
TCS -TR-A-17-82

TCS Technical Report

On the Help of Bounded Shot Verifiers, Comparers,
and Standardisers in Inductive Inference

by

Ziyuan Gao, Sanjay Jain, Frank Stephan, and

Thomas Zeugmann

Division of Computer Science

Report Series A

November 4, 2017

Hokkaido University
Graduate School of

Information Science and Technology

Email: thomas@ist.hokudai.ac.jp Phone: +81-011-706-7684
Fax: +81-011-706-7684

On the Help of Bounded Shot Verifiers, Comparers,
and Standardisers in Inductive Inference

ZIYUAN GAO

Department of Mathematics

National University of Singapore

Singapore 119076

Republic of Singapore

matgaoz@nus.edu.sg

SANJAY JAIN

School of Computing

National University of Singapore

Singapore 117417

Republic of Singapore

sanjay@comp.nus.edu.sg

FRANK STEPHAN

Department of Mathematics

National University of Singapore

Singapore 119076

Republic of Singapore

fstephan@comp.nus.edu.sg

THOMAS ZEUGMANN

Division of Computer Science

Hokkaido University

N-14, W-9, Sapporo 060-0814

Japan

thomas@ist.hokudai.ac.jp

Abstract. The present paper deals with the inductive inference of recursively enumerable languages
from positive data (also called text). It introduces the learning models of verifiability and comparabil-
ity. The input to a verifier is an index e and a text of the target language L, and the learner has to
verify whether or not the index e input is correct for the target language L. A comparator receives two
indices of languages from the target class L as input and has to decide in the limit whether or not these
indices generate the same language. Furthermore, standardisability is studied, where a standardiser
receives an index j of some target language L from the class L, and for every L ∈ L there must be
an index e such that e generates L and the standardiser has to map j to e. Additionally, the common
learning models of explanatory learning, conservative explanatory learning, and behaviourally
correct learning are considered. For almost all learning models mentioned above it is also appropriate
to consider the number of times a learner changes its mind. In particular, if no mind change occurs
then we obtain the finite variant of the models considered. Occasionally, also learning with the help
of an oracle is taken into consideration.

The main goal of the present paper is to figure out to what extent verifiability, comparability,
and standardisability are helpful for the inductive inference of classes of recursively enumerable
languages. Here we also distinguish between indexed families, one-one enumerable classes, and
recursively enumerable classes. Our results are manyfold, and an almost complete picture is obtained.
In particular, for indexed families and recursively enumerable classes finite comparability, finite
standardisability, and finite verifiability always imply finite learnability. If at least one mind change is
allowed, then there are differences, i.e., comparability or verifiability imply conservative explanatory
learning, but standardisability does not; still explanatory learning can be achieved.

1

2 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

1. Introduction

The process of hypothesising a general rule from “eventually” complete positive data is
called inductive inference. Philosophy of science has studied inductive inference during the
last centuries. Some of the principles developed are very much alive in algorithmic learning
theory. Computer scientists widely use their insight into the theory of computability to
obtain a better and deeper understanding of processes performing inductive generalisations.

The present paper mainly deals with formal language learning, a field in which many
interesting and sometimes surprising results have been elaborated within the last decades
(see Jain, Osherson, Royer, and Sharma [16]; Zeugmann and Zilles [24]) and the references
therein. Inductive inference of formal languages may be characterised as the study of
systems that map evidence on a language into hypotheses about it. Of special interest is
the investigation of scenarios in which the sequence of hypotheses stabilises to an accurate
and finite description (a grammar) of the target language. If stabilisation is formalised
syntactically then we obtain explanatory learning (see Case and Smith [9]), which is also
called learning in the limit (see Gold [15]). Replacing syntactically by semantically results
in behaviourally correct learning (see Feldman [10], Barzdin [4, 5], Case and Smith [9]
and Case [7]). A further special case is finite learning, where the learner outputs essentially
just one hypothesis which has to be a correct one. In the learning models described so far,
evidence is provided by successively growing initial segments of any infinite sequence of
strings that eventually contains all strings of the target language L and none of the strings
outside of L (such a sequence is called a text for L or a sequence of positive data for L).

The hypotheses output by the learner are natural numbers (also called indices). The
set of all admissible hypotheses is called the hypothesis space. In the present paper the
hypothesis space is any fixed universal numberingW0,W1,W2, . . . of all recursively enumer-
able languages, which are identified with the recursively enumerable subsets of the natural
numbers, and any index is interpreted as a grammar. We are then in general interested in the
learnability of classes L of languages; i.e., we ask whether or not there is one learner that
can learn every language L ∈ L.

Furthermore, in the present paper we consider learning scenarios in which evidence may
also be provided in the form of indices. We introduce the model of verifiability, where the
evidence is any index e and a text of the target language L, and the learner has to verify
whether or not the index input is correct for the target language; i.e., whether or not We = L.
Second, we also define comparability, where the learner receives two indices of languages
from the target class L as input and has to decide in the limit whether or not these indices
generate the same language. Third, we study standardisability in the sense that evidence
is provided by any index j of a target language L from the class L. Then for every L ∈ L
there has to exist an index e such that We = L and the standardiser has to map j to e. This
mapping may be performed in the limit or just by outputting a single guess which then must
be e (called finite standardisability). Standardisability has been considered previously in
the literature (see, e.g., Kinber [18], Freivald and Wiehagen [12], Freivalds, Kinber, and
Wiehagen [13], and Jain and Sharma [17]).

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 3

For almost all the learning models described above it is also meaningful to take a closer
look at the number of times a learner changes its mind. For the technical details we refer the
reader to Definition 3.

The main problem studied in the present paper is the question to what extent verifiability,
comparability, and standardisability are useful for the inductive inference of classes of
recursively enumerable languages. For example, we are interested in learning whether or not
a verifiable class is also explanatorily learnable, and if it is, whether or not the number of
mind changes is preserved. Table 1 provides a summary of the results obtained, where the
last three columns give the best obtained results for learning an Indexed, One–One R.E. or
R.E. class which is n-shot comparable/standardisable/verifiable as provided in the first two
columns. In the table, Ex[A] denotes Ex-learning using oracle A, and a ? beside a criterion
denotes open problem at this point.

Notation Shots Indexed One-One R.E. R.E.

Comparator

1
Fin

(Thm 1)
Fin

(Thm 1)
Fin

(Thm 1)

2
ConsvEx
(Thm 7)

Ex (Thm 5),
ConsvEx?

Not Ex(Thm 2),
ConsvEx[K]

(Thm 8)

3
Ex (Thm 9),

Not ConsvEx (Thm 11)

ConsvEx[K]
(Thm 10),

Not Ex
(Thm 3), BC?

None
(Exmp 4)

4 and More
None

(Thm 13)
None

(Thm 13)
None

(Thm 13)

Standardiser

1
Fin

(Cor 1)
Fin

(Cor 1)
Fin

(Cor 1)

2
Ex (Thm 4),

Not ConsvEx (Thm 12)

Ex (Thm 4),
Not ConsvEx

(Thm 12)

None
(Exmp 4)

3 and More
None

(Thm 13)
None

(Thm 13)
None

(Thm 13)

Verifier

1
Fin

(Prop 2)
Fin

(Prop 2)
Fin

(Prop 2)

2
ConsvEx
(Thm 6)

ConsvEx
(Thm 6)

ConsvEx
(Thm 6)

3 and More
Ex (Prop 3),

Not ConsvEx
(Thm 11)

Ex (Prop 3),
Not ConsvEx

(Thm 11)

Ex (Prop 3),
Not ConsvEx

(Thm 11)

Table 1: Summary of main results

The paper is structured as follows: Section 2 introduces the necessary notations, and
in Section 3 the learning models studied in the present paper are defined. All results are
presented in Section 4. Finally, a summary is given and open problems are discussed.

4 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

2. Preliminaries

The notation and terminology from recursion theory adopted in this paper follows Rogers [21].
For background on inductive inference we refer the reader to Jain et al. [16] and Zeugmann
and Zilles [24].

We use N = {0, 1, 2, . . .} to denote the set of all natural numbers. The set of all partial
recursive functions and of all recursive functions from N into N is denoted by P and R,
respectively. We write R{0,1} to denote the set of all {0, 1}-valued recursive functions. Let
ϕ0, ϕ1, ϕ2, . . . denote a fixed acceptable programming system (also called Gödel numbering)
of all partial recursive functions (see Rogers[21]). Let W0,W1,W2, . . . be a universal
numbering of all recursively enumerable sets (abbr. r.e. sets) of natural numbers, where We

is the domain of ϕe for all e ∈ N.

Let e, x ∈ N; if ϕe(x) is defined then we write ϕe(x)↓ and also say that ϕe(x) converges.
Otherwise, ϕe(x) is said to diverge (abbr. ϕe(x)↑). Furthermore, if the computation of ϕe(x)

halts within s steps of computation then we write ϕe,s(x)↓= ϕe(x); otherwise ϕe,s(x)↑. For
all e, s ∈ N the set We,s is defined as the domain of ϕe,s.

Given any set S, we use S to denote the complement of S, and S∗ to denote the set of
all finite sequences of elements from S. By D0, D1, D2, . . . we denote any fixed canonical
indexing of all finite sets of natural numbers. We recall that Cantor’s pairing function
〈 · , · 〉 : N× N → N is given by 〈x, y〉 = 1

2
(x+ y)(x+ y + 1) + y for all x, y ∈ N.

The symbol K denotes the diagonal halting problem, i.e., K = {e : e ∈ N, ϕe(e)↓}.
Furthermore, we use C(x) to denote the plain Kolmogorov complexity of x (see Li and
Vitányi [19, chap. 2]).

