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Abstract

The present paper studies the problem of taking discrete roots in the field Zp

and in the ring Zpe , where p is a prime number and e is a positive natural
number. After surveying the state of the art, the paper presents several gener-
alizations of Tonelli–Shanks and Adleman–Manders–Miller like approaches. In
particular, it shown that there is a generalization of the generalized Adleman–
Manders–Miller algorithm which allows one to compute directly discrete qth
roots with respect to the modulus pe.

The second part is devoted to lifting algorithms. Here the main emphasis is
completeness; i.e., we present lifting algorithms for all possible cases depending
on the prime p, the root q and the greatest common divisor of p and q. As a
byproduct, we also present a proof of one of Tonelli’s (1891) lifting algorithms.

1. Introduction

The problem of solving discrete quadratic equations has been studied for at least a
millennium. We refer the reader to Dickson [6, Binomial Congruences, pp. 204 ff]
for a comprehensive exposition. Some of the algorithms obtained found renewed
interest after public key cryptography emerged. Examples comprise e.g. Tonelli [24]
and Cipolla [5].

In the present paper we are mainly interested in taking discrete roots in the field Zp

and in the Zpe , where p is a prime number and e is a positive natural number. So our
equations have the form xq ≡ a mod p, where p is a prime, a is an integer, and q is
a positive natural number or, more generally, of the form xq ≡ a mod pe for positive
natural numbers e.

We start with a very general theorem characterizing the existence of such discrete
roots for under the assumption that the corresponding multiplicative group Z∗

n is

1
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cyclic (cf. Theorem 11). Though the proof of this theorem is constructive, it does not
yield efficient algorithms in general. Here by efficient we mean that the corresponding
algorithms achieve a running time that is polynomial in the length of the input.

Therefore, we then turn our attention to efficient algorithms with a focus of
Tonelli’s [24, 25] algorithms and the generalization obtained by Adleman, Manders,
and Miller [1]. As far as this part is concerned our main result is a generalization
of their algorithm, which allows for a direct computation of general qth roots in the
ring Zpe .

In the second part of the present paper we provide a detailed exposition of al-
gorithms that allow to lift a qth root obtained with respect to the modulus p to
moduli pe. This comprises a proof and an improvement of a lifting proposed without
proof by Tonelli [24], and the group of algorithms commonly known as Hensel [11]
lifting. In this way, the complexity of the algorithms obtained becomes easily compa-
rable. Whenever appropriate, also examples are included.

2. Preliminaries

Let N = {0, 1, 2, , . . .} denote the set of all natural numbers. We set N+ =df N \ {0}.
By Z we denote the set of all integers. Furthermore, we use Q and R for the set of all
rational numbers and real numbers, respectively.

For all real numbers y we define byc, the floor function, to be the greatest integer
less than or equal to y. Similarly, dye denotes the smallest integer greater than or
equal to y, i.e., the ceiling function. Furthermore, for all numbers y ∈ R we write |y|

to denote the absolute value of y.

Throughout this report we write log n to denote the logarithm to the base 2, ln n

to denote the logarithm to the base e (where e is the Euler number), and logc n to
denote the logarithm to the base c.

Let a, b ∈ Z be given. We say that a divides b (or b is divisible by a) if there
exists a d ∈ Z such that b = ad. If a divides b we write a|b, and a is called a
divisor of b. Hence, divisibility is a binary relation. Furthermore, we call greatest
number d ∈ N dividing both a and b the greatest common divisor of a and b and
write d = gcd(a, b). It is convenient to set gcd(0, 0) = 0. Also, gcd(a, 0) = a and
gcd(a, a) = a for all a ∈ N.

The gcd of two numbers a and b can be efficiently computed by using the extended
Euclidean algorithm (abbr. ECLA). Note that the ECLA also computes x, y ∈ Z such
that d = ax+by, where d = gcd(a, b). This is also known as Lamé’s [16] theorem. We
refer the reader to Shallit [21] for a detailed discussion of the origins of the analysis of
the Euclidean algorithm by French mathematicians and to Schreiber [20] for a German
source from the 16th century noticing the worst-case of the Euclidean algorithm. For
further information concerning algorithms computing the gcd we refer the reader to
Knuth [13].
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Let m ∈ N+, and let a, b ∈ Z; we write a ≡ b mod m if m divides a − b

(abbr. m|(a−b)). Thus, a ≡ b mod m if and only if a and b have the same remainder
when divided by m. If a ≡ b mod m then we say that a is congruent b modulo m,
and we refer to “≡” as the congruence relation. The symbol “≡” was introduced by
Gauss [9], who studied congruences thoroughly. We also write a mod m to denote
the remainder r obtained when a is divided by m. For m = 1 we obtain the zero ring
consisting of the set {0} and the only possible addition and multiplication 0 + 0 = 0

and 0 · 0 = 0, respectively.
It is easy to see that the congruence relation is an equivalence relation, i.e., it

is reflexive, symmetric and transitive. Therefore, we may consider the equivalence
classes [a] =df {x | x ∈ Z , a ≡ x mod m}, where a ∈ Z. Consequently, we directly
obtain that [a] = [b] iff a ≡ b mod m. Hence, there are precisely the m equivalence
classes [0], [1], . . . , [m − 1]. We set Zm =df {[0], [1], . . . , [m − 1]}.

We define addition and multiplication of these equivalence classes by

[a] + [b] =df [a + b] and
[a] · [b] =df [a · b] .

In order to simplify notation, we usually omit the brackets, i.e., instead of [a] we
shortly write just a.

Furthermore, the following theorem establishes some useful rules for performing
calculations with congruences:

Theorem 1. Let m ∈ N+, let a, b, c, d ∈ Z be such that a ≡ b mod m and c ≡ d

mod m, and let n ∈ N. Then we have the following:

(1) a + c ≡ b + d mod m;

(2) a − c ≡ b − d mod m;

(3) ac ≡ bd mod m;

(4) an ≡ bn mod m.

The following theorem completely characterizes the existence of modular inverses:

Theorem 2. Let m ∈ N+, and let a ∈ Z. The congruence ax ≡ 1 mod m is solvable
if and only if gcd(a, m) = 1. Moreover, if ax ≡ 1 mod m is solvable, then the
solution is uniquely determined.

Hence we conclude that (Zm, +, · ) is a field iff m is a prime number.
Furthermore, it is not difficult to show the following:

Theorem 3. Let a, c ∈ Z and let b ∈ N, b > 2. Then the linear congruence
ax ≡ c mod b is solvable if and only if gcd(a, b) divides c. Moreover, if d = gcd(a, b)

and d|c then there are precisely d solutions in Zb for ax ≡ c mod b.
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Taking Theorem 2 into account it is appropriate to consider the multiplicative
group Z∗

m, where m ∈ N+ and Z∗
m =df {a | a ∈ {1, . . . ,m − 1}, gcd(m, a) = 1}.

Let m ∈ N+; by ϕ(m) =df |Z∗
m| we denote Euler’s [7] totient function (also called

Euler’s phi-function), where one assumes by definition that ϕ(1) = 1. Furthermore,
a function f : N → N is said to be multiplicative if f(1) = 1 and f(mn) = f(m)f(n)

for all m, n ∈ N whenever gcd(m, n) = 1.

The following theorem summarizes some basic properties of Euler’s totient func-
tion:

Theorem 4 (Euler [7]). For all m, n ∈ N+ we have

(1) ϕ(mn) = ϕ(m)ϕ(n) if gcd(m, n) = 1;

(2) ϕ(pα) = pα−1(p − 1) if p is prime and α > 1;

(3) ϕ(p) = p − 1 if and only if p is prime.

We refer the reader to Koblitz [14] for a proof.

We shall need frequently the following theorems:

Theorem 5 (Euler’s [7] Theorem). Let n ∈ N, n > 2; then aϕ(n) ≡ 1 mod n for
all a ∈ Z∗

n.

Theorem 5 covers the following important special case which was first discovered
by Pierre de Fermat [23, pp. 206–212].

Theorem 6 (Fermat’s Little Theorem). Let p ∈ N be any prime number. Then we
have ap−1 ≡ 1 mod p for all a ∈ Z∗

p.

Recall that a group G is cyclic if it contains an element g generating all the elements
of the group; i.e., G = {an | n = 1, . . . , |G|}. We refer to such elements g as a generator
or a primitive root.

