i is the position of v in the permutation. For example, we

can consider a permutation 625431 represents the subgraph in Fig. 1(b) such that

the deletion order is 134. When we delete the vertex 6, we swap the 1st position,

which is 6, and the 3rd position, which is the rightmost of the k-prefix representing

the vertex subset. Then, we obtain 526431, which represents the subgraph induced

by {2, 5} and the reverse order of deletions.

By compressing swap sequences into a πDD, we can recursively construct a πDD

for all topological orders. That is, for each recursion represented as a permutation

π, if we apply τi,j to delete πi, we create the new πDD such that its root node

is τi,j , its 1-edge child is the πDD for swap sequences after applying τi,j , and its

0-edge child is the πDD for swap sequences in which we do not apply τi,j . The

πDDs for the 1-edge and 0-edge child are recursively constructed.

However, deletions by swaps are not available for DP. In order to use DP ap-

proach, swap sequences for the same induced subgraph must be uniquely deter-

mined. Even if different prefixes of permutations represent the same induced sub-

graph, their swap sequences can differ. For example, consider the DAG in Fig. 1.

Deletion sequences 314 and 134 generate the same induced subgraph on {2, 5, 6},
and these states are represented as 526413 and 625431, respectively. The induced

subgraph on {2, 5, 6} has a topological order 526. In order to obtain this, we apply

no swap to 526413, while we apply τ1,3 to 625431. This means there are multiple

πDDs corresponding to the same induced subgraph.

An Efficient Method of Indexing All Topological Orders for a Given DAG 7

Algorithm 1 Rot-πDD construction for all topological orders of G = (V,E).

ConstructRotP iDD(G):
if V is empty then

return 1-sink
else if have never memorized the Rot-πDD RG for G then

Rot-PiDD R← 0-sink
for each v whose out-degree is 0 in G do

Integer i← v’s position in the increasing sequence of V , j ← |V |
R ← the Rot-PiDD with root node ρi,j , left child R, and right child
ConstructRotP iDD(G(V \ {v}))

end for
memorize R as RG

end if
return RG

3.3 New Permutation Decision Diagrams: Rot-πDDs

As described in the previous subsection, the DP approach cannot be used to di-

rectly construct a πDD. To overcome this problem, we use another decomposition

where each vertex subset is uniquely represented as a prefix of permutations. In or-

der to realize this, we use the left-rotation decomposition. A left-rotation ρi,j rear-

ranges ith element into jth position, and kth element into (k−1)th position for each

i + 1 ≤ k ≤ j. That is, ρi,j rearranges an n-permutation π1 . . . πiπi+1 . . . πj . . . πn
into π1 . . . πi+1 . . . πjπi . . . πn.

Left-rotations also can uniquely decompose a permutation. The left-rotation

decomposition is similar to the one for swaps: we start with en and repeatedly

apply ρi,j to move πi to the jth position, from right to left. For example, consider

to decompose 43152 into a sequence of left-rotations. We start with e5 = 12345.

Now, we move 2 from the 2nd position to the 5th position. Thus, we obtain

13452 = ρ2,5. Next, we move 5 from the 4th position to the 4th position, i.e., we

do not rotate. Repeating this procedure, we finally obtain 43152 = ρ2,5 · ρ1,3 · ρ1,2.

Left-rotations realize the unique representation of an induced subgraph as a

prefix of a permutation, because a prefix is always in an increasing order. Left-

rotation ρi,j only changes the relative order between the ith element and the ele-

ments in [i+1, j], i.e., relative orders in [1, j− 1] are not changed. This means the

(j − 1)-prefix is always in increasing order when we start with en and apply ρi,j in

decreasing order of j.

Thus, we can use the DP approach by using left-rotations as node labels of

πDDs. We call this left-rotation based πDD Rot-πDD, and existing πDD Swap-

πDD to distinguish. Fig. 4 illustrates the Rot-πDD for the same set as Fig. 2.