For any two sets A and B, we define A ⊕ B := {2x : x ∈ A} ∪ {2y + 1 : y ∈ B}.
Analogously, one definesA⊕B⊕C = {3x : x ∈ A}∪{3y+1 : y ∈ B}∪{3z+2 : z ∈ C}.

We continue with some technical notations needed for our definitions of variants of
learnability. In the following we always assume that # /∈ N. For any σ, τ ∈ (N∪ {#})∗, we
write σ � τ iff σ = τ or τ is an extension of σ, and σ ≺ τ if and only if σ � τ and σ 6= τ .
Furthermore, for σ ∈ (N∪ {#})∗ and n ∈ N we write σ(n) to denote the element in the nth
position of σ. Additionally, σ[n] denotes the sequence σ(0), σ(1), . . . , σ(n − 1). Given a
number a ∈ N and some fixed n ∈ N, n ≥ 1, we denote by an the finite sequence a, . . . , a,
where a occurs exactly n times. Moreover, we identify a0 with the empty string λ. For any
finite sequence σ we use |σ| to denote the length of σ. The concatenation of two sequences σ
and τ is denoted by σ ◦ τ ; for convenience, and whenever there is no possibility of confusion,
this is occasionally denoted by στ .

3. Learnability

Let L be a class of r.e. languages. Throughout this paper, the mode of data presentation is
that of a text. A text is any infinite sequence of natural numbers and the # symbol, where the
symbol # indicates a pause in the data presentation. More formally, a text TL for a language

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 5

L ∈ L is any total mapping TL : N → N ∪ {#} such that L = range(TL) \ {#}. We use
content(T) to denote the set range(T) \ {#}, i.e., the content of a text T contains only the
natural numbers appearing in T . Furthermore, for every n ∈ N we use T [n] to denote the
finite sequence T (0), . . . , T (n− 1), i.e., the initial segment of length n of T . Analogously,
for a finite sequence σ ∈ (N ∪ {#})∗ we use content(σ) to denote the set of all numbers in
the range of σ.

The main learning criteria studied in this paper are explanatory learning (also called
learning in the limit) introduced by [15] and behaviourally correct learning, which goes
back to Feldman [10], who called it matching in the limit. The name behaviourally correct
learning was coined by Case and Smith [9]. It was also studied by Barzdin [4, 5] and
Case [8]. Furthermore, we shall also consider finite learning (see Gold [15]). In the
following definitions, an inductive inference machine (abbr. IIM) M is a recursive function
mapping (N ∪ {#})∗ into N ∪ {?}; the ? symbol permits M to abstain from conjecturing at
any stage.

Definition 1. Let L be any class of r.e. languages.

(1) An IIM M explanatorily (Ex) learns L if, for every L in L and each text TL for L, there
is a number n for which L = WM(TL[n]) and, for every j ≥ n, M(TL[j]) = M(TL[n]).

(2) An IIM M behaviourally correctly (BC) learns L if, for every L in L and each text TL

for L, there is a number n for which L = WM(TL[j]) whenever j ≥ n.

(3) An IIM M finitely (FinEx) learns L if, for every L in L and each text TL for L, there
is a number n for which L = WM(TL[n]) and for every m < n, M(TL[m]) = ? and for
every j ≥ n, M(TL[j]) = M(TL[n]).

(4) An IIMM (n+1)-shot learnsL if it Ex learnsL and for every text T for anL ∈ L there
are at most n distinct values k for which M(T [k]) 6=? and M(T [k]) 6= M(T [k + 1]).

Note that for finite learning the IIM itself indicates that it has successfully finished its
learning task, since the first hypothesis output, which is different from ?, is correct.

For every learning criterion I considered in the present paper, there exists a recursive
enumeration M0,M1, . . . of the learning machines such that if a class is I-learnable, then
some Mi I-learns the class. We fix one such enumeration of learning machines.

Angluin [1] considered an important condition for learnability of classes based on tell-tale
sets as defined below.

Definition 2. Assume L is a class of languages. A set S is said to be a tell-tale with respect
to L for a language L ∈ L if S ⊆ L, the set S is finite and for all L′ ∈ L, S ⊆ L′ ⊆ L

implies L = L′.

The class L satisfies the tell-tale property if every L ∈ L has a tell-tale with respect to L.

6 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

It was shown by Angluin [1] and Baliga et al. [3] that every behaviourally correctly
learnable class of languages satisfies the tell-tale property.

In this paper, we consider a learning scenario in which the learner may not be required
to output a correct index for the target language (in the limit), but only has to (iii) verify
whether or not a given index is correct, or (i) to decide whether or not any two given r.e.
indices of sets in the target class are indices for the same set. We shall also study classes of
r.e. languages that can be finitely standardised in the sense that for a target class L, there
exists a partial-recursive function f such that for any given language L in L, there is an e
with We = L for which f outputs e when fed with any r.e. index for L. Replacing the
function f by a limiting recursive function yields mutatis mutandis standardisation (in the
limit) of languages (see (ii) below). Finite standardisation was introduced by Freivald and
Wiehagen [12], while standardisation goes back to Kinber [18]. Their motivation was to
study whether a given index of the object to be learnt is more useful than the graph of a
target function or a text of the target language. It was further investigated in Freivalds et
al. [13] for function learning, and in Jain and Sharma [17] for the inductive inference of r.e.
languages.

Definition 3. Let L be any class of r.e. languages.

(i) The class L is said to be (n+1)-shot comparable if there is a partial-recursive function
F : N × N × N → {yes, no, ?} (called an (n + 1)-shot comparator for L) such that
for all i, j ∈ N with Wi,Wj ∈ L,

(1) G(i, j) := lim
k→∞

F (i, j, k) exists and G(i, j) ∈ {yes, no};

(2) G(i, j) = yes if Wi = Wj and G(i, j) = no if Wi 6= Wj;

(3) there are at most n distinct values of k for which F (i, j, k) ∈ {yes, no}, and
F (i, j, k) 6= F (i, j, k + 1).

Intuitively, this means that F “changes its value” at most n times.1

A 1-shot comparable class will also be called finitely comparable.

(ii) The class L is said to be (n + 1)-shot standardisable if there is a partial-recursive
function F : N× N → N ∪ {?} (called an (n+ 1)-shot standardiser for L) such that

(1) for all i with Wi ∈ L, G(i) := lim
k→∞

F (i, k) exists, G(i) ∈ N and WG(i) = Wi;

(2) for all i, j ∈ N with Wi,Wj ∈ L, G(i) = G(j) iff Wi = Wj;

(3) there are at most n distinct values of k for which F (i, k) ∈ N and F (i, k) 6=
F (i, k + 1).

1In order to minimise notation, we will often omit the third argument in the definition of F and simply write
“F changes its value at most n times”, where F is a given (n + 1)-shot comparator for a class; the meaning of
this statement will be clear from the context.

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 7

Intuitively, this means that F “changes its value” at most n times.2

A 1-shot standardisable class will also be called finitely standardisable.

(iii) M is said to verify L if on any input given by an index e for a language in L and a text
T for some perhaps different language in L, M converges to “yes” in the case that e
is an index for the language of the text and “no” if that is not the case; M is called a
verifier for L. Similarly one defines finite verifiability and (n+ 1)-shot verifiability.

(iv) The class S is said to be finitely (m,n)-standardisable if there are n finitely standard-
isable classes S1, S2, . . . , Sn such that every L ∈ S is contained in at least m of the
classes S1, S2, . . . , Sn.

4. Verifiability, Comparability, Standardisability

We start this section with two examples that compare the power of verifiers with finite
learnability and explanatory learnability. Taking into account that the collection of all finitely
learnable classes is a proper subset of the collection of all explanatorily learnable classes,
these examples show that the power of verifiers is incomparable to the power of explanatory
learners.

Moreover, it is useful to have the following notions: A class L is said to be uniformly
r.e. (or just r.e.) if there is an r.e. set S ⊆ N such that L = {Wi : i ∈ S}. A class is said
to be 1–1 r.e., if the r.e. set S as above additionally satisfies the condition that for i, j ∈ S,
Wi = Wj iff i = j. An r.e. class as above said to be uniformly recursive or an indexed
family if there exists a recursive function f ∈ R{0,1} such that for all i ∈ S and x ∈ N,
f(i, x) = 1 iff x ∈ Wi.

Example 1. The class K consisting of K and all singleton languages {x} with x /∈ K is
finitely learnable but not finitely verifiable. A finite verification algorithm on an index e
for K and a text x, x, x, x, . . . would have to eventually output “no” iff x /∈ K and that
would, combined with the enumeration procedure of K, lead to a decision procedure of K.

In order to show that K is finitely learnable we recall that every non-empty r.e. set
is the range of a function f ∈ R. We define a numbering ψ : N × N → N as follows:
ψ(x, y) := x if ϕx,y(x) ↑. If ϕx,y(x) ↓ then x ∈ K and then we set ψ(x, y) := ek if ek

is least such that 0 ≤ ek ≤ y, ϕek,y(ek) ↓ and ψ(x, ỹ) 6= ek for all ỹ < y. If there is
no such ek, then ψ(x, y) := ψ(x, y − 1). Hence the range of ψ(x, ·) is K iff x ∈ K

and range(ψ(x, ·)) = {x}, otherwise. Now, the finite learner outputs the canonical index
of ψ(x, ·) in the universal numbering W0,W1,W2, . . . on input text T , if the first non-#
symbol in the text T is x (that is, for some i, T (i) = x, and T (i′) = # for all i′ < i).