In order to achieve the desired level of generality we recall the following theorem,
which completely characterizes the cyclic groups Z∗

n:

Theorem 7 (Primitive Root Theorem (cf. Gauss [9, Article 92])). The group Z∗
n is

cyclic if and only if n is 1, 2, 4, pe, or 2pe for some odd prime number p and e ∈ N+.

Furthermore, as far as the necessary background concerning group theory, rings
and fields is concerned, we refer the reader to Bach and Shallit [2, Chapter 2] and the
references therein. In particular, we shall need the following theorem:

Theorem 8. Let F be any Abelian field, and let p ∈ F[x] be a polynomial such
that p 6= 0. Then the polynomial p possesses at most d zeros, where d = deg p.
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Next, we shall present general results concerning the existence, multiplicity, and
computation of discrete roots in fields Zp, where p is any prime or in rings Zn, where n

is such that Z∗
n is cyclic. Then we turn our attention to the problem of how to lift

solutions obtained in Zp to solutions in the ring Zpe , where e ∈ N+.

3. Computing Roots in the Ring Zn

In this section we almost always assume that n ∈ N+ is such that Z∗
n is cyclic.

Next, let a ∈ Z∗
n and let n ∈ N+. Our main goal is to study the solvability of the

congruence xq ≡ a mod n. However, it is already known for the case that q = 2 that
the congruence x2 ≡ a mod p may or may not have a solution (cf., e.g., Koblitz [14,
Chapter 2]). So it is appropriate to have the following definition:

Definition 1 (qth Residue, qth Nonresidue). Let Let m ∈ N, m > 2 be any number,
let a ∈ Z∗

m, and let q ∈ N+. Then the element a is said to be a qth residue modulo m

if xq ≡ a mod m is solvable in Z∗
m. If a is not a qth residue modulo m, then we

call a a qth nonresidue modulo m.

Remark. If q = 2 then we refer to a qth residue and a qth nonresidue as a quadratic
residue and a quadratic nonresidue, respectively.

3.1. A Particular Easy Case

We start to look at the problem of taking discrete roots for a particular easy case.
Let p ∈ N be any prime, let q > 1, and let a ∈ Zp be arbitrarily fixed. We aim to
solve xq ≡ a mod p. Then we have the following theorem:

Theorem 9. Let p be any prime and let q ∈ N+ be such that gcd(q, p − 1) = 1, and
let a ∈ Zp be arbitrarily fixed. Then the congruence xq ≡ a mod p has a uniquely
determined solution.

Proof. If a ≡ 0 mod p then x = 0 is the unique solution and we are done. Next, we
assume that a 6≡ 0 mod p. Since gcd(q, p − 1) = 1, by Theorem 2 we know that the
modular inverse d of q in Z∗

p−1 exists and it is uniquely determined.

Claim 1. x =df ad mod p is a solution of xq ≡ a mod p.

Since qd ≡ 1 mod p − 1, there is a k ∈ Z such that dq = 1 + (p − 1) · k. Thus we
obtain

xq ≡
(
ad

)q ≡ adq ≡ a1+(p−1)·k

≡ a · a(p−1)·k ≡ a · 1k (by Theorem 6)

≡ a mod p ,

and Claim 1 is shown.
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Claim 2. The solution of xq ≡ a mod p is uniquely determined.
Suppose that there are solutions x1 and x2 of xq ≡ a mod p. As the proof of

Claim 1 shows we have zqd ≡ z mod p for all z ∈ Z∗
p. Thus, we obtain

x1 ≡ x
qd
1 ≡ (xq

1 )
d ≡ ad

≡ (xq
2 )

d ≡ x
qd
2 ≡ x2 mod p ;

i.e., x1 and x2 are the same modulo p, and Claim 2 is shown.
Claim 1 and 2 directly yield the theorem.

Theorem 9 directly allows for the following corollary:

Corollary 1. Let p be any prime and let q ∈ N+ be such that gcd(q, p − 1) = 1.
Then every element a ∈ Zp is a qth residue modulo p.

Remarks. First, we note that the proof of Theorem 9 is constructive; i.e., we also
have an efficient method to compute the qth root in case that the assumptions of
Theorem 9 are satisfied.

Second, we note that it suffices to consider qth roots for q ∈ {1, . . . , p − 1}. This
observation is directly implied by the fact that we have computed the modular inverse
of q ∈ Z∗

p−1, i.e., it was sufficient to consider q reduced modulo p− 1. As a matter of
fact, this observation generalizes to arbitrary polynomials, since we have the following
theorem:

Theorem 10. Let p be a prime, let n ∈ N, and let f(x) =
n∑

i=0

aix
i, where ai ∈ Zp for

all i = 0, . . . , n. Then the congruence f(x) ≡ 0 mod p is equivalent to a congruence
f̂(x) ≡ 0 mod p, where deg f̂ 6 p − 1.

Proof. Let the polynomial f be arbitrarily fixed. If deg f 6 p−1 we are already done.
Otherwise, we divide f by xp − x and obtain

f(x) = (xp − x)Q(x) + R(x) ,

where deg R 6 p − 1. By Theorem 6 we know that xp ≡ x mod p, and therefore we
have xp −x ≡ 0 mod p. Consequently, we see that (xp −x)Q(x) ≡ 0 mod p, and thus
f(x) ≡ R(x) mod p.

3.2. A General Characterization Theorem

At this point it is only natural to ask what we can say concerning the solvability
of xq ≡ a mod p in case that the condition gcd(p − 1, q) = 1 is not satisfied. We
shall answer this question in a more general context. As we shall see the theory
of qth residues is clearly arranged provided the multiplicative group Z∗

n is cyclic.
Recall that the primitive root theorem completely characterizes the cyclicity of Z∗

n

(cf. Theorem 7). The following theorem goes back to Gauss [9, Article 60–63]:
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Theorem 11. Let q ∈ N+ and let n ∈ N+ be such that Z∗
n is cyclic. Furthermore,

let b = gcd(ϕ(n), q). Then we have the following:

(1) An element a ∈ Z∗
n is a qth residue if and only if aϕ(n)/b ≡ 1 mod n.

(2) There are precisely ϕ(n)/b many qth residues in Z∗
n.

(3) If a ∈ Z∗
n is a qth residue in Z∗

n then the congruence xq ≡ a mod n possesses
precisely b solutions.

Proof. Let n ∈ N+ be such that Z∗
n is cyclic, and let b = gcd(q, ϕ(n)). Assume that

xq ≡ a mod n is solvable, and let x0 be a solution, i.e., we have x
q
0 ≡ a mod n. Using

Theorem 5 and taking into account that q/b ∈ N, we conclude that

aϕ(n)/b ≡ (xq
0 )

ϕ(n)/b ≡
(
x

ϕ(n)
0

)q/b

≡ 1 mod n .

and the necessity of Assertion (1) is shown.

For the sufficiency of Assertion (1) we assume that aϕ(n)/b ≡ 1 mod n. We have
to show that xq ≡ a mod n is solvable.

Recall that a ∈ Z∗
n. By Theorem 7 we know that Z∗

n possesses a generator g. Let
y ∈ {1, . . . , ϕ(n)} be such that a ≡ gy mod n. Using aϕ(n)/b ≡ 1 mod n and the
transitivity of the congruence relation, we see that

1 ≡ aϕ(n)/b ≡ (gy)
ϕ(n)/b ≡

(
gϕ(n)

)(y/b) mod n

holds. Since g is a generator of Z∗
n this implies that y/b ∈ N must hold. We conclude

that y is a multiple of b, i.e., we obtain that y = z ·b for some z ∈ N+. Furthermore,
since b = gcd(q, ϕ(n)), there are numbers s, t ∈ Z such that b = s · q + tϕ(n). We
continue with the following claim:

Claim 1. x =df gz·s is a solution of xq ≡ a mod n.

This can be seen as follows:

xq ≡ (gz·s)
q ≡ gz·s·q ≡ gz·s·q · 1 ≡ gz·s·q · gϕ(n)t·z

≡ gz(s·q+ϕ(n)t) ≡ gz·b (since b = s · q + tϕ(n))

≡ gy (since z · b = y)

≡ a (since a ≡ gy mod n) .

Hence we have shown Claim 1, and thus the sufficiency of Assertion (1).