Algorithm 1 describes the DP based construction algorithm of a Rot-πDD.

8 Yuma Inoue and Shin-ichi Minato

3.4 Rot-πDD operations

Since Rot-πDDs are decision diagrams, they can use the same set operations as

Swap-πDD such as union, intersection, and set difference. Some queries such as

random samplings and counting the cardinality of the set represented by a Rot-

πDD are also available without any modification. On the other hand, some queries

have to be redesigned. For example, the precedence query R.Precede(u, v) returns

the Rot-πDD that represents only permutations π extracted from the Rot-πDD R

such that u precedes v in π. This query is equivalent to addition of the edge (u, v)

in a graph. This query can be designed as a recursive procedure (we omit details),

and the runtime depends on only the size of the Rot-πDDs.

4 Theoretical Analysis

In this section, we analyze the time and the space complexity of DP based counting

and Rot-πDD construction. Here, we remember the definition of IS(G): IS(G)

is the number of the induced subgraphs of G that can be obtained by deletions

of vertices with out-degree 0. We start by proving the bound O(nw) of IS(G).

According to Dilworth’s theorem [7], the width w of a poset equals the minimum

path cover of the DAG corresponding to the poset, where a path cover of a graph

G is a set of paths in G such that each vertex of G must appear in at least one of

the paths. Therefore, it is sufficient to prove the following theorem.

Theorem 1. Given a DAG G with n vertices and minimum path cover w, IS(G) ≤
(n+ 1)w holds.

Proof. Let pi be the ith path of the minimum path cover and li be the length of pi.

Here, all vertices in a valid induced subgraph must be consecutive in prefix of each

pi due to precedence. The number of the possible prefixes of each path is at most

li+1, and the number of paths is w. Therefore, IS(G) is bounded by
∏w

k=1(lk+1).

Since li is also bounded by n, IS(G) ≤ (n+ 1)w holds.

In this proof, we use the rough estimation li = n, but in fact
∑w

k=1 lk = n holds.

We can prove a tighter bound using this restriction.

Lemma 2. If
∑w

k=1 lk = n holds,
∏w

k=1(lk +1) ≤ (n/w+1)w holds for all positive

integers n, 1 ≤ w ≤ n, and 1 ≤ li ≤ n.

Proof. The proof is by induction. We prove it in the Appendix.

Corollary 3. Given a DAG G with n vertices and minimum path cover w, IS(G) ≤
(n/w + 1)w holds.

Proof. The proof follows from the proof of Theorem 1 and Lemma 2.

An Efficient Method of Indexing All Topological Orders for a Given DAG 9

Corollary 3 gives a new bound of IS(G). Since (n/w + 1)w is monotonically

nondecreasing for all positive integers n and w, the range of (n/w+1)w is [n+1, 2n]

for 1 ≤ w ≤ n. This means the previous bound O(min{2n, nw}) can be directly

replaced by O((n/w+1)w). Hence, we obtain the time complexity O((n+m)(n/w+

1)w) and the space complexity O((n/w + 1)w) of the DP.

We can also estimate the size of a Rot-πDD representing all topological orders

and the time of the construction. The size of such a Rot-πDD is at most w times

larger than the space of DP because each DP recursion has at most w transitions,

while each node of a Rot-πDD has exactly two edges. Therefore, the size of such

a Rot-πDD is at most O(w(n/w + 1)w). 1 On the other hand, the time of the

construction is as fast as DP, because each node is only created for each vertex

deletion in constant time. Hence, the time complexity of the construction of a

Rot-πDD representing all topological orders is O((n+m)(n/w + 1)w).

5 Computational Experiments

We measured the performance of our Rot-πDD construction algorithm by compu-

tational experiments. Experiment setting is as follows.

• Input: A DAG.

• Output: The number of topological orders of the given DAG.