Note that the second part of the proof in Example 1 also shows that K is a uniformly r.e.
class.

2As in the definition of an (n+1)-shot comparator, we will often omit the second argument in the definition
of F and simply write “F changes its value at most n times” for any given (n + 1)-shot standardiser F for a
class.

8 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

Example 2. Consider a class L of languages which contains for every e ∈ N exactly one
language Le ⊆ {〈e, 0〉, 〈e, 1〉, . . .} which is not empty and not behaviourally correctly learnt
by the learner Me. The class L is then verifiable by an algorithm which on input an index d
and a text T enumerates the set Wd and tracks the text until a member (i, s) is enumerated
intoWd and a non-pause datum (j, t) is found in the text. Then the index d is for the language
of T iff i = j, as the verifier needs only to work on members of the class. However, by choice,
L is not behaviourally learnable.

Assume that a class L has an n-shot standardiser. Then the class is (2n−1)-shot comparable.
This can be seen as follows: Let d and e be two indices such that both Wd and We are in L.
Then the algorithm runs two instances of the standardiser in parallel on the two inputs d
and e, respectively, and waits until each of them has produced an output. If the two outputs
are equal, then the algorithm outputs “yes”, and if the two outputs are different, then it
outputs “no”. Note that the two instances must produce an output, since both Wd and We

are in L. Once this is done, every mind change of the comparator requires that at least one
of the standardisers makes another shot and so one can bound the number of shots of the
comparator by 1 + 2 · (n− 1) = 2n− 1. Hence, we have the following proposition:

Proposition 1. Every n-shot standardisable class is (2n− 1)-shot comparable.

Proposition 2. Let L be a uniformly r.e. class. Then we have the following: If L is finitely
verifiable, then L is also finitely learnable.

Proof. If a class L has a recursively enumerable list of indices, a finite verifier can be turned
into a finite learner by dovetailing the enumeration of the indices e0, e1, . . . and by simulating
the verifier on e0 versus T , e1 versus T , . . . until one of them outputs “yes”. The finite
learner then conjectures the first index ek, where the simulation gives the answer “yes”.

The following result is due to the learning algorithm, which for a recursive list of indices
e0, e1, . . . of a class converges to the first index ek where the verifier is, on the text T ,
converging to “yes” while the verifier converges, for all previous indices e0, . . . , ek−1,
to “no”.

Proposition 3. If an r.e. class is verifiable in the limit then it is also explanatorily learnable.

In order to show further results we need the following: A class L of languages is said to be
inclusion-free if there are no two languages A and B in the class L such that A ⊂ B.

Proposition 4. Any class which is 2-shot comparable must be inclusion-free. Thus, any
class which is finitely standardisable must be inclusion-free.

Proof. If the class contains two sets A and B with A ⊂ B, and has a 2-shot comparator F ,
then using the double recursion theorem (see Smullyan [22]), one can construct two gram-
mars i and j such that Wi = Wj = A, if the comparator never outputs “yes” on input (i, j).
If the comparator outputs “yes” on input (i, j) at some point, and then never outputs “no”
after that, then Wi = A and Wj = B. Otherwise, Wi = Wj = B. So it follows that the
comparator is wrong on input (i, j).

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 9

Theorem 1. Every uniformly r.e. and finitely comparable class L is finitely learnable.

Proof. Suppose L is a finitely comparable class as witnessed by comparator F . First, by
Proposition 4, the class L must be inclusion-free.

Second one shows that if L is a uniformly r.e. class with an r.e. list e0, e1, e2, . . . of indices
covering the class and if L is inclusion-free and finitely comparable then one constructs for
each k a set Wh(k) which is related to ek as outlined below.

For each ek, there is an index h(k) such that Wh(k) starts enumerating the elements enu-
merated into Wek

until F (ek, h(k)) terminates and outputs “yes”. When this has happened,
let Dh′(k) denote the set, given by canonical index h′(k), of elements enumerated so far. Now
the algorithm searches for an index e` such that Dh′(k) ⊆ We`

and F (ek, e`) has the value
“no”. If this search terminates then Wh(k) = We`

else Wh(k) = Dh′(k).

Third, this information can now be used to make the following finite learner M : M
reads elements of the text T until a k is found such that all members of Dh′(k) have been
enumerated into T and then M conjectures ek for this k.

Fourth, for the verification of correctness, note that for each index ek, the function
F (ek, h(k)) must output “yes” as otherwise Wek

= Wh(k) and both ek, h(k) are indices for
the same set in the class without F indicating this. Thus also h′(k) is defined for all k. Now,
for each ek, Dh′(k) ⊆ Wek

and Wek
is the only superset of Dh′(k) in the r.e. class. The reason

is that in the search for e` after the definition of Dh′(k), the search cannot terminate for any k
as otherwise either F (ek, h(k)) or F (ek, e`) for the ` found in the search are wrong; when
F (ek, h(k)) is right then Wek

= We`
and F (ek, e`) had wrongly said that they are different.

So Wek
is the only superset in the class of Wh′(k), although there might be several indices

for Wek
in the r.e. enumeration e0, e1, . . . of the indices. From the above it is easy to see that

the learning algorithm is correct.

The next corollary follows from Proposition 1 and Theorem 1.

Corollary 1. Every uniformly r.e. and finitely standardisable class L is finitely learnable.

Remark. Note that a slight modification of the above proof gives that whenever a uniformly
r.e. class L is finitely comparable then L is also finitely standardisable and finitely verifiable:
The verifier just checks whether on input a text T and an index e the above constructed
learner M outputs on the text T an index d with F (d, e) having the value “yes”; the
standardiser outputs for an index d the first index ek in the given recursive enumeration,
where F (d, ek) has the value “yes”.

Example 3. For each n ∈ N, n ≥ 1, let FINSn be the class of all sets of cardinality at
most n. Then FINSn is (2n+ 1)-shot comparable but not 2n-shot comparable.

A (2n + 1)-shot comparator F works as follows: on input (i, j), F outputs “yes” at
the sth computational step if Wi,s = Wj,s and “no” otherwise. Therefore, if |Wi| ≤ n

and |Wj| ≤ n, F changes its value at most 2n times and its last value is correct, i.e., F is
a (2n+ 1)-shot comparator.

10 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

To see that FINSn is not 2n-shot comparable, by way of a contradiction let us assume
that such a 2n-shot comparator G does exist. In particular, the comparator G on any
input (i, j) such that |Wi| ≤ n and |Wj| ≤ n changes its value at most 2n − 1 times. By
the recursion theorem (see Rogers [21, chap. 11]), there are r.e. sets Wi and Wj for which
either (1) Wi = Wj = ∅ and G never outputs “yes” on input (i, j), or (2) there exists a
least m ≤ n such that Wi = {x : 0 ≤ x ≤ m − 1} and Wj = Wi \ {m − 1}, and G
on input (i, j) does not output “no” in the limit, or (3) there is a least m′ ≤ n such that
Wi = Wj = {x : 0 ≤ x ≤ m′ − 1} and G on input (i, j) does not output “yes” in the limit.
This contradicts the fact that G is a 2n-shot comparator for FINSn.

Example 4. The r.e. class L consisting of N and all sets N \ {x} with C(x) ≥ log(x),
whereC(x) denotes the plain Kolomogorov complexity of x (see Li and Vitányi [19, chap. 2]),
has the following properties:

(i) The class is not behaviourally correctly learnable;

(ii) the class is 2-shot standardisable but not finitely standardisable;

(iii) the class is 3-shot comparable but not 2-shot comparable;

(iv) the class is not verifiable.

Proof. The non-learnability follows from the fact that the set N does not have any tell-tale
set with respect to this class (see Angluin [1] and Baliga et al. [3]). This also implies that
the class is not verifiable. The positive results are obtained by the following fact: From an
index e of N \ {x} and an upper bound on x, one can compute x by enumerating the set We

until all elements below the upper bound but x have shown up, as the upper bounds can have
very small Kolmogorov complexity compared to x, this means that all sufficiently large x
satisfy that either We 6= N\{x} or C(x) < log(x). Hence there exists a recursive function f
such that whenever We is of the form N \ {x} with C(x) ≥ log(x) then we have x < f(e).
Thus a 2-shot standardiser would first enumerate the elements of We below f(e) until all but
one x have shown up. Then the learner outputs an index g(x) computed from x from the
set N \ {x}. Once this element x is also enumerated into We, the standardiser revises the
hypothesis and outputs a fixed index for N.

However, the class is not finitely standardisable, as it is not inclusion-free; for the same
reason it can also not be 2-shot comparable. The 3-shot comparability follows from the
general implication that every 2-shot standardisable class is 3-shot comparable.

We continue with further properties of the r.e. class K defined in Example 1. Recall that K is
finitely learnable.

Example 5. The uniformly r.e. class K is neither finitely comparable nor finitely standardis-
able.

The proof is in both cases indirect. Suppose the converse, and let k ∈ N be any fixed
index of K, i.e., Wk = K. Then one can design an algorithm deciding K. This algorithm

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 11

uses the numbering ψ constructed in the second part of the proof of Example 1. Using
standard techniques, one obtains from ψ a numbering χ such that the range of ψi is equal
to the domain of χi for every i ∈ N. Since the numbering of the sets W0,W1,W2, . . . is
universal, there is a recursive function c ∈ R such that χx = ϕc(x) for all x ∈ N. Hence the
set Wc(x) is equal to K iff x ∈ K and equal to {x} iff x /∈ K.