In order to show Assertion (2) we start with the following claim:

Claim 2. Let ζ =df gϕ(n)/b. Then ζ, . . . , ζb are the pairwise different solutions
of xq ≡ 1 mod n.
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Clearly, xq ≡ 1 mod n is solvable. Recall that b = gcd(q, ϕ(n)). Hence, there is
a d ∈ N+ such that q = d · b. So we have

ζq ≡
(
gϕ(n)/b

)q ≡ gϕ(n)q/b ≡ gϕ(n)d·b/b ≡ gϕ(n)d

≡
(
gϕ(n)

)d ≡ 1d ≡ 1 mod n .

Here we used Theorem 5, i.e., gϕ(n) ≡ 1 mod n. Consequently, ζ is a qth root
of xq ≡ 1 mod n. Taking into account that

(
ζk

)q ≡ (ζq)
k ≡ 1k ≡ 1 mod n for

all k = 1, . . . , b, we see that ζ, . . . , ζb are solutions of xq ≡ 1 mod n. Furthermore,
since g is a generator of Z∗

n, we conclude that these solutions are pairwise incongruent.

It remains to show that there are no other solutions of xq ≡ 1 mod n. Recall
that 1 = gϕ(n). Let x be any solution of xq ≡ 1 mod n. Then there is a uniquely
determined ` ∈ {1, . . . , ϕ(n)} such that x = g`. Since xq ≡ g`·q mod n, we conclude
that q · ` ≡ ϕ(n) mod ϕ(n) must hold. By Theorem 3 we know that the latter
congruence is solvable in ` iff b = gcd(q, ϕ(n)) divides ϕ(n). This is clearly the
case. Therefore, by Theorem 3 we also know that there are precisely b solutions.
Consequently, xq ≡ 1 mod p possesses exactly b pairwise incongruent solutions, and
Claim 2 is shown.

Claim 3. Let x be a solution of xq ≡ a mod n. Then all solutions of xq ≡ a mod n

are obtained as x · ζ, where ζ is any solution of xq ≡ 1 mod n.

From xq ≡ a mod n and ζq ≡ 1 mod n we directly obtain (x · ζ)q ≡ a mod n

(cf. Theorem 1). We note that for incongruent ζ1 and ζ2 we obtain incongruent
solutions x · ζ1 and x · ζ2 modulo n. Hence, by Claim 2 there are at least b pairwise
distinct solutions of xq ≡ a mod b. On the other hand, there are also at most b

pairwise distinct solutions of xq ≡ a mod p. This can be seen as above: Suppose
we have another solution x̂ ∈ Z∗

n of xq ≡ a mod n. Recall that a ≡ gy mod n and
let x̂ = g` mod n. Then the congruence q · ` ≡ y mod ϕ(n) must be satisfied and in
case it is, there are exactly b = gcd(q, ϕ(n)) many solutions.

Consequently, there are exactly b pairwise distinct solutions of xq ≡ a mod n, and
Assertion (3) is shown.

Remarks. The proof of Theorem 11 is also constructive. So, if we can compute ϕ(n),
can find a generator g of Z∗

n and can solve the discrete logarithm problem for a, then
we can compute qth roots efficiently. While the computation of ϕ(n) in general is
difficult, since all known algorithms require the factorization of n, here the situation
is much easier, since we have only the cases for n shown in Theorem 7. For these
cases, ϕ(n) can be efficiently computed. However, finding a generator and solving
the discrete logarithm problem for a are considered to be difficult.

Furthermore, we may restrict ourselves to moduli of the form pe, where p is prime
and e ∈ N+, since the case n = 2pe can be handled by using the Chinese remainder
theorem.



Taking Discrete Roots in the Field Zp and in the Ring Zpe 9

Note that Theorem 11 still achieves the necessary level of generality for these cases.
In contrast many authors restrict themselves to the cases gcd(p−1, q) = 1 or q|(p−1)

(cf., e.g., [1, 4] and the references therein). We shall come back to this point later.

3.3. Further Easy Cases

We continue with the exploration of more efficient algorithms for the rings Zpe , where
p is an odd prime and e ∈ N+. Inspired by Johnston [12] and the proof of Theorem 9
we found an algorithm that efficiently solves the qth root problem in Z∗

pe provided p

is an odd prime, and b = gcd(ϕ(pe), q) is such that gcd(ϕ(pe)/b, q) = 1. Note that
gcd(ϕ(pe)/b, q) = 1 implies that b divides ϕ(pe) exactly ones.

Theorem 12. Let p be an odd prime, let e, q ∈ N+, let b = gcd(ϕ(pe), q) be such that
gcd(ϕ(pe)/b, q) = 1, and let a ∈ Z∗

p. Then one can efficiently compute a solution
of xq ≡ a mod pe.

Proof. First, in accordance with Assertion (1) of Theorem 11 we have to check whether
or not aϕ(pe)/b ≡ 1 mod pe. If this is not the case, then there does not exist any
solution of xq ≡ a mod pe, and we are done.

Otherwise, we aim to determine a z ∈ N+ such that (az)
q ≡ a mod pe. The latter

condition is equivalent to azq−1 ≡ 1 mod pe, and thus we conclude that

zq − 1 ≡ 0 mod ϕ(pe)

b
(1)

must hold; i.e., the desired z must be the modular inverse of q with respect to the
modulus ϕ(pe)/b. Since gcd(ϕ(pe)/b, q) = 1, Theorem 2 ensures that z exists and
that it is uniquely determined.

We claim that x = az mod pe is a solution of xq ≡ a mod pe. This can be seen as
follows: Since gcd(ϕ(pe)/b, q) = 1, we know that there exists an integer ` ∈ Z such
that zq = ` ·ϕ(pe)/b + 1. Consequently, we obtain

azq ≡ a`·ϕ(pe)/b+1

≡
(
aϕ(pe)/b

)
· a

≡ 1 · a ≡ a mod pe ,

where we used that aϕ(pe)/b ≡ 1 mod pe.

Having the knowledge that the modulus n is either a prime or a prime power, one
can check in time O

(
(log n)3

)
which of the two cases occurs. This algorithm also finds

p and e, and thus ϕ(pe) can be efficiently computed. The rest is a gcd calculation
and the computation of a modular inverse. Hence, the theorem is shown.

The proof of Theorem 12 is telling us how to compute efficiently one solution of the
congruence xq ≡ a mod pe. The remaining b−1 solutions can then be easily obtained
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provided we have a qth nonresidue η modulo pe. Using Theorem 11 we then have
ηϕ(pe)/b 6≡ 1 mod pe By Theorem 5 we furthermore know that ηϕ(pe) ≡ 1 mod pe.
Consequently, if q = ` · b then we directly obtain(

ηϕ(pe)/b
)q ≡

(
ηϕ(pe)/b

)b·` ≡
(
ηϕ(pe)

)` ≡ 1 mod pe .

Hence, we found a solution of xq ≡ 1 mod p. Using mutatis mutandis the same
arguments as in the proof of Claim 2 in the demonstration of Theorem 11 we see that
for ζ =df ηϕ(pe)/b mod pe the powers ζ2, . . . , ζb are the pairwise different b solutions
of xq ≡ 1 mod pe. The rest is then done as in Claim 3.

Example 1. We take the prime 8929 and try to solve x217 ≡ 97 mod 8929. Comput-
ing b = gcd(8928, 217) = 31 and 8928/31 = 288 yields that we have to check whether
or not 97288 ≡ 1 mod 8929. This is true and so we have to compute gcd(288, 217),
which is 1. Therefore, now we solve z ·217 ≡ 1 mod 288. We obtain z = 73 and hence
the solution is 9773 ≡ 7174 mod 8929. A quick check is in order here, and we verify
that 7174217 ≡ 97 mod 8929.

Theorem 11, Assertion (3) is telling us that there are precisely 31 solutions. So
we randomly choose a number η and and check whether or not η288 6≡ 1 mod 8929.
If it is, then we have found a 217th nonresidue. Let us take η = 29. We easily
verify that 29288 ≡ 3891 mod 8929 and that 3891217 ≡ 1 mod 8929. Consequently,
we have ζ = 3891.

Next, we compute ζ2, . . . , ζ31, and thus obtain

5226, 3033, 6194, 1483, 2219, 8715, 6652, 6690, 2755, 4905,

4082, 7300, 1151, 5112, 5909, 8673, 3952, 1494, 375, 3698

4299, 3392, 1210, 2527, 1728, 111, 3309, 8630, 6290, 1 .