• Test Cases: For each n = 5, 10, 15, . . . , 45, 50 and k = 1, 3, 5, 7, 9, we generate

exactly 30 random DAGs with n vertices and ⌊ k
10 ×

n(n−1)
2 ⌋ edges. (That is,

k provides the edge density of DAGs.)

We also compared with other methods on the same setting. Comparisons are

Swap-πDD construction, DP counting, and Divide & Conquer counting [10]. Since

direct construction of a Swap-πDD is inefficient, we apply precedence queries for

each edge individually. We implemented all algorithms in C++ and carried out

experiments on a 3.20 GHz CPU machine with 64 GB memory.

Fig. 5 and Fig. 6 show the average runtime and memory usage on n = 20 cases.

Divide & Conquer method times-out on some cases of k = 1. These results indicate

that the worse cases of all algorithms are sparse graphs. In general, sparse graphs

tend to have a large poset width. In fact, the average w of k = 1 cases is 10.6,

while that of k = 5 cases is 3.3. Therefore, the complexity O((n/w + 1)w) also

tends to become large on the sparse graph cases.

We therefore focus on sparse graphs. Table 1 shows the average numbers of

topological orders, the sizes of Rot-πDDs, and runtimes on the case k = 1. It shows

the amazing efficiency of Rot-πDDs: 3.7× 1041 topological orders are compressed

1Note that this bound is valid only for all topological orders. For any permutation set, the

worst size of Rot-πDDs is O(2n
2

), which is same as the size bound of Swap-πDDs.

10 Yuma Inoue and Shin-ichi Minato

0.0001

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9

ru
n
ti
m
e
(s
ec
)

k

Rot-πDD
Swap-πDD

DP
Divide&Conquer

Figure 5: Average runtime for con-
struction when n = 20.

103

104

105

106

107

1 2 3 4 5 6 7 8 9

m
em

or
y
u
sa
ge

(k
B
)

k

Rot-πDD
Swap-πDD

DP
Divide&Conquer

Figure 6: Average memory usage for
construction when n = 20.

Table 1: Experimental results on the cases k = 1.

n The number of topological orders Rot-πDD size Time (sec)

5 60 16 0.00

10 270816 310 0.00

15 3849848730 3990 0.00

20 84248623806362 35551 0.04

25 1729821793136903967 179205 0.18

30 166022551499377802024339 695029 0.90

35 18897260805585874040859189398 2634015 3.78

40 192246224377065271125689349980187 4649639 6.68

45 7506858927008084384591070452622456252 8288752 12.69

50 375636607794991518114274279559952431497225 22542071 35.51

into a Rot-πDD that has only 2.2 × 107 nodes in 36 seconds on the case n = 50.

Note that each node of Rot-πDDs consumes about 30 bytes.

Fig. 7 and Fig. 8 show the average runtime and memory usage on k = 1 cases.

Swap-πDD and Divide & Conquer time-out on the case n ≥ 25 and n ≥ 20, respec-

tively. We can obtain a Rot-πDD, which supports many operations for queries,

with only tenfold increase in runtime and memory usage compared to DP. We guess

that the overhead time is used to store new nodes of a Rot-πDD into the hash ta-

ble, and the overhead memory is caused by the difference of the space complexities

between DP and Rot-πDD as described in Section 4.

We also carried out experiments to measure the performance of query process-

ing. On these experiments, we use 30 random DAGs with 25 vertices and 90 edges.

We start with a graph having no edge, and add each edge individually. The Rot-

πDD method uses precedence queries for each edge addition, while DP recomputes

TC(G) for each addition. We measure the runtime and the size of a Rot-πDD and

a DP table. Note that the DP table size equals IS(G).

An Efficient Method of Indexing All Topological Orders for a Given DAG 11

0.0001

0.001

0.01

0.1

1

10

100

5 10 15 20 25 30 35 40 45 50

ru
n
ti
m
e
(s
ec
)

n

Rot-πDD
Swap-πDD

DP
Divide&Conquer

Figure 7: Average runtime for con-
struction when k = 1.