Consequently, for every x ∈ N one runs the finite comparator on input c(x) and k. Note
that by construction, Wk,Wc(x) ∈ K for all x ∈ N, and thus the finite comparator must be
defined on all these inputs. Also, it must return “yes” iff Wc(x) = K and “no” otherwise; a
contradiction to the undecidability of the set K.

For the finite standardiser the algorithm works mutatis mutandis. First, we run it on
input k to find out to which index k is finitely standardised, say to s. In order to decide K one
executes the finite standardiser on input c(x) for any given x ∈ N. If it returns s, then x ∈ K
and otherwise x /∈ K.

Remark. Example 5 shows in particular that finite learnability does not imply finite stan-
dardisability if learning of r.e. languages is considered. This contrasts the corresponding
result for learning classes of recursive functions, where every finitely learnable function
class is also finitely standardisable (see Freivald and Wiehagen [12]).

However, 2-shot comparable classes do not need to be learnable in the limit (cf. Theorem 2).

Theorem 2. There is an r.e. 2-shot comparable class which is not explanatorily learnable.

Proof. The class consists of languages Le,x which are defined as follows:

(i) 2e is the unique even element of Le,x;

(ii) for each e there is an “event-horizon” te,s which moves up in stages (that is, te,s is
monotonically non-decreasing in s) and converges to a limit value te ∈ N ∪ {∞};

(iii) if x < te or C(x) < log(x) then Le,x contains besides 2e all odd numbers below te
and all odd numbers 2y + 1 with C(y) < log(y); and

(iv) if x > te and C(x) ≥ log(x) then Le,x contains 2e, 2x + 1 and all odd numbers
below te.

For the ease of notation, let z be a fixed element with C(z) < log(z). In the case that te = ∞,
for all x, Le,x = {e} ⊕ N.

Now one defines the movements of the te through a diagonalisation of the explanatory
learner Me on a text constructed as the limit of sequences σ0, σ1, . . .; at the beginning, σ0 is
just the single entry 2e and te,0 = 0. At stage s > 0, one assumes that only numbers below s

are enumerated into sets Le,x. Now one searches for an x with te,s ≤ x < (s2 − 1)/2, such
thatMe makes a mind change somewhere on the way fromMe(σs) towardsMe(σs (2x+1)s).
If this x is found then one sets te,s+1 = s2 and σs+1 to be the extension of σs(2x + 1)s

12 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

which contains all the data {2x + 1 : 2x + 1 < s2} ∪ {2e}; else one defines te,s = te,s−1

and σs = σs−1.

If te = ∞ then this construction produces a text for Le,z on which Me does not converge
andMe does not learn Le,z. If te <∞ thenMe learns at most one of the Le,x with x > te and
C(x) ≥ log(x), as on each of the texts σte (2x+ 1)∞ for these Le,x the learner converges to
the same index Me(σte). Thus the class does not have any learner which learns it in the limit.
The class is also r.e., since one can take a canonical enumeration of the Le,x with e, x ∈ N.

Note that ifWe′ = Le,x 6= Le,z, then, C(x) ≤ 2 log(e′)+2 log(e)+log s+const, where s
is maximal such that te,s 6= te,s+1. Since x > te ≥ s2, we have

log(te) ≤ C(x) ≤ 2 log(e′) + 2 log(e) + 0.5 log(te) + const , or

0.5 log(te) ≤ 2 log(e′) + 2 log(e) + const .

Thus, one can compute for each index e′ with We′ containing a number 2e, an upper
bound f(e, e′) such that whenever te > f(e, e′) then either We′ = Le,z or We′ is not in the
class.

To see that the class is 2-shot comparable, consider any indices e′, e′′ of languages in the
class; if the languages are not in the class, then the comparator can do whatever it wants,
including remaining undefined. On e′, e′′, the comparator waits until each of them enumerates
an even number; if e′, e′′ are indices for languages in the class, then these must show up and
be unique. If these even numbers are different, the comparator just guesses “no” and does not
change the mind. If they are the same number 2e then the comparator simulates We′ and We′′

until a stage s > f(e, e′) + f(e, e′′) is reached such either te,s > f(e, e′) + f(e, e′′) or x′, x′′

have been found such that te,s < (2x′+1), te,s < (2x′′+1), 2x′+1 ∈ We′ and 2x′′+1 ∈ We′′ .
In the case that te,s > f(e, e′) + f(e, e′′), the comparator conjectures “yes”, as both sets
are equal to Le,z. In the case that x′, x′′ are found, the comparator checks whether x′ = x′′.
Now if x′ = x′′ then the comparator conjectures “yes”, else the comparator conjectures
“no”; furthermore, the comparator makes in the latter case a mind change from “no” to “yes”
iff either te,∞ > f(e, e′) + f(e, e′′) or both C(x′) < log(x′) and C(x′′) < log(x′′). These
conditions imply that both sets are equal to Le,z; for the verification also note that te is
either te,s or larger than f(e, e′) + f(e, e′′), so that whenever te,s becomes updated to a larger
number, this is immediately above f(e, e′) + f(e, e′′).

The next lemma states that any uniformly r.e. class of infinite sets that is n-shot comparable
can be expanded to a 1–1 r.e. class that is (n + 1)-shot comparable. This will allow us to
extend Theorem 2 (albeit in a weaker form) to 1–1 r.e. families.

Lemma 1. Assume L = {Wf(i) : i ∈ N} is an r.e. class of infinite languages, each of which
is contained in {〈1, x〉 : x ∈ N}, where f ∈ R. Suppose that L is n-shot comparable. Then
there is a 1–1 r.e. class L′ of infinite languages such that L ⊆ L′ and L′ is (n + 1)-shot
comparable.

Proof. Let L be the class as given in the lemma. Let h(i, t) be a recursive function such
that limt→∞ h(i, t) = 1 iff for all j < i, Wf(j) 6= Wf(i). Note that such a recursive h can be

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 13

easily constructed. Also note that in case Wf(j) = Wf(i) for some j < i, then limt→∞ h(i, t)

may not exist. Let Ui,t = Wf(i) if t is minimal such that h(i, t′) = 1 for all t′ ≥ t. Otherwise,
let Ui,t = {〈1, x〉 : x < 〈i, t, z〉} ∪ {〈0, 〈i, t, z〉〉} ∪ {〈2, x〉 : x ∈ N}, where z is the least
number t′ ≥ t such that h(i, t′) = 0 (the element 〈0, 〈i, t, z〉〉 ensures that Ui,t 6= Uj,s

whenever 〈i, t〉 6= 〈j, s〉). Clearly, L′ = {Ui,t : i, t ∈ N} is a 1–1 r.e. class which is (n+ 1)-
shot comparable. The comparator essentially uses the comparator for {Wf(i) : i ∈ N} until
it finds that one of the languages contains 〈0, y〉, for some y. Then it waits for either 〈0, y′〉
or some element 〈1, z〉 with z > y, to appear in the other language, and then outputs the
correct comparison as “yes” iff 〈0, y′〉 appears in the other language with y′ = y.

We now deduce the following theorem from Lemma 1 and Theorem 2:

Theorem 3. There is a 1–1 r.e. 3-shot comparable class which is not explanatorily learnable.

Proof. One can cylindrify the 2-shot comparable and uniformly r.e. class {Le,x : e, x ∈ N}
constructed in the proof of Theorem 2; i.e. we define Ue,x = {〈1, 〈y, z〉〉 : y ∈ Le,x∧ z ∈ N}
for all e, x ∈ N, to obtain a uniformly r.e. class L of infinite languages which is contained
in {〈1, z〉 : z ∈ N}. Note that L, like the uniformly r.e. class in the proof of Theorem 2, is
not explanatorily learnable. Lemma 1 then gives a 1–1 r.e. class L′ such that L′ ⊇ L, L′ is
3-shot comparable and L′ is not explanatorily learnable.

Example 6. Assume that each language in L contains exactly one even element and that no
two languages in L contain the same even element. Then L is finitely verifiable and finitely
comparable. However, one can choose the sets in L such that the e-th behaviourally correct
learner does not converge to the right index on the text for the language in L with the even
element 2e and similarly one can also fool the standardiser and thus this class L can be
chosen such that it is neither behaviourally correctly learnable nor standardisable in the
limit.

Proposition 5. If a class is n-shot learnable then it has a 2n-shot comparator.

Proof. Assume that L has an n-shot learner M . Without loss generality assume that M does
not use more than n-shots on any text, even for texts for languages outside L. On input (d, e),
a 2n-shot comparator F for L builds σ1, σ2, . . . , σn as follows (some of these σi may not
be defined): Initially, it searches for σ1 with content(σ1) ⊆ Wd ∪We such that M(σ1) 6=?.
Then, inductively, after defining σi, it searches for a σi+1 such that σi+1 is an extension of σi,
content(σi+1) ⊆ Wd ∪We and M(σi) 6= M(σi+1) 6=?. The comparator F outputs ? until σ1

gets defined. After that, at any stage s, it considers the last σi that is defined, and outputs “yes”
iff σi ⊆ Wd,s ∩We,s; otherwise, it outputs “no”. As the learner M is a n-shot learner, the
comparator is a 2n-shot comparator, as it possibly starts with “no” output and then perhaps
changes to “yes” output for each σi. Now assume both Wd,We are in L. If Wd = We, then
clearly all σi will satisfy that content(σi) ⊆ Wd∩We and thus the comparator will converge
to “yes”. If Wd 6= We, then for the last σi that gets defined, content(σi) 6⊆ Wd ∩ We,
as otherwise, the learner converges on texts for Wd or We which extend σi, to the same
conjecture, contradicting that M explanatorily learns both.