Finally, we multiply our solution 7174 with each of these numbers to compute the
remaining thirty solutions of x217 ≡ 97 mod 8929, which are

7382, 7698, 5052, 4603, 7628, 552, 4872, 685, 4493, 8210,

6077, 1615, 6878, 2085, 5203, 2830, 2073, 3156, 2621, 1393,

260, 2683, 1552, 2828, 3220, 1633, 5484, 6863, 6223, 1980 .

Here the last entry, i.e., 1980 is obtained by multiplying our solution 7174 with 3891,
i.e., ζ, since we have already the solution 7174.

Note that 29 is not a generator of Z∗
8929, since 298928/3 ≡ 1 mod 8929.

Of course, in the case of square roots Theorem 12 is just corresponding to the
primes satisfying p ≡ 3 mod 4. Then 2|(p−1) but no higher power of 2 divides p−1.
Since the modular inverse of 2 is (p+ 1)/4 with respect to the modulus (p− 1)/2, we
thus directly obtain that a(p+1)/4 mod p is a solution of x2 ≡ a mod p provided a is
a quadratic residue. This was already shown by Lagrange [15, page 500].
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We finish this part by pointing out another easy case. Looking at the proof of
Theorem 12 we see that we also can compute a qth root provided that a is also a qth
residue for the highest power k of b dividing ϕ(pe). The resulting algorithm is almost
the same except that we now compute the modular inverse of z with respect to the
modulus ϕ(pe)/bk. Hence, we have the following corollary:

Corollary 2. Let p be an odd prime, let e, q ∈ N+, and let b = gcd(ϕ(pe), q) and
a ∈ Z∗

p be such that aϕ(pe)/bk ≡ 1 mod pe for the highest power k of b dividing ϕ(pe)

and gcd(ϕ(pe)/bk, q) = 1. Then a solution of xq ≡ a mod pe can be efficiently
computed.

Example 2. Let us solve the congruence x39 ≡ 541 mod 89292. Taking into ac-
count that gcd(8928, 39) = 3 and that 32 also divides 8928 but 33 does not divide
8928, we have to compute 8929 · 8928/9 which is 8857568. Next, we verify that
gcd(8857568, 39) = 1. It remains to check whether or not 5418857568 ≡ 1 mod 89292.
Since this condition is satisfied, we compute the modular inverse of 39 with respect
to the modulus 8857568, which is 7040631. Then we proceed as before, i.e., we com-
pute 5417040631 ≡ 51594947 mod 89292 and a quick check shows that we indeed have
found a solution, since 5159494739 ≡ 541 mod 89292.

The rest is mutatis mutandis done as before, i.e., we randomly choose η ∈ Z∗
89292

until we find a 39th nonresidue, e.g., let us choose η = 17. Consequently, we have
to compute 178929·8928/3 ≡ 54453631 mod 8929, and thus verify that η is a 39th
nonresidue modulo 8929.

Hence, now ζ = 54453631 and ζ2 = 25273409. Therefore we directly obtain the
three solutions x1 = 51594947, x2 = 73511649, and x3 = 34347486.

3.4. Square Roots

We continue with another well-studied case, i.e., the computation of discrete square
roots. In this regard, the Tonelli–Shanks algorithm, which was found by Tonelli [24],
and reinvented by Shanks [22] with a small modification, is of particular interest as
we shall show later. This algorithm was also generalized to the Adleman–Manders–
Miller [1] algorithm. Here we follow Bach and Shallit [2].

Algorithm Tonelli 1

Input. An odd prime p, and an a ∈ Z∗
p.

Output. The two solutions of x2 ≡ a mod p if a is a quadratic residue modulo p or
no solution if a is quadratic nonresidue modulo p.

Step 1. Check whether or not a(p−1)/2 ≡ 1 mod p. If this is not the case, then
output no solution and stop.

Otherwise, execute the following steps:
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Step 2. Choose randomly an η ∈ Z∗
p until a quadratic nonresidue modulo p is found.

Step 3. Let p − 1 = 2s · t, where t is odd.

Step 4. Initialize ε := 0;
For i = 2 to s do
if (aη−ε)

(p−1)/2i

6≡ 1 mod p then ε := ε + 2i−1.

Step 5. Compute h := aη−ε;
x0 := ηε/2 · h(t+1)/2 mod p.
Output ±x0 mod p.

Theorem 13. Algorithm Tonelli 1 is correct.

Proof. By Theorem 11 we know that the output no solution is correct.
Next, assume that a is a quadratic residue. In Step 4 we have initially ε = 0 and

thus η0 = 1. Therefore the first test is to check whether or not a(p−1)/4 ≡ 1 mod p.
Since a is a quadratic residue we know that a(p−1)/2 ≡ 1 mod p. Consequently, we
know that a(p−1)/4 ≡ ±1 mod p (cf. Theorem 8).

Recall that p − 1 = 2s · t, and assume that a(p−1)/4 ≡ −1 mod p; i.e., then ε is
set to be 2, and we have

a2s−2·t ≡ −1 mod p (2)
η−ε·2s−2·t ≡ η−2s−1·t mod p . (3)

Hence, multiplying (2) and (3) yields

(aη−ε)
2s−2·t ≡ (−1) · η−2s−1·t mod p . (4)

Since η is a quadratic nonresidue, we obtain η−2s−1·t ≡ η−(p−1)/2 ≡ −1 mod p.
Therefore, after updating ε in the loop of Step 4 we have

(aη−ε)
2s−2·t ≡ 1 mod p .

Inductively we thus obtain that (aη−ε)
2s−i·t ≡ 1 mod p, and after the loop is finished,

we know that

(aη−ε)
t ≡ 1 mod p . (5)

Finally, assume that x0 = ηε/2 · h(t+1)/2 mod p is output. It remains to show
that x2

0 ≡ a mod p. Recall that h = aη−e. Then we have

x2
0 ≡ ηε · h(t+1) ≡ ηε · (aη−ε)

t+1

≡ ηεat+1 (η−ε)
t+1 ≡ ηεat+1 (η−ε)

t
η−ε

≡ at+1 (η−ε)
t ≡ a · at (η−ε)

t

≡ a · (aη−ε)
t

≡ a mod p ;

where we used (aη−ε)
t ≡ 1 mod p (cf. (5)). Hence, the theorem is shown.
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We note that Algorithm Tonelli 1 is a Las Vegas algorithm, since the desired
quadratic nonresidue is found by randomly choosing an element η ∈ Z∗

p and then one
applies Theorem 11. Since half of the elements of Z∗

p are quadratic residues and the
other half are quadratic nonresidues, the expected number of executions of Step 2 is
two. The rest of the algorithm is deterministic.

Claim 2. The Algorithm Tonelli 1 executes O
(
log p)4

)
bit operations.

Proof. In each loop of Step 4 one has to perform a modular exponentiation. The
maximum number of executions of this loop is given by the highest exponent of 2

dividing (p − 1) which is at most log p. Finally, Step 5 requires two modular ex-
ponentiations. Since each modular exponentiation needs O

(
log p)3

)
bit operations,

Claim 2 is shown.

Tonelli [25] derived an algorithm to solve the congruence x2 ≡ a mod pe, where p

is an odd prime and e ∈ N+. We include this algorithm here, thereby using the same
modifications Bach and Shallit [2] used for Tonelli’s [24] algorithm.

Algorithm Tonelli 2

Input. An odd prime p, an e ∈ N+, and an a ∈ Z∗
pe .

Output. The two solutions of x2 ≡ a mod pe if a is a quadratic residue modulo pe

or no solution if a is quadratic nonresidue modulo pe.

Step 1. Check whether or not a(p−1)/2 ≡ 1 mod p. If this is not the case, then
output no solution and stop.

Otherwise, execute the following steps:

Step 2. Choose randomly an η ∈ Z∗
p until a quadratic nonresidue modulo p is found.

Step 3. Let ϕ(pe) = pe−1(p − 1) = 2s · t, where t is odd.

Step 4. Initialize ε := 0;

For i = 2 to s do

if (aη−ε)
(p−1)/2i

6≡ 1 mod p then ε := ε + 2i−1.

Step 5. Compute h := aη−ε mod pe;

x0 := ηε/2 · h(t+1)/2 mod pe.

Output ±x0 mod pe.