103

104

105

106

107

5 10 15 20 25 30 35 40 45 50

m
em

or
y
u
sa
ge

(k
B
)

n

Rot-πDD
Swap-πDD

DP
Divide&Conquer

Figure 8: Average memory usage for
construction when k = 1.

0.0001

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50 60 70 80 90

ru
n
ti
m
e
(s
ec
)

the number of added edges

Rot-πDD
DP

Figure 9: Average runtime for edge
addition queries.

102

103

104

105

106

107

108

0 10 20 30 40 50 60 70 80 90

th
e
si
ze

of
R
ot
-P
iD

D
/
D
P
ta
b
le

the number of added edges

Rot-πDD
DP

Figure 10: Average space for edge ad-
dition queries.

Fig. 9 and Fig. 10 show the results for query processing. In almost all cases,

Rot-πDDs can generate and index all topological orders faster than or equal to DP.

Especially in sparse cases, query processing of Rot-πDDs is very efficient. It may be

because Rot-πDDs (and Swap-πDDs) can represent the set of all n-permutations

with n(n− 1)/2 + 1 nodes (please refer to [8] for more details).

6 Conclusion

In this paper, we gave an efficient method for generating and indexing all topolog-

ical orders of a given DAG. We proposed a new data structure Rot-πDD, which

is suitable for indexing topological orders. Theoretical analysis and experiments

showed the efficiency of our construction algorithm, compression ratios of Rot-

πDDs, and query processing.

Future work is to apply Rot-πDDs to solve several scheduling problems. We

would like to develop new operations to process required queries and optimizations

for each problem. Another topic is to apply the Rot-πDD construction technique to

other graph generation problems such as Hamiltonian paths and perfect elimination

orderings. These problems can also be recursively divided into subproblems based

on induced subgraphs.

12 Yuma Inoue and Shin-ichi Minato

References

[1] Mike D Atkinson. On computing the number of linear extensions of a tree.

Order, 7(1):23–25, 1990.

[2] Michael A Bender, Jeremy T Fineman, and Seth Gilbert. A new approach

to incremental topological ordering. In 20th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 1108–1115. Society for Industrial and

Applied Mathematics, 2009.

[3] Graham Brightwell and Peter Winkler. Counting linear extensions. Order,

8(3):225–242, 1991.

[4] Russ Bubley and Martin Dyer. Faster random generation of linear extensions.

Discrete Mathematics, 201(1):81–88, 1999.

[5] Joshua N Cooper. When is linear extensions counting easy? AMS Southeast-

ern Sectional Meeting, 2013.

[6] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to Algorithms. The MIT Press, Cambridge, 2001.

[7] Robert P Dilworth. A decomposition theorem for partially ordered sets. An-

nals of Mathematics, 51(1):161–166, 1950.

[8] Yuma Inoue. Master’s thesis: Generating PiDDs for indexing permutation

classes with given permutation patterns. Technical Report TCS-TR-B-14-9,

Division of Computer Science, Hokkaido University, 2014.

[9] Arthur B Kahn. Topological sorting of large networks. Communications of

the ACM, 5(11):558–562, 1962.

[10] Wing-Ning Li, Zhichun Xiao, and Gordon Beavers. On computing the number

of topological orderings of a directed acyclic graph. Congressus Numerantium,

174:143–159, 2005.

[11] Shin-ichi Minato. πDD: A new decision diagram for efficient problem solving

in permutation space. In 14th International Conference on Theory and Appli-

cations of Satisfiability Testing (SAT), volume 6695 of LNCS, pages 90–104.

Springer, 2011.

[12] Akimitsu Ono and Shin-ichi Nakano. Constant time generation of linear ex-

tensions. In 15th International Symposium on Fundamentals of Computation

Theory (FCT), volume 3623 of LNCS, pages 445–453. Springer, 2005.