14 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

Theorem 4. If a class has a 2-shot standardiser and has a one-one r.e. numbering, then it is
explanatorily learnable.

Proof. Assume that F is a 2-shot standardiser for L = {Wh(0),Wh(1), . . .}, where h is a
recursive function with Wh(i) 6= Wh(j) for i 6= j.

Below, we will have that grammars h(j) would be either in group 1 or group 2. They are
in group 1, if F (h(j)) outputs at most one grammar, and in group 2, if F (h(j)) outputs two
grammars. Let F 1(h(j)) denote the first and F 2(h(j)) denote the second grammar output
by F on h(j).

Algorithm 1: Construction of Wg1(i,j) and Wg2(i,j), for i 6= j

(i) Wg1(i,j) starts simulating Wh(i) until it observes that current values of F (g1(i, j)) and
F (h(i)) are same and not in {F 1(h(j)), ?}. Then, suppose that Wg1(i,j) enumerated
up to now is S1,i,j . For g2 usage, correspondingly, we use F 2(h(j)) and S2,i,j .

(ii) Wait until Wh(j) contains S1,i,j .

(iii) Simulate Wh(j) until F (g1(i, j)) becomes equal to F 1(h(j)). Note that this means
F (g1(i, j)) must have output second value.

Let R1,i,j denote the Wg1(i,j) enumerated up to now. Note that if the algorithm reaches
this step, the above must eventually succeed.

Go to Step (iv)

For g2 usage, correspondingly, we use F 2(h(j)) and R2,i,j .

(iv) Now, Wg1(i,j) searches for a k 6= j such that Wh(k) contains R1,i,j , and then switches
to simulating Wh(k).

Similarly, Wg2(i,j) searches for a k 6= j such that Wh(k) contains R2,i,j , and then
switches to simulating Wh(k).

Note that above should never happen (except when g1’s assumption about F (h(j))

outputting only one grammar is wrong).

Thus, R1,i,j (or R2,i,j) would be a characteristic sample for Wh(j).

Let g1(i, j) (similarly g2(i, j)), i 6= j, be defined such that Wg1(i,j) and Wg2(i,j) are as
in Algorithm 1. Note that g1(i, j) and g2(i, j) (for i 6= j) are similar, except that they
work on grammars h(j) from group 1 or 2 respectively, thus in Algorithm 1, g2(i, j) would
correspondingly start only after F (h(j)) has output the second grammar.

A grammar h(j) starts in group 1 and then later may move to group 2. Within each
group, it starts in active list, moves to cancelled list, and then to “correct grammar” list when
the characteristic sample as in Algorithm 1 is observed. Note that a grammar which is in

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 15

cancelled list/correct grammar for group 1 may move to group 2 at some point (where it
starts as active grammar).

A grammar h(j) in active list in group 1 (group 2) gets cancelled if there exists i 6= j

such that S1,i,j (respectively, S2,i,j) gets defined and is contained in the input.

A grammar h(j) in group 1 (group 2) becomes “correct grammar” when the input
contains R1,i,j (respectively R2,i,j) for some i 6= j.

The learner outputs the least grammar which is not in cancelled list (irrespective of which
group it belongs to).

Note that if h(j) is the correct grammar for input, then eventually for all i < j, S1,j,i

(or S2,j,i, in case F (h(i)) outputs two grammars) would get defined, and thus h(i) would
go to cancelled list of that group. It will not move to “correct grammar” list of the eventual
group h(i) is in, as otherwise, g1(j, i) or g2(j, i) would then be able to follow h(j), forcing F
to make three outputs on g1(j, i) or g2(j, i) based on which group h(i) belongs to.

If h(j) gets into cancelled list of group 1 (or group 2) due to some h(i), i 6= j, (that
is S1,i,j or S2,i,j getting defined), then eventually it moves to the correct grammar list in
the corresponding group as g1(i, j) (or g2(i, j) respectively) would eventually have Step (ii)
and (iii) succeed as S1,i,j was in the input text and thus in Wh(j).

Thus, eventually h(j) is the grammar which is output by the learner.

Example 7. The graphs of the functions with only finitely many non-zero values, is 2-shot
comparable and 2-shot verifiable and has a one-one enumeration. However, this class
cannot be learnt by any confident learner even if it uses an oracle. Thus there is no upper
bound on the number of shots of the learner.

Here a confident learner (see Osherson et al. [20]) is a learner which converges to some
hypothesis on all texts, even for texts for languages not in the class being learnt.

An analogue of Algorithm 1 (see the proof of Theorem 4) shows that any 2-shot comparable
r.e. class with a one-one numbering is explanatorily learnable.

Theorem 5. If a class L has a 2-shot comparator and a one-one r.e. numbering, then L is
explanatorily learnable.

Proof. We adopt the notation of the proof of Theorem 4. Let {Wh(0),Wh(1), . . .} be a one-
one r.e. numbering of a class L and let F be a 2-shot comparator for L. Given any i, j ∈ N
with i 6= j, define a recursive function g so that Wg(i,j) is as in Algorithm 2.

An Ex learner M for L runs Algorithm 2 and does the following: Each index may be
assigned one of two possible states, “cancelled” or “correct”. An index j is assigned the state
“cancelled” if there is an i 6= j such that Si,j is contained in the range of the input text but j
is not in state “correct”; it is assigned the state “correct” if, for some i 6= j, Ri,j is contained
in the range of the input text. Furthermore, the state of an index may change at any stage
(or it may not be assigned any state at all). At each stage, M outputs the least index j such

16 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

that j is not in a “cancelled” state (note that in particular, j may not have been assigned any
state up to the current stage).

Algorithm 2: Construction of Wg(i,j), for i 6= j

(i) Enumerate Wh(i) into Wg(i,j) until F (g(i, j), h(j)) = no. Let Si,j be the set of
elements enumerated into Wg(i,j) up to the point where F (g(i, j), h(j)) outputs “no”.

(ii) Wait until Wh(j) contains Si,j (if Si,j 6⊆ Wh(j), then this step does not terminate).

(iii) Enumerate Wh(j) into Wg(i,j) until F (g(i, j), h(j)) outputs “yes” (after the above
“no”). Let Ri,j be the set of elements enumerated into Wg(i,j) up to this point.

(iv) Wait until Wh(k) contains Ri,j for some k 6= j; Wh(k) is then enumerated into Wg(i,j).

(Note that this step should never succeed, because otherwise g(i, j) would be an r.e.
index for Wh(k) such that F (g(i, j), h(j)) changes its value at least twice, from “no”
to “yes” and then to “no” again.)

Suppose that M is fed a text T for Wh(j). As argued in the proof of Theorem 4, if the
index j is assigned the state “cancelled” at any stage, then it will eventually be assigned the
state “correct” and its state will henceforth never change. On the other hand, for every i < j,
the index i will eventually be assigned the state “cancelled”, since Sj,i is contained in
the range of the text T . Also, it will never be assigned the state “correct” after being in
the state “cancelled”, since otherwise there would be some j′ 6= i such that Algorithm 2
on input (j′, i) goes through Step (iv), resulting in g(j′, i) becoming an index for Wh(k)

with k 6= i, and F (g(j′, i), h(i)) changing its value at least twice, a contradiction.

Next, we turn our attention to conservative learning of uniformly r.e. classes of languages.
A learner M is said to be conservative if the following condition is satisfied: If M on
input T [n] makes the guess jn and then makes the guess jn+k at some subsequent step on
input T [n+ k], where k ≥ 1, and jn 6= ? 6= jn+k then content(T [n+ k]) 6⊆ Wjn . Intuitively
speaking, a conservative learner performs exclusively justified mind changes. In particular, a
conservative learner can never overgeneralise; i.e., it can never guess a proper superset of
the target language (see, e.g., Angluin [1], Zeugmann, Lange and Kapur [23], and Jain et
al. [16]). We use ConsvEx to express that a class has a conservative explanatory learner.

Theorem 6. If a uniformly r.e. class L is 2-shot verifiable, then L is ConsvEx learnable.

Proof. Let L = {Wf(0),Wf(1),Wf(2), . . .} be a uniformly r.e. class that has a 2-shot veri-
fier h, where f is a given recursive function. By Gao et al. [14, Observation 35], it suffices
to show that L has an Ex learner N such that for every L ∈ L, N does not conjecture a
superset of L on any segment of any given text for L.

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 17

Let T be any given text, define a learner M as follows: on input T [n], M outputs f(i)

for the least i ≤ n such that h outputs “yes” on (f(i), T [n]); if no such i exists, then M
just outputs its prior conjecture (or an r.e. index for the empty set if n = 0). Suppose T is
a text for some Wf(e) ∈ L. Let ` be the least index such that Wf(`) = Wf(e). Then for all
sufficiently large m, h will output “no” on pairs (f(`′), T [m]) for each `′ < `, while h will
output “yes” on (f(`), T [m]). As a 2-shot verifiable class is inclusion-free, M will never
output a proper superset on input languages from the class.

As any class which is 2-shot comparable is inclusion-free, it is easy to show the following
result:

Theorem 7. Every indexed family which is 2-shot comparable is ConsvEx learnable.

Furthermore, as the membership problem for indices of r.e. sets can be solved using K
as an oracle, we obtain the following theorem:

Theorem 8. Every uniformly r.e. class L which is 2-shot comparable is ConsvEx[K]-
learnable.