We observe that c ≡ ±1 mod p iff cpe−1 ≡ ±1 mod pe, where c ∈ Z is arbitrarily
fixed. Consequently, the correctness of Algorithm Tonelli 2 can be shown mutatis
mutandis as for Algorithm Tonelli 1. We omit the details.
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Example 3. Let p = 41, let e = 3, and let a = 5321. We use Algorithm Tonelli 2 to
solve x2 ≡ 5321 mod 41e. Note that 5321 ≡ 32 mod 41.

In Step 1 we check whether or not 3220 ≡ 1 mod 41. Since this is the case, we
randomly choose η = 17 and verify that η is a quadratic nonresidue. Next, in Step 3
we compute ϕ

(
413

)
= 23 · 8405, i.e., s = 3 and t = 8405.

In the first execution of the loop of Step 4 we find that 3210 6≡ 1 mod 41. Conse-
quently, we obtain ε = 2 and continue with i = 3.

We find that
(
32 · 17−2

)5 ≡ 1 mod 41. Hence, ε remains unchanged and we enter
Step 5. We obtain h = 5321 ·18840 ≡ 36506 mod 413. Since (t+1)/2 = 4203 we thus
have 365064203 ≡ 10984 mod 413, and finally arrive at 17 · 10984 ≡ 48886 mod 413.
Therefore, the output is 48886 and 20035.

A quick check is in order here, and we verify that 488862 ≡ 5321 mod 413 and also
that 200352 ≡ 5321 mod 413.

Remark. Another remark is in order here. One may combine the Tonelli algorithms
as described above with any of the easy cases given in Theorems 9 and 12 or Corollary 2
provided the corresponding assumptions are satisfied. Suppose we have to solve the
congruence xq ≡ a mod pe. Then we use Theorem 11 to find out whether or not a

is a qth residue. Next, we compute b = gcd(ϕ(pe), q). Since we aim to apply one
of the Tonelli algorithms, this gcd should be 2. Consequently, there is an m ∈ N+

such that b = 2m. If m is such that one of the easy cases is applicable, then we
can directly compute a solution of xm ≡ a mod pe. Let x0 be the solution found.
Subsequently, we solve y2 ≡ x0 mod pe, say we obtain ±y0. Then we know that(
y2

0

)m ≡ a mod pe, i.e., ±y0 are solutions of xq ≡ a mod pe and by Theorem 11 we
know that there are no other solutions.

Example 4. Let p = 8929 and consider x34 ≡ 140 mod 8929. Furthermore, we
have 2 = gcd(8928, 34) and gcd(8928, 17) = 1. Thus, Theorem 9 is applicable, and
we find the solution 5113 of x17 ≡ 140 mod 8929. Using Algorithm Tonelli 1, we solve
the congruence y2 ≡ 5113 mod 8929 and obtain ±7392.

Remark. The theory developed so far is sufficient to solve general quadratic
congruences. Let a ′, b ′, c ′ ∈ Z∗

p, and let the congruence a ′x2 + b ′x + c ′ ≡ 0 mod p

be given, where p is an odd prime. In the first step we multiply both sides with the
modular inverse ca of a in Z∗

p. We therefore obtain the congruence

x2 + bx + c ≡ 0 mod p ,

where b ≡ b ′ · ca mod p and c ≡ c ′ · ca mod p.

Next, let c2 and c4 denote the modular inverses of 2 and 4, respectively, in Z∗
p.

Then we directly obtain

x2 + bx + c ≡ x2 + bx + b2c4 − b2c4 + c ≡ (x + b · c2)
2 −

(
b2c4 − c

)
mod p .
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The reader should check that c2
2 ≡ c4 mod p.

Consequently, the congruence x2 + bx + c ≡ 0 mod p is equivalent to the congru-
ence (x + b · c2)

2 ≡
(
b2c4 − c

)
mod p. The latter congruence is solvable iff b2c4 − c

is a quadratic residue modulo p.

3.5. Solving xq ≡ a mod p for Odd Primes p

Next, we turn our attention to find efficient algorithms for the solution of congruences
of the form xq ≡ a mod p, where p is an odd prime.

Nishihara et al. [18] studied the computation of cubic roots and considered the
particular settings of the generalized Adleman–Manders–Miller [1] algorithm for this
case. However, Bach and Shallit [2, pp. 160–163] contains already a complete descrip-
tion of the generalized Adleman–Manders–Miller [1] algorithm for the case that q is
a prime divisor of p − 1. Since Theorem 11 is more general, it is only natural to ask
whether or not one can generalize the Adleman–Manders–Miller [1] algorithm even
further. We continue with an affirmative answer.

Let us start with b = gcd(p − 1, q). Then one can write p − 1 = bs · t and has to
distinguish the cases gcd(b, t) 6= 1 and gcd(b, t) = 1. As we shall see soon, the second
case does not cause major problems. In order to see that the first case may occur,
consider p = 29 and q = 14. Then we have gcd(28, 14) = 14 and thus 28 = 14 · 2,
i.e., we have b = 14 and t = 2. Hence, gcd(14, 2) 6= 1.

Now, we can proceed mutatis mutandis as in Example 4. Dividing 14 by 2 yields 7,
and thus one has to decompose the problem of finding a 14th root into the problem of
computing first a 7th root and then the square root of the solution obtained for the
7th root. If all solutions are desired, then it is also beneficial to compare the amount
of time used for the different problems. In the given setting it is easy to find all the
seven roots of the 7th root problem once one root has been computed. But then we
have to run the square root algorithm seven times. Alternatively, if one starts with
the square roots, then one has to run the algorithm to find a 7th root two times. This
may be more efficient.

Note that this technique can be easily generalized. If gcd(b, t) 6= 1 then one has
to divide b by the gcd obtained and considers b̃ = b/ gcd(b, t). In turn, one then
computes p−1 = b̃s̃ · t̃. If gcd(b̃, t̃) 6= 1, this technique is iterated. So, in the following
we may assume that gcd(b, t) = 1. Furthermore, without loss of generality we may
assume that 0 6 q 6 p − 1 (cf. Theorem 6).

In the general case considered here, the basic idea can be described as follows: We
assume that a is a qth residue modulo p, i.e., by Theorem 11 we have

a(p−1)/b ≡ 1 mod p , (6)

where b = gcd(p−1, q). Moreover, we assume that p−1 = bs ·t, where gcd(b, t) = 1

and thus gcd(q, t) = 1. In order to avoid the cases already handled in Theorem 12
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and Corollary 2 we also assume that

a(p−1)/bk 6≡ 1 mod p for k = 2, . . . , s . (7)

Hence, since (p − 1)/b = bs−1t we also have

abs−1·t ≡ 1 mod p . (8)

Taking into account that gcd(q, t) = 1 there is an ` ∈ N+ such that t|(q`−1). Hence,
there exists an m ∈ Z such that q` − 1 = mt. The Congruence (8) implies

abs−1·mt ≡ 1 mod p , (9)

and thus we also have (
aq`−1

)bs−1

≡ 1 mod p .

Consequently, we know that((
aq`−1

)bs−2
)b

≡ 1 mod p . (10)

Next, let η be a qth nonresidue modulo p. Then Theorem 11 directly implies
that η(p−1)/b 6≡ 1 mod p, and by Theorem 6 we know that

(
η(p−1)/b

)b ≡ 1 mod p.
Hence we conclude that η(p−1)/b is a bth root of unity. As already said above, then
for ζ =df η(p−1)/b we know that ζ, . . . , ζb−1 and ζ0 =df 1 are pairwise different.
Furthermore, since q = bu for some u ∈ N+ we also have(

η(p−1)/b
)bu ≡ 1 mod p . (11)

Using (p − 1)/b = bs−1t we thus have((
ηt

)bs−1
)b

≡ 1 mod p . (12)

Moreover, by (10) we also know that
(
aq`−1

)bs−2

is also a bth root of unity.

We note that, if α is a bth root of unity, then α−1 is also a bth root of unity, since
we easily verify that (α −1)

b ≡
(
αb

)−1 ≡ 1 mod p. Furthermore, the product of two
bth roots of unity is a bth root of unity, and clearly, 1 is the neutral element with
respect to multiplication. And multiplication modulo p is commutative. Hence, the
bth roots of unity form an Abelian group.