[13] David J Pearce and Paul HJ Kelly. A dynamic topological sort algorithm

for directed acyclic graphs. ACM Journal of Experimental Algorithmics,

11(1.7):1–24, 2006.

An Efficient Method of Indexing All Topological Orders for a Given DAG 13

[14] Gara Pruesse and Frank Ruskey. Generating linear extensions fast. SIAM

Journal on Computing, 23(2):373–386, 1994.

[15] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM

Journal on Computing, 1(2):146–160, 1972.

14 Yuma Inoue and Shin-ichi Minato

Appendix: Proof of Lemma. 2

Proof. The proof is done inductively over w.

(Induction Basis)

When w = 1,
1∑

k=1

lk = n implies l1 = n. Therefore,

1∏
k=1

(lk + 1) = l1 + 1 = n+ 1 =

(
n

1
+ 1

)1

holds. This directly proves the induction basis.

(Induction Step)

We suppose
x∏

k=1

(lk + 1) ≤
(
n

x
+ 1

)x

holds when
x∑

k=1

lk = n. We will prove that

x+1∏
k=1

(lk + 1) ≤
(

n

x+ 1
+ 1

)x+1

holds when

x+1∑
k=1

lk = n. First, we have

x+1∏
k=1

(lk + 1) = (lx+1 + 1) ·
x∏

k=1

(lk + 1).

Here,

x+1∑
k=1

lk = n implies

x∑
k=1

lk = n− lx+1. Therefore, we have

x+1∏
k=1

(lk + 1) ≤ (lx+1 + 1) ·
(
n− lx+1

x
+ 1

)x

= f(lx+1)

from the induction hypothesis. Let a be lx+1 to simplify. The first-order differen-

tiation of f(a) is calculated as follows.

f ′(a) =

(
n− a

x
+ 1

)x

+ (a+ 1) ·
(
− 1

x

)
· x

(
n− a

x
+ 1

)x−1

=

(
n− a

x
+ 1− a− 1

)
·
(
n− a

x
+ 1

)x−1

=
n− (x+ 1)a

x
·
(
n− a

x
+ 1

)x−1

.

If x = 1, f ′(a) = n−(x+1)a
x and hence the maximum is f(n

x+1) = (n
x+1 + 1)x+1.

Therefore, this satisfies the induction step. If x ≥ 2, we obtain the extrema

An Efficient Method of Indexing All Topological Orders for a Given DAG 15

f(n
x+1) = (n

x+1 +1)x+1 and f(n+ x) = 0. The second-order differentiation of f(a)

is also calculated as follows.

f ′′(a) = −x+ 1

x
·
(
n− a

x
+ 1

)x−1

+
n− (x+ 1)a

x
·
(
− 1

x

)
· (x− 1)

(
n− a

x
+ 1

)x−2

=

{
− (x+ 1) ·

(
n− a

x
+ 1

)
− (x− 1) · n− (x+ 1)a

x

}
· 1
x

(
n− a

x
+ 1

)x−2

= {(x+ 1)a− 2n− x− 1} · 1
x

(
n− a

x
+ 1

)x−2

.

Since 1
x(

n−a
x + 1)x−2 is always positive when 1 ≤ a ≤ n and 2 ≤ x, f(a) is

upward-convex if a < 2n
x+1 + 1, while f(a) is downward-convex otherwise. Because

n
x+1 < 2n

x+1 + 1 ≤ n + x holds, we can conclude f(n
x+1) = (n

x+1 + 1)x+1 is the

maximum of f(a) for all 1 ≤ a ≤ n, and

x+1∏
k=1

(lk + 1) ≤ (lx+1 + 1) ·
(
n− lx+1

x
+ 1

)x

= f(lx+1) ≤
(

n

x+ 1
+ 1

)x+1

holds. This proves the induction step.