Proof. By Proposition 4 we know that any class which is 2-shot comparable must be
inclusion-free. Let e0, e1, . . . be any fixed enumeration of the class L. Consequently, the
algorithm, which has access to the K-oracle always takes the enumeration e0, e1, . . . of the
indices of the class L and conjectures the first en such that either n is the number of data
items seen so far or Wen contains all the data observed. The first case is only included to
avoid partialness of the K-recursive learner.

In order to see that the learner is conservative we use that L is inclusion-free. Hence,
on each wrong hypothesis en the learner will eventually see a counterexample, that is, an
element outside Wen and drop it eventually.

We have seen that for indexed families, 1-shot comparability implies finite learnability (Theo-
rem 1) while 2-shot comparability implies conservative explanatory learnability (Theorem 7).
The next theorem completes this fairly neat hierarchy of learnability notions implied by
n-shot comparability for indexed families: 3-shot comparability, while insufficient for guar-
anteeing conservative learnability (see Theorem 11), still implies explanatory learnability.
We first show that 3-shot comparable 1-1 r.e. classes have uniformly r.e. families of finite
tell-tale sets.

Proposition 6. Assume L = {U0, U1, . . .} is a 1–1 r.e. class with Ui 6= Uj for i 6= j.
Suppose L is 3-shot comparable. Then one can effectively (in i) enumerate tell-tale sets
for Ui with respect to L.

Proof. Assume that F is a 3-shot comparator for L = {U0, U1, . . .}.

Let g, h be recursive functions, obtained via the operator recursion theorem (see Case [6]),
such that Wg(e,d) and Wh(e,d) are defined as follows for e 6= d:

18 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

1. Wg(e,d) and Wh(e,d) follow Ud, until it is observed that F (g(e, d), h(e, d)) = “yes”.
Assume that Wh(e,d), enumerated until now, is Se,d.

2. Wg(e,d) continues to follow Ud. Wh(e,d) waits until it is observed that Se,d ⊆ Ue. Then,
Wh(e,d) starts following Ue until it is observed that F (g(e, d), h(e, d)) = “no” (after
the above observed “yes”). Assume that Wg(e,d) enumerated until now is Re,d.

3. Wh(e,d) continues to follow Ue and Wg(e,d) waits until it is observed that Re,d ⊆ Ue.
Then, Wg(e,d) starts following Ue until it is observed that F (g(e, d), h(e, d)) = “yes”
(after the above observed “no”). Assume that Wg(e,d) enumerated until now is Xe,d.

4. Wh(e,d) continues to follow Ue and Wg(e,d) waits until it is observed that Xe,d ⊆ Uk,
for some k 6= e. Then, Wg(e,d) starts following Uk. Note that the above search should
never succeed, as otherwise, F (h(e, d), g(e, d)) needs to output “no” in the limit, but
it has no more mind changes available.

Thus, Xe,d (if defined) is a subset of Ue but not contained in any Uk, where k 6= e.

Note also that if Ud ⊆ Ue, then the above process must reach Step 4, though it would
not succeed in finding k. This happens as Se,d is always defined due to the comparator
F (g(e, d), h(e, d)) needing to eventually output “yes” when both g(e, d) and h(e, d) are
following Ud. Since we have Se,d ⊆ Ud ⊆ Ue, Step 2 will eventually succeed in finding
this, and thus Wh(e,d) would start following Ue. Hence eventually F (g(e, d), h(e, d)) needs
to output “no” and the procedure will reach Step 3. Here again Re,d ⊆ Ud ⊆ Ue, and
therefore Wg(e,d) would also start following Ue and thus eventually F (g(e, d), h(e, d)) will
output “yes”, and the process will reach Step 4.

Thus, we have the following:

(a) if Ue has no proper subset in L, then ∅ is a tell-tale set for Ue;

(b) if Ue has a proper subset in L, then there exists a d such thatXe,d as above gets defined;

(c) for any e, d, if Xe,d get defined then Xe,d is a tell-tale set for Ue with respect to L.

It thus follows that one can enumerate tell-tale sets for members of L: on input e, the
tell-tale set enumerator initially just enumerates ∅, and searches for a d such that Xe,d is
defined by the above process. It then enumerates Xe,d.

The following theorem now follows from the characterisation of explanatory learnability
using tell-tale sets by Angluin [1] (and the fact that every indexed family containing infinitely
many distinct sets has a 1–1 r.e. numbering).

Theorem 9. Any 3-shot comparable indexed family is explanatorily learnable.

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 19

When given an oracle forK, a 1–1 r.e. family behaves like an indexed family for the purposes
of the earlier proof of Proposition 6. Furthermore, using an oracle for K and an analogue of
the construction ofWg(e,d),Wh(e,d) in Proposition 6, one can determine for each member L of
a 1–1 r.e. family L = {U0, U1, U2, . . .} a finite tell-tale set for L w.r.t. L as follows: First, test
whether or not there exists a j′ for which Xi,j′ (as constructed in the proof of Proposition 6)
is nonempty; if no such j′ exists, then the empty set is a tell-tale; otherwise, search for the
first j such that Xi,j , a tell-tale for L w.r.t. L, is defined. Thus, on any input σ, a learner
equipped with an oracle for K may test whether or not a potential hypothesis Ui contains
content(σ) as well as whether a tell-tale for Ui found earlier is contained in content(σ),
thereby ensuring that it is conservative.

Consequently, we have the following result:

Theorem 10. Any 3-shot comparable 1–1 r.e. family is ConsvEx[K] learnable.

Next we show that Theorem 6 and Theorem 7 do not generalise to 3-shot verifiable classes
and 3-shot comparable classes.

Theorem 11. For indexed families 3-shot comparability or 3-shot verifiability do not imply
conservative learnability.

Proof. This can be seen as follows: For all e, s ∈ N, we define Le,0 := {e} ⊕ N, and
for s > 0 we set

Le,s :=


{e} ⊕D , if there is a first step t ≤ s at which some σ ∈ N∗ is found

such that there is a D ⊆ N with content(σ) = {e} ⊕D
and WMe,t(σ) ⊃ content(σ) ;

{e} ⊕ N , otherwise.

Here, we assume without loss of generality that at any step, at most one σ is found in
the first clause above. We set L := {Le,s : e, s ∈ N} and note that L has a uniformly
recursive numbering. Furthermore, if Me were a behaviourally correct learner of L, then,
since Me must learn {e} ⊕ N ∈ L, there must exist some σ ∈ N∗ and D ⊂ N with
content(σ) = {e} ⊕D such that Me overgeneralises on input σ. Hence L does not have a
conservative behaviourally correct learner.

On the other hand, the class L is 3-shot comparable. Given indices i and j, a 3-shot
comparator F simulates Wi and Wj , and it outputs ? until Wi and Wj each enumerates an
even element. If the first even element enumerated by Wi is different to that enumerated
by Wj , then F outputs “no”. Suppose the first even element enumerated by both Wi

and Wj is 2e. Then the comparator F outputs “yes” until it finds an s such that for some
finite set D ⊂ N, Le,s = {e} ⊕ D and exactly one of the sets Wi,Wj enumerates some
2y + 1 /∈ {2x + 1 : x ∈ D}; it will then output “no” until Wi and Wj each enumerates
some odd number not belonging to {2x+ 1 : x ∈ D}; F (i, j) will now output “yes”. Note
that if Wi,Wj ∈ L, then F (i, j) will change its value at most twice; moreover, F (i, j) will
converge to the correct value.

A similar proof as above also shows that L is 3-shot verifiable.

20 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

Theorem 12. There exists a 2-shot standardisable indexed family which is not conservatively
learnable.

Proof. For each e, let ye be the first y > 3 found, if any, in some standard search, such that
for some σ with content(σ) = {e} ⊕ {x : x ≤ y} ⊕ ∅, WMe(σ) ⊃ {e} ⊕ {x : x ≤ 4y} ⊕ ∅.

Consider the class L consisting of

i. Le = {e} ⊕ N⊕ ∅ ;

ii. if ye is defined then, for ye < z < 4ye , the sets

• Xe,z, if C(z) ≥ ye

• Ye,z, if C(z) < ye

where

Xe,z = {e} ⊕ {x : x ≤ ye} ∪ {z} ⊕ ∅, and

Ye,z = {e}⊕{x : x ≤ ye}∪ {z}⊕{2z(2t+ 1)}, where t is the time needed to find ye

and that C(z) < ye.

Note that L is an indexed family. Moreover, it is not conservatively learnable as if a
learner Me conservatively learns Le, then using a locking sequence argument, ye is defined.
Furthermore, for some z, ye < z < 4ye , C(z) ≥ ye. Now, the learner cannot conservatively
learn Xe,z.

Next it is shown that L is 2-standardisable. Note that if We′ is an index for Xe,z, where ye

is defined, then ye ≤ C(z) ≤ log(e′)+constant. Thus, for standardising it can be assumed,
without loss of generality, that ye ≤ e′, as standardising for the e′ where e′ − log(e′) is
smaller than the constant above can be done by patching.

Now, the standardiser on input e′ first searches for an e such that We′ contains 3e. Then,

• if We′ contains 3(4e′
) + 3 + 1, then the standardiser outputs the canonical index for Le

and never changes its mind after that;

• if We′ contains 3(2z(2t + 1)) + 2, for some z, t, then it outputs the canonical index
for Ye,z and never changes its mind after that;

• if ye is defined and We′ = Xe,z for some z, then it outputs the canonical index for Xe,z.

It is easy to see that the above standardiser is a 2-shot standardiser and standardises L.

At this point it is only natural to ask what holds for 4-shot comparators. The answer is
provided by the following theorem, where U denotes a fixed universal Turing machine used
to define the Kolmogorov complexity.