Consequently, we can express all bth roots of unity as

Uj =
(
ηt

)j·bs−1

mod p , j = 0, . . . , b − 1 . (13)

Therefore, there is a uniquely determined j1 ∈ {0, . . . , b − 1} such that(
aq`−1

)bs−2

·
(
ηt

)j1·bs−1

≡ 1 mod p .
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Using the group structure of the bth roots of unity, we thus conclude that there is a
uniquely determined j2 ∈ {0, . . . , b − 1} such that(

aq`−1
)bs−3

·
(
ηt

)j1·bs−2

·
(
ηt

)j2·bs−1

≡ 1 mod p .

Iterating this process, we find the remaining jk, k = 3, . . . , s − 1, and arrive at

aq`−1 ·
(
ηt

)j1·b · . . . ·
(
ηt

)js−1·bs−1

≡ 1 mod p . (14)

This in turn implies that

aq` ·
(
ηt

)j1·b · . . . ·
(
ηt

)js−1·bs−1

≡ a mod p

aq` ·
((

ηt
)j1+j2·b+···+js−1·bs−2

)b

≡ a mod p . (15)

Recalling that b = gcd(p − 1, q) we know that there is a y ∈ N+ and a z ∈ Z such
that b = qy + (p − 1)z. This enables us to replace the b’s in the exponents of (15)
by qy + (p − 1)z. Thus, we obtain the additional factors

(
(ηt)

p−1
)z

which are, by
Theorem 6, congruent 1 modulo p. That is, we finally have(

a`
)q ·

((
ηt

)(j1+j2·b+···+js−1·bs−2)y
)q

≡ a mod p . (16)

Thus, the solution x0 of xq ≡ a mod p obtained by this computation can be
directly read off; i.e., it is

x0 = a` ·
(
ηt

)(j1+j2·b+···+js−1·bs−2)y mod p . (17)

Note that the computation of x0 can be simplified by reducing the exponents `

and (j1 + j2 · b + · · ·+ js−1 · bs−2)y modulo p − 1.

We refer to the resulting algorithm as AMMG 1 for short. The AMMG 1 is a Las
Vegas algorithm, since we have to choose randomly elements from Z∗

p until we have
found a qth nonresidue.

Theorem 14. Let p be an odd prime, let q ∈ N+, and let a ∈ Z∗
p such that a is a qth

residue modulo p. Furthermore, let b = gcd(p−1, q be such that for p−1 = bs · t the
condition gcd(b, t) = 1 is satisfied. Then the Algorithm AMMG 1 correctly computes
a solution of xq ≡ a mod p. The time complexity of the Algorithm AMMG 1 is
O

(
b(log p)4

)
.

Proof. The correctness was shown above. As far as the time complexity of the
AMMG 1 is concerned, we note that the gcd computations and the modular exponen-
tiations can be performed in time O

(
(log p)3

)
. The difficult part is the computation

of the numbers j1, . . . , js−1. This is actually a discrete logarithm problem, and if b

is large then one may consider to use one of the well-known algorithms (cf., e.g.,
Menezes, van Oorschot and Vanstone [17]). If b is small, then just trying the possible
values for j is feasible. So the overall complexity is O

(
b(log p)4

)
.
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Example 5. Let p = 3001 be the given prime modulus, and let us try to solve the
congruence x35 ≡ 19 mod 3001. We obtain gcd(3000, 35) = 5 and 3000 = 53 · 24.
Next, we verify that gcd(24, 5) = 1, and thus we can apply the algorithm described
above.

First, we check 19600 ≡ 1 mod 3001, which is true. The, we conclude that 19

is a 35th residue modulo 3001. Furthermore, we also have 19120 6≡ 1 mod 3001, and
thus we are not in the trivial case. Since we also need a 35th nonresidue, we randomly
choose an element from the group Z∗

3001, say 157 and have 157600 ≡ 2204 mod 3001.
By Theorem 11 we conclude that 157 is a 35th nonresidue.

The next step is the computation of `. Using the ECLA we find 35 ·11−1 = 16 ·24,
i.e., we have ` = 11. Note that 35 · 11 − 1 = 384. So we calculated b = 5, s = 3,
t = 24, and also q` − 1 = 384.

Now, we have to find j1 and j2 as described above. First, we compute aq`−1 and
obtain 19384 ≡ 2012 mod 3001. Since s = 3, we need 20125 ≡ 1125 mod 3001. We
continue with our 35th nonresidue and obtain 15724 ≡ 2996 mod 3001. Note that we
have bs−1 = 25. So, we try j1 = 0, 1, . . . and find that for j1 = 2 the desired condition
1125 · 29962·25 ≡ 1 mod 3001 is satisfied. Next, we proceed as described above and
find j2 = 4. That is, we have

19384 ·
(
15724

)2·5 ·
(
15724

)4·25 ≡ 2012 · 371 · 674

≡ 1 mod 3001 .

In order to compute the solution, we use the ECLA and find the desired y = 2743,
i.e., we obtain 5 = 35 · 2743 − 3000 · 32. Consequently, our solution is

x0 ≡ 1911 · 15724(2+4·5)·2743 mod 3000

≡ 536 mod 3001 .

A quick check is in order here, and we verify that 53635 ≡ 19 mod 3001.

Of course, one can also compute the remaining four solutions by using the 35th
nonresidue mutatis mutandis as described in Example 1. By (12) we know that
(η)t·bs−1 is a bth root of unity. Hence we compute ζ =df 299625 ≡ 2204 mod 3001

and also ζ2, ζ3, ζ4 modulo 3001 and then multiply the already obtained solution 536

with ζ, . . . , ζ4. This gives us the remaining four solutions, which are 1951, 2572, 2800,
and 1144.

Next we ask whether or not one can generalize the AMMG 1 along the lines yielding
Algorithm Tonelli 2 from Algorithm Tonelli 1. This is indeed possible.

3.6. Solving xq ≡ a mod pe for Odd Primes p

In this section we shall provide the Algorithm AMMG 2, which can be used to directly
solve xq ≡ a mod pe, where p is an odd prime, e ∈ N+, and q ∈ N+ is such that
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gcd(p, q) = 1. The case that gcd(p, q) 6= 1 deserves special attention and will be
considered in Section 4.5.

First, we note that a ∈ Z∗
pe is a q residue modulo pe if and only if it is a qth

residue modulo p. This will be shown in Section 4.4.

Next, we outline the necessary modifications to obtain Algorithm AMMG 2. By
Theorem 4 we know that ϕ(pe) = pe−1(p − 1). We assume that a is a qth residue
modulo pe, i.e., by Theorem 11 we have

ape−1(p−1)/b ≡ 1 mod pe , (18)

where b = gcd(ϕ(pe), q). Again, we assume that ϕ(pe) = bs · t, where gcd(b, t) = 1

and thus gcd(q, t) = 1. In order to avoid the cases already handled in Theorem 12
and Corollary 2 we also assume that

aϕ(pe)/bk 6≡ 1 mod pe for k = 2, . . . , s . (19)

Hence, since ϕ(pe)/b = bs−1t we also have

abs−1·t ≡ 1 mod pe. (20)

So, we have here a different t and therefore also a different `; i.e., since gcd(q, t) = 1

we can compute ` ∈ N+ and m ∈ Z such that q` − 1 = mt.

The rest remains unchanged except that all computations have to be done mod-
ulo pe, until we have reached the point shown in (15). Here we have to change the
computation of y as follows: Using b = gcd(ϕ(pe), q) we apply the ECLA to find
a y ∈ N+ and a z ∈ Z such that b = qy + ϕ(pe)z. Now we can replace the b’s in the
exponents of (15) by qy + ϕ(pe)z. This yields the extra factors

(
(ηt)

ϕ(pe)
)z

which
are, by Theorem 5, congruent 1 modulo pe. That is, we finally have(

a`
)q ·

((
ηt

)(j1+j2·b+···+js−1·bs−2)y
)q

≡ a mod pe . (21)

Consequently, the solution x0 of xq ≡ a mod pe is

x0 = a` ·
(
ηt

)(j1+j2·b+···+js−1·bs−2)y mod pe . (22)

And of course we can again simplify the computation by reducing the exponents `

and (j1 + j2 · b + · · ·+ js−1 · bs−2)y modulo ϕ(pe).

Hence, we have shown the following theorem:

Theorem 15. Let p be an odd prime, let e, q ∈ N+, and let a ∈ Z∗
pe such that

a is a qth residue modulo pe. Furthermore, let b = gcd(ϕ(pe), q be such that for
ϕ(pe) = bs · t the condition gcd(b, t) = 1 is satisfied. Then the Algorithm AMMG 2
correctly computes a solution of xq ≡ a mod pe.
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Remarks. As far as the time complexity is concerned, we have to distinguish the cases
that pe is given as input and the p and e are given as input, respectively. In the first
case, the time complexity is O

(
b(log pe)4

)
. In the second case the time complexity

of the Algorithm AMMG 2 crucially depends on the size of pe and of a. If a has
roughly the same size as pe then the running time is as in the first case. However, if a

and p are n bit numbers then one has to assume that e 6 nc, where c is a constant.
Then the length of the output is bounded by O(n2) many bits. Alternatively, one
may require that a is n bit number and that p and e have at most nc many bits,
where c is again a constant.

The reader may wonder why we have to compute the numbers j1, . . . , js−1 mod-
ulo pe. The reason is that these numbers may be different from the ones obtained
modulo p (cf. Example 6).

Example 6. We use the same setting as in Example 5 except that we add the ex-
ponent 2 to the modulus 3001, i.e., we aim to solve x35 ≡ 19 mod 30012. Using
Theorem 4 we obtain ϕ(30012) = 9003000, and thus ϕ(30012) = 53 · 72024.

Therefore, we have t = 72024 and furthermore, ` = 12347. Recall that ` is obtained
by the ECLA applied to 72024 and 35; i.e., gcd(72024, 35) = 1 = 12347 ·35−6 ·72024.

Hence, we obtain 35 · 12347 − 1 = 432144. We take the same 35th nonresidue
as before and compute 15772024 ≡ 5611865 mod 30012. Now we are in a position to
compute j1.

We have to compute the following:(
19432144

)5 ≡ 6015129 mod 30012 ,(
15772024

)25 ≡ 5761123 mod 30012 .

Since 6015129 · 5761123 ≡ 3980000 mod 30012 we continue with j1 = 2 and obtain
57611232 ≡ 2255749 mod 30012. We verify that 6015129 · 2255749 ≡ 1 mod 30012

and therefore we have j1 = 2.

It remains to compute j2. Taking into account that

19432144 ≡ 7208038 mod 30012 ,(
15772024

)10 ≡ 6530547 mod 30012 ,

we check whether or not 7208038 · 6530547 ≡ 1 mod 30012. Since this congruence is
satisfied, we know that j2 = 0. Note that the j2 obtained here is different from the
one obtained in Example 5.

All what is left is to compute y = 8488543 and

x0 = 1912347 · 56118652·8488543 mod ϕ(30012)

≡ 1073013 · 4128196 ≡ 6382698 mod 30012 .

And indeed we have 638269835 ≡ 19 mod 30012.
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For the sake of completeness we also include the remaining solutions here, which are
obtained as before. That is, we know that 5761123 is a 35th root of unity in Z∗

30012 .
Consequently, the other four solutions are 6166854, 5922117, 7467024, and 1079310.

4. Lifting Algorithms

This section deals with algorithms allowing to compute solutions to the problems
considered in Z∗

pe provided we already have a solution of the problem modulo p,
where p is a prime number, and e ∈ N+. We start this section with a decomposition
of Z∗

pe , which will be helpful to show a lifting result for discrete square roots.

4.1. A Decomposition of Z∗
pe

Let p be a prime, and let e ∈ N+, e > 2. Following Hasse [10, Chapter 4] we
decompose the group Z∗

pe = G×H, where the set G is isomorphic to Z∗
p and the set H

is defined as H =df {r | r ∈ Z∗
pe, r ≡ 1 mod p}. Now, it is easy to see that |H| = pe−1

and that |G| = p − 1. Consequently, |G×H| = (p − 1) · pe−1 = ϕ(pe).

So we are in a position to define the wanted group homomorphism α : Z∗
p → Z∗

pe

for our decomposition G×H. We set

α(r) =df rpe−1 mod pe for all r ∈ Z∗
p . (23)

Claim 1. α is injective.

Let r1 and r2 be any elements from Z∗
p such that α(r1) = α(r2). We have to

show r1 = r2. By assumption we have

r
pe−1

1 = r
pe−1

2 mod pe

and thus we also know that

r
pe−1

1 = r
pe−1

2 mod p . (24)

Observe that it suffices to show that

rpe−1 ≡ r mod p for all r ∈ Z∗
p . (25)

This can be seen as follows: We have

(p − 1)(pe−2 + · · ·+ p + 1) + 1 = pe−1 . (26)

Moreover, by Theorem 6 we know that rp−1 ≡ 1 mod p and therefore we can conclude
that

(
rp−1

)(pe−2+···+1) ≡ 1 mod p. Since r ≡ r mod p, by (26) and by Theorem 1 we
obtain r(p−1)(pe−2+···+1) · r ≡ rpe−1 ≡ r mod p, and Claim 1 is shown.

Claim 2. α is a group homomorphism.
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We have to show α(a · b) = α(a) · α(b) for all a, b ∈ Z∗
p. By the definition of α

we have

α(a) · α(b) ≡ ape−1

bpe−1 ≡ (ab)pe−1 mod pe . (27)

Let k ≡ ab mod p, where k ∈ 1, . . . , p − 1. Hence, there exists an ` ∈ Z such
that k = ab + `p. Using the binomial theorem we see that

kpe−1

= (ab + `p)pe−1

=

pe−1∑
i=0

(
pe−1

i

)
(ab)pe−1−i(`p)i

≡ (ab)pe−1 mod pe

if and only if

pe−1∑
i=1

(
pe−1

i

)
(ab)pe−1−i(`p)i ≡ 0 mod pe . (28)

Since p is prime we conclude that pe−1 is only divisible by p. Furthermore, the
products

(
pe−1

i

)
pi are all divisible by pe provided i > 1. Hence (28) is valid and

Claim 2 is shown.

Remarks. If i = 1 then we obtain
(

pe−1

1

)
p = pe. Therefore, we see that we could not

have used any power smaller than pe−1 in the definition of the group homomorphism α

(cf. (23)).

Note that (25) directly implies that the mapping α is also surjective. Thus, the
mapping α is bijective. Together with Claim 2 we conclude that α is an isomorphism.
Therefore, we define

G =df im(α) =
{

rpe−1 mod pe | r ∈ Z∗
p

}
. (29)

Putting this all together we obtain the following algorithm computing the decom-
position of Z∗

pe :

Algorithm DECOMP

Input: Any a ∈ Z∗
pe ;

Output: c1 ∈ G and c2 ∈ H such that a ≡ c1c2 mod pe;

Step 1. compute r := a mod p;

Step 2. compute c1 := α(r) = rpe−1 mod pe;

Step 3. compute the modular inverse c−1
1 of c1 in Z∗

pe .

Step 4. compute c2 := ac−1
1 mod pe.
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It remains to show that the Algorithm DECOMP is correct.

Theorem 16. Let a ∈ Z∗
pe, and let c1, c2 be the numbers returned by the Algorithm

DECOMP. Then we have c1 ∈ G , c2 ∈ H and c1c2 ≡ a mod pe.

Proof. By construction we see that c1 ∈ G. Furthermore, c2 ∈ Z∗
pe and thus it suffices

to show that c2 ≡ 1 mod p. Since c1c
−1
1 ≡ 1 mod pe, we conclude c1c

−1
1 ≡ 1 mod p.

By (25) and by construction we know that c1 ≡ r ≡ a mod p and therefore we arrive
at c2 ≡ ac−1

1 ≡ rc−1
1 ≡ c1c

−1
1 ≡ 1 mod p.

Finally, c1c2 ≡ c1ac−1
1 ≡ c1c

−1
1 a ≡ a mod pe, and the theorem is shown.

It remains to say something about the time complexity of the Algorithm DECOMP.
A closer look at this algorithm directly reveals that it crucially depends on the size
of pe and of a. So, if a has roughly the same size as pe then the running time is
polynomial in the length of the input. This can be achieved by assuming that a is an
n-bit number and that p and e are less than or equal to nc, where c is a constant. Or
one allows p to be an n-bit number and requires e 6 nc, where c is again a constant.
Then a may have O

(
n2

)
many bits.

In the following we shall always assume one of these two settings.

4.2. Lifting the Modular Inverse Modulo a Prime Power

Since Algorithm DECOMP involves the computation of the modular inverse, it is only
natural to ask whether or not there is also a lifting algorithm for this computation.
We continue with the affirmative answer.