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 21

Theorem 13. There is an indexed family L which is 4-shot comparable and 3-shot standard-
isable but not behaviourally correct learnable.

Proof. Let L = {L0, L1, L2, . . . , } be a class of r.e. sets such that L0 = {2y : y ∈ N}; and
for all x ∈ N,

Lx+1 =


({2y : y ∈ N ∧ y ≤ t} \ {2x}) ∪ {2t+ 1} , if t is the first step at which

some p < log(x) is found
such that U(p, ε) = x ;

{2y : y ∈ N ∧ y 6= x} , if no such p is found .

Note that L has a uniformly recursive numbering. Furthermore, one can define a 4-shot
comparator F for L as follows: First, as in Example 4, let f be a recursive function such
that whenever We = {2y : y ∈ N ∧ y 6= x} for some x with C(x) ≥ log(x), x < f(e).
Given d, e ∈ N, simulate Wd and We. At every step, F performs the instructions in the case
(among the four cases below) with the highest priority that applies; Case i has higher priority
than Case j iff i < j.

Case 1: One of the sets, say Wd, enumerates an odd number 2y + 1. Simulate Wd until all
even numbers but one (say 2x) below 2y + 1 appear in Wd. Simulate We until the first
of the following cases applies:

Case 1.1: Either 2x or some even number larger than 2y appears in We, or an odd
number different from 2y + 1 occurs in We. Output “no”.

Case 1.2: The setWe enumerates all elements of {2z : 0 ≤ z ≤ y∧z 6= x}∪{2y+1}.
Output “yes”.

Case 2: All the even numbers below f(d) + f(e) have been enumerated into both Wd

and We. Output “yes”.

Case 3: All the even numbers below f(d) + f(e) have been enumerated into exactly one
of Wd and We. Output “no”.

Case 4: There is exactly one even number x1 < f(d) + f(e) that has not been enumerated
into Wd, and there is exactly one even number x2 < f(d) + f(e) that has not been
enumerated into We. If x1 = x2, output “yes”. If x1 6= x2, output “no”.

Now it is verified that F is indeed a 4-shot comparator forL. SupposeWd,We ∈ L. Consider
the following case distinction:

Case i: At least one of Wd,We contains an odd number. Then Case 1 will almost always
apply, and either (a) bothWd andWe are equal to {2z : 0 ≤ z ≤ y∧z 6= x}∪{2y+1}
for some y, x ∈ N, so that F will output “yes” in the limit, or (ii) one of Wd,We is
equal to {2z : 0 ≤ z ≤ y ∧ z 6= x} ∪ {2y + 1} for some y, x ∈ N while the other
contains 2x or some odd number different from 2y + 1 or an even number larger than
2y, so that F will output “no” in the limit.

22 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

Case ii: Wd = {2z : z ∈ N} \ {2x1} and We = {2z : z ∈ N} \ {2x2} for some x1, x2 ∈ N.
Then Case 4 will almost always apply, and if x1 = x2, then F will output “yes” in the
limit; if x1 6= x2, then F will output “no” in the limit.

Case iii: Both sets Wd and We contain only even numbers, and at least one of Wd,We is
equal to {2z : z ∈ N}. If both Wd and We are equal to {2z : z ∈ N}, then Case 2 will
almost always apply, so that F will output “yes” in the limit. If exactly one of Wd

and We is equal to {2z : z ∈ N}, then Case 3 will almost always apply, so that F will
output “no” in the limit.

Furthermore, note that F (d, e) changes its value between Steps t1 and t2 (where t2 > t1) only
if there are distinct i, j with j < i such that F performs the instructions in Case i at Step t′1
and then performs the instructions in Case j at Step t′2 for some t′1, t

′
2 with t1 ≤ t′1 < t′2 ≤ t2;

in particular, if Case 1 applies at some step, then F (d, e) will not change its value at any
subsequent step. Thus F changes its value at most thrice on input (d, e), and it is therefore a
4-shot comparator for L.

A 3-shot standardiser G for L can be defined similarly. Given any index e, G outputs ?
until the first of the following cases applies:

Case a: The set We enumerates all even numbers but one (say 2x1) below f(e). Then G
keeps outputting a canonical index for {2z : z ∈ N ∧ z 6= x1}. If We enumerates 2x1

at any later step, then G switches to outputting a canonical index for {2z : z ∈ N}. If
We enumerates an odd number at any step, then G follows the instructions in Case b.

Case b: The set We enumerates an odd number 2y + 1. Then G waits until We enumerates
all even numbers but one (say 2x2) below 2y + 1; it will then output a canonical index
for {2z : z ≤ y ∧ z 6= x2} ∪ {2y + 1} in the limit.

That G is indeed a 3-shot standardiser for L can be verified using ideas very similar to those
in the earlier proof that F is a 4-shot comparator for L.

Moreover, L is not behaviourally correctly learnable because L0 does not have a finite
tell-tale (see Baliga et al. [3, Corollary 3]): for every set D of even numbers, there is some
x > max(D) with C(x) ≥ log(x), so that D ⊂ Lx+1 ⊂ L0.

We continue with further results concerning finite standardisation, finite verifiability, finite
learning, and explanatory learning, when the classes considered may not be recursively
enumerable. We formulate the following example in terms of function learning. Note that
function learning is just a special case of language learning, since learning functions is in
general equivalent to learning their graphs as sets from text.

Example 8. We define f0(x) := 0 for all x ∈ N, and for n ≥ 1 we set fn(x) := 0 for
all x ∈ N \ {n} and fn(n) := 1. Furthermore, we use minϕ f to denote the least index i
such that ϕi = f . Next, consider the class F := {fn | n ∈ N, n ≤ minϕ fn}. Then F is
finitely standardisable but neither finitely learnable nor finitely verifiable. Note that F is not
an r.e. class.

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 23

Finite standardisability of F as well as that F is not finitely learnable has been shown in
Freivald and Wiehagen [12].

In order to see that F is not finitely verifiable let e ∈ N be an index for f0, and let T be
a text for f0 such that T = ((0, f0(0)), (1, f0(1)), (2, f0(2)) . . .). Then, on input e and T , a
finite verifier would have to eventually output “yes”, since otherwise it could not verify that T
is a text for the function f0. Let this happen when the verifier has seen T [m]. Consequently,
for every n > m and a text T ′ in the same order (0, fn(0)), (1, fn(1)), (2, fn(2)) . . . for fn

it must, on input e and T ′, also output “yes”, a contradiction to the fact that T ′ is not a text
for f0.

Note that Examples 1, 2 and 8 show both that the collection of finitely learnable classes is
incomparable to the collections of finitely standardisable classes and to the collection of
finitely verifiable classes.

Next, we ask whether or not finite standardisability is of any help for explanatory learning.
This question deserves attention, since it deals with the problem of information presentation
versus the mode of convergence. The affirmative answer is given below.

In the following, for all e, s ∈ N, let We,s denote the subset of We enumerated in s steps.

Theorem 14. If a class L is finitely-standardisable then L is explanatorily learnable.

Proof. Assume that F is a finitely standardising function for L. Furthermore, we define the
following set: S := {e : e ∈ N, F (e) = e}.

Using the operator recursion theorem (see Case [6]), let g be a recursive function such
that

Wg(e′,e) =


We′ , if F (g(e′, e)) is undefined or not equal to e′ ;
We′,t(e′,e), if F (g(e′, e)) = e′ in exactly t(e′, e) steps

but We′,t(e′,e) 6⊆ We ;

We, otherwise .

As in the definition of Wg(e′,e), above let t(e′, e) denote the time needed for F (g(e′, e)) to
converge. Note that if e, e′ ∈ S, e 6= e′, and F (g(e′, e)) = e′, then either the set We does
not contain We′,t(e′,e) or We is not in L (as F outputs two different values on the indices e
and g(e′, e) for it).

Assume that T is the input text for a language in L. Let e0, e1, . . . , be a 1–1 enumeration
of S. On input T [n], the learner outputs ei for the least i ≤ n such that ei is not eliminated.
Here ei is eliminated if there exists a j 6= i, j ≤ n such that F (g(ej, ei)) = ej within n steps
andWej ,t(ej ,ei) ⊆ content(T [n]) — note that in this case ei is not the index for input language
as either Wej ,t(ej ,ei) and thus content(T [n]) is not contained in Wei

or F (ei) 6= F (g(ej, ei))

but Wg(ej ,ei) = Wei
; if no such i exists, then the output of the learner does not matter and

can be anything.

Assume Wer ∈ L, and T is a text for it. Then, eventually, all ei, i < r will be elim-
inated (that is not output by the learner above, on input T [n] for large enough n) as (i)

24 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

F (g(er, ei)) = er (otherwise, Wg(er,ei) = Wer , but F (g(er, ei)) 6= F (er), contradicting
the finite-standardisability of L by F), and (ii) Wer,t(er,ei) ⊆ Wer = content(T). Further-
more, er is never eliminated as for all ei, i 6= r, F (g(ei, er)) 6= ei or Wei,t(ei,er) 6⊆ Wer (as
otherwise Wg(ei,er) = Wer , and therefore, F (g(ei, er)) = er 6= ei by standardisability).

We conclude that the above learner on T converges to er. Thus, the above learner Ex
learns L.

Theorem 15. There is a class of recursive functions that is finitely (2, 3)-standardisable but
not finitely learnable.

Proof. First note that a finitely (2, 3)-standardisable class via F1, F2, F3 has to be inclusion-
free; ifA,B are two r.e. sets in the class andA ⊂ B then one can define a uniformly recursive
sequence e0, e1, . . . of indices such that Wf(ek) = A in the case that k /∈ K and Wf(ek) = B

in the case that k ∈ K; thus the halting problem K becomes reduced onto the standardising
task and k /∈ K iff at least two of the outputs of F1(f(ek)), F2(f(ek)), F3(f(ek)) are in a
given finite set of indices of A (as given by the standardisers); this finite set depends on the
standardisers. So the complement of K would be recursively enumerable which is not the
case.

Furthermore, one can show that such a class can be properly (2, 3)-learnable (that is,
some learner outputs at most 3 indices on the input text, at least two of which are correct)
without being finitely learnable. For this, consider the following class of all Ak, Bk where
Ak = Bk = {3k} in the case that k /∈ K and Ak = {3k, 3k + 1} and Bk = {3k, 3k + 2} in
the case that k ∈ K. This is a well-known example for a (2, 3)-learnable class: The learner
conjectures first two indices, one for Ak and one for Bk while it abstains from outputting
the third index. In the case that it happens that two elements are observed, the sets Ak and
Bk must be different and the learner can see from the data which of these two sets applies.
Similarly for finite (2, 3)-standardisation: Given an index e, the standardiser first searches
for an k such that 3k ∈ We; when this is found, F1(e) outputs a fixed index of Ak and F2(e)

outputs a fixed index of Bk. After that, F3(e) simulates We until either 3k + 1 or 3k + 2

appears in We; depending on the corresponding case, F3(e) is either F1(e) or F2(e).

5. Conclusions and Open Problems

We introduced learning models, where at least one input is an index, and the second input is
a text or another index, resulting in verifiability and comparability, respectively. Hence these
learning models are modifications of standardisability, a learning model which has been
around for quite some time. And we studied variations of these three models by restricting
the number of shots these models are allowed to make. Furthermore, we studied the learning
capabilities of these learning models and explanatory inference in dependence on the classes
to be learnt; i.e., we distinguished between arbitrary classes of r.e. languages, uniformly r.e.
classes of r.e. languages, 1–1 r.e. classes of r.e. languages, and indexed families.

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 25

Table 1 at the end of the Introduction summarises many of the results obtained except
the ones for arbitrary classes of r.e. languages. As we see, comparators, standardisers, and
verifiers are different with respect to their help for the inductive inference of the respective
classes. That is, verifiability always implies explanatory learning, but conservative learning
is out of reach in general. Only 2-shot verifiers can always be used to achieve conservative
learning.

Furthermore, 2-shot standardisability also implies explanatory learning but not conserva-
tive learning provided the target classes are indexed families or 1–1 r.e. classes. On the other
hand, for indexed families any 2-shot comparator and any 2-shot verifier can be exploited to
obtain a conservative learner, but, in general, a 2-shot standardiser cannot.

In this context, it may be worth to look at a modification which was proposed by
Freivald [11] and called limit standardisability with a recursive estimate. In this modification
the number of shots is also bounded, but the bound depends on the index i received as
input; i.e., there is a recursive function b ∈ R such that, on input i, the standardiser is only
allowed to perform b(i) many shots. The usefulness of this modification was established by
Freivald [11], who used it to characterise the explanatory identification of minimal Gödel
numbers in the setting of function learning. Hence, generalising this approach to verifiers
and comparators may lead to some interesting results.

The investigations performed in the present paper also revealed some topological con-
straints for 2-comparability and finite standardisability, i.e., the respective classes must be
inclusion-free (cf. Proposition 4). This property was also used in Theorem 15 (among other
places). Also, in Example 8 another topological property was exploited. The class F consid-
ered there contains an accumulation point, i.e., f0. This suggests to perform a deeper study
of topological properties that preserve comparability, verifiability, or standardisability (with
a certain number of allowed shots). It may be a good starting point to look at Apsı̄tis [2],
who used topological properties to obtain separations of explanatory learning with bounded
mind changes, where the bounds are given by constructive ordinals.

Acknowledgments

Sanjay Jain was supported in part by NUS grant C252-000-087-001. Furthermore, Ziyan
Gao, Sanjay Jain and Frank Stephan have been supported in part by the Singapore Ministry of
Education Academic Research Fund Tier 2 grant MOE2016-T2-1-019 / R146-000-234-112.

This research was performed partially while the fourth author was visiting the Institute
of Mathematical Sciences at the National University of Singapore in September 2017. His
visit was partially supported by the Institute. Thomas Zeugmann was also supported in part
by the Japan Society for the Promotion of Science, and the Grand-in-Aid for Challenging
Exploratory Research No. 15K12022.

26 Ziyuan Gao, Sanjay Jain, Frank Stephan, and Thomas Zeugmann

References

[1] Dana Angluin. Inductive inference of formal languages from positive data. Information
and Control, 45(2):117–135, 1980.

[2] Kalvis Apsı̄tis. Derived sets and inductive inference. In Algorithmic Learning The-
ory, 4th International Workshop on Analogical and Inductive Inference, AII ’94, 5th
International Workshop on Algorithmic Learning Theory, ALT ’94, Reinhardsbrunn
Castle, Germany, October 1994, Proceedings, volume 872 of Lecture Notes in Artificial
Intelligence, pages 26–39. Springer-Verlag, 1994.

[3] Ganesh Baliga, John Case, and Sanjay Jain. The synthesis of language learners.
Information and Computation, 152(1):16–43, 1999.

[4] �. M. Barzdin~ [Janis M. Bārzdiņs̆]. Dve teoremy o predel~nom sinteze
funkci$i [Two theorems on the limiting synthesis of functions]. In Janis M. Bārzdiņs̆,
editor, Theory of Algorithms and Programs I, volume 210 of Proceedings of the Latvian
State University, pages 82–88. Latvian State University, Riga, 1974. (in Russian).

[5] �. M. Barzdin~ [Janis M. Bārzdiņs̆]. Induktivny$i vyvod avtomatov, funk-
ci$i i programm [inductive inference of automata, functions and programs]. In
Proceedings of the International Congress of Mathematicians, Vancouver 1974, vol-
ume 2, pages 455–460, 1974. English version available in American Mathematical
Society Translations 1977, pp. 107–122.

[6] John Case. Periodicity in generations of automata. Mathematical Systems Theory,
8(1):15–32, 1974.

[7] John Case. The power of vacillation in language learning. SIAM Journal on Computing,
28(6):1941–1969, 1999.

[8] John Case and Christopher Lynes. Machine inductive inference and language identi-
fication. In Automata, Languages and Programming, 9th Colloquium, Proceedings,
volume 140, pages 107–115. Springer-Verlag, 1982.

[9] John Case and Carl Smith. Comparison of identification criteria for machine inductive
inference. Theoret. Comput. Sci., 25(2):193–220, 1983.

[10] Jerome Feldman. Some decidability results on grammatical inference and complexity.
Information and control, 20(3):244–262, 1972.

[11] R. V. Freivald. Minimal Gödel numbers and their identification in the limit. In Jiřı́
Bečvář, editor, Mathematical Foundations of Computer Science 1975, 4th Symposium,
Mariánské Lázně, September 1-5, 1975, volume 32 of Lecture Notes in Computer
Science, pages 219–225, Berlin, 1975. Springer-Verlag.

[12] R. V. Freivald and R. Wiehagen. Inductive inference with additional information.
Elektronische Informationsverarbeitung und Kybernetik, 15(4):179–185, 1979.

On the Help of Bounded Shot Verifiers, Comparers, and Standardisers in Inductive Inference 27

[13] Rūsiņš Freivalds, Efim B. Kinber, and Rolf Wiehagen. Connections between identifying
functionals, standardizing operations, and computable numberings. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 30(9-11):145–164, 1984.

[14] Ziyuan Gao, Frank Stephan, and Sandra Zilles. Partial learning of recursively enumer-
able languages. Theoretical Computer Science, 620:15–32, 2016.

[15] E Mark Gold. Language identification in the limit. Information and control, 10(5):447–
474, 1967.

[16] Sanjay Jain, Daniel Osherson, James S. Royer, and Arun Sharma. Systems that
Learn: An Introduction to Learning Theory, second edition. MIT Press, Cambridge,
Massachusetts, 1999.

[17] Sanjay Jain and Arun Sharma. Characterizing language identification by standardizing
operations. Journal of Computer and System Sciences, 49(1):96–107, 1994.

[18] E. B. Kinber [Efim B. Kinber]. O sravnenii predel~nogo sinteza i
predel~no$i standartizacii nomerov obwerekursivnyh funkci$i [On
comparison of limit identification and standardization of general recursive functions].
In Janis M. Bārzdiņs̆, editor, Theory of Algorithms and Programs II, volume 233 of
Proceedings of the Latvian State University, pages 45–56. Latvian State University,
Riga, 1975. (in Russian).

[19] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and its Applica-
tions. Springer, third edition, 2008.

[20] Daniel N Osherson, Michael Stob, and Scott Weinstein. Systems that learn: An
introduction to learning theory for cognitive and computer scientists. The MIT Press,
1986.

[21] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT
Press, Cambridge, MA, USA, 1987.

[22] Raymond M. Smullyan. Theory of formal systems, volume 47 of Annals of Mathematics
Studies. Princeton University Press, Princeton, New Jersey, USA, 1961.

[23] Thomas Zeugmann, Steffen Lange, and Shyam Kapur. Characterizations of monotonic
and dual monotonic language learning. Information and Computation, 120(2):155–173,
1995.

[24] Thomas Zeugmann and Sandra Zilles. Learning recursive functions: A survey. Theo-
retical Computer Science, 397(1-3):4–56, 2008.