Let p be a prime, let e ∈ N+ be such that e > 2, and let a ∈ Z∗
pe . We assume that

we know the modular inverse a−1 of a modulo p and aim to compute the modular
inverse of a modulo pe. Then the following iterative method can be used (cf. von zur
Gathen [8]):

Algorithm INV

Input. Any a ∈ Z∗
pe and a−1 ∈ Z∗

p such that aa−1 ≡ 1 mod p;

Output. ã−1 ∈ Z∗
pe such that aã−1 ≡ 1 mod pe;

Step 1. initialize c0 := a−1 mod p;

Step 2. for i := 1 to i := dlog ee compute ci :=
(
2ci−1 − ac2

i−1

)
mod p2i ;

Step 3. let m := dlog ee; output cm mod pe.

Theorem 17. Let a ∈ Z∗
pe, let a−1 ∈ Z∗

p be such that aa−1 ≡ 1 mod p, and let cm

be the number returned by the Algorithm INV. Then we have acm ≡ 1 mod pe.
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Proof. We show by induction on i that aci ≡ 1 mod p2i . By the assumption of the
theorem and the initialization of the Algorithm INV we have ac0 ≡ 1 mod p.

For i > 1 we have the induction hypothesis that aci−1 ≡ 1 mod p2i−1 . Conse-
quently, we know that p2i−1

| (aci−1 − 1). Hence, we directly obtain

aci = 2aci−1 − a2c2
i−1 = −

(
a2c2

i−1 − 2aci−1 + 1
)

+ 1 = −(aci−1 − 1)
2

+ 1

≡ 1 mod p2i

, (since p2i−1

|(aci−1 − 1)) ,

and by the choice of m the theorem is shown.

Remark. Comparing the method of Algorithm INV with the quadratic Newton
iteration obtained for f(x) =df a− 1/x, we see that there is a striking similarity. The
technique used here is a special case of a more general result known as Hensel’s lemma
named after Kurt Hensel [11]. For more information about the history of this lemma
we refer the reader to Roquette [19].

4.3. Lifting Discrete Square Roots

Let us start this subsection by showing the correctness of Tonelli’s [24] formula to lift
a solution of x2 ≡ a mod p to a solution of x2 ≡ a mod pe. Assume that x0 is a
solution, i.e., we have x2

0 ≡ a mod p. Let

x1 =df x
pe−1

0 · a(pe−2pe−1+1)/2 mod pe ; (30)

and let us show that x2
1 ≡ a mod pe. Tonelli [24] did not include a proof of (30). The

correctness of (30) is shown as follows: Since x2
0 ≡ a mod p, we also know that

x2
0 · a−1 ≡ 1 mod p , (31)

where a−1 denotes the modular inverse of a modulo p. Therefore, we apply the
isomorphism α from our Algorithm DECOMP to the Congruence (31) and conclude
that (

x2
0 · a−1

)pe−1

≡ 1pe−1 ≡ 1 mod pe . (32)

Next, using Theorem 4 we know that
∣∣Z∗

pe

∣∣ = ϕ(pe) = pe − pe−1, and by Theorem 5
we obtain

x2
1 ≡

(
x

pe−1

0

)2

· a(pe−2pe−1+1)

≡
(
x

pe−1

0

)2

ape−pe−1︸ ︷︷ ︸
≡1 mod pe

·a−pe−1 · a

≡
(
x2

0

)pe−1

·
(
a−1

)pe−1

· a

≡
(
x2

0 · a−1
)pe−1

· a ≡ 1 · a ≡ a mod pe ,

where the last step is due to (32).
The correctness proof given above allows for the following corollary:



Taking Discrete Roots in the Field Zp and in the Ring Zpe 25

Corollary 3. Let p be any odd prime, let a ∈ Z∗
p, lete ∈ N+, and let x0 be a solution

of x2 ≡ a mod p. Then

x1 = x
pe−1

0 · a(1−pe−1)/2 mod pe

is a solution of x2 ≡ a mod pe.

Proof. Squaring x1 modulo p yields
(
x

pe−1

0

)2

· a(1−pe−1) mod pe and we are back to
line 2 in the proof given above.

It is also obvious that every solution of x2 ≡ a mod pe, e > 2, satisfies the con-
gruence x2 ≡ a mod p. This directly implies that the congruence x2 ≡ a mod pe is
solvable if and only if the congruence x2 ≡ a mod p is solvable. Hence, it remains to
ask whether or not there may be more than two solutions of x2 ≡ a mod pe. In order
to answer this question we proceed as follows:

Let p be any odd prime, let e ∈ N be such that e > 2, and assume that the
congruence x2 ≡ a mod p is solvable. Furthermore, let x0 be any fixed solution
of x2 ≡ a mod p. Then there is a uniquely determined solution x of x2 ≡ a mod pe

such that x ≡ x0 mod p.

As we have already seen, there is a always such a solution x of x2 ≡ a mod pe. So
it remains to show that it is uniquely determined. Suppose to the contrary that there
are x1 and y1 such that x2

1 ≡ a mod pe and y2
1 ≡ a mod pe, and that furthermore

the condition x1 ≡ y1 ≡ x0 mod p is satisfied. Then we have x2
1 − y2

1 ≡ 0 mod pe

(cf. Theorem 1). Consequently, we obtain

(x1 − y1)(x1 + y1) ≡ 0 mod pe . (33)

Since x1 ≡ y1 ≡ x0 mod p, we see that x1 + y1 ≡ 2x0 mod p. Taking into account
that 2 ∈ Z∗

p and x0 ∈ Z∗
p, we conclude that 2x0 ∈ Z∗

p. Since Z∗
p is the multiplicative

group of the field Zp, we know that the modular inverse (x1 + y1)
−1 of (x1 + y1)

in Z∗
p exists. By Theorem 17 we thus know that (x1 + y1) has a modular inverse

in Z∗
pe . Multiplying both sides of the Congruence (33) with this modular inverse

directly yields x1 − y1 ≡ 0 mod pe, and we are done.

Summarizing, we have the following theorem:

Theorem 18. Let p be any odd prime, let e ∈ N be such that e > 2, and let a ∈ Z∗
p.

Then we have the following:

(1) The element a is a quadratic residue modulo pe if and only if it is a quadratic
residue modulo p;

(2) if a is a quadratic residue modulo pe then the congruence x2 ≡ a mod pe has
two solutions and these solutions are of the form ±x mod pe.
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However, Tonelli’s [24] lifting method is not the only one, and it seems difficult to
generalize it to higher roots. So it is appropriate to include a further method here,
which maybe interesting in its own right.

The idea is to lift a solution available modulo pe to a solution modulo p2e. Then,
by iterating this method one obtains a quite efficient method. In order to see of how
to obtain such a method, we make the following approach: Assume that we have a
solution x0; i.e.,

x2
0 ≡ a mod pe . (34)

The Congruence (34) implies that 1 − x2
0 · a−1 is divisible by pe, where a−1 is the

modular inverse of a mod pe. Hence, we know that
(
1 − x2

0 · a−1
)2 is divisible by p2e.

Since we are looking for an x1 such that x2
1 ≡ a mod p2e, we set x1 =df x0(1 + tpe).

The parameter t ∈ Z∗
p2e has to be determined such that x2

1 · a−1 ≡ 1 mod p2e,
where a−1 is the modular inverse of a modulo p2e. Putting this together we have

x2
1 · a−1 ≡ 1 ≡ 1 +

(
1 − x2

0 · a−1
)2 mod p2e . (35)

Since x2
1 ≡ x2

0(1 + tpe)2 ≡ x2
0(1 + 2tpe) mod p2e, we obtain from (35) that

x2
0 · a−1(1 + 2tpe) ≡ 1 +

(
1 − x2

0 · a−1
)2

≡ 2 + x2
0 · a−1(x2

0 · a−1 − 2) mod p2e (36)

must hold. Multiplying both sides of this congruence with the modular inverse(
x2

0 · a−1
)−1 of x2

0 · a−1 modulo p2e yields

1 + 2tpe ≡ 2 ·
(
x2

0 · a−1
)−1

+ x2
0 · a−1 − 2 mod p2e .

From the latter congruence we conclude that the modular inverse of x2
0 has to be

congruent to 1 + 2tpe. Consequently, we arrive at

1 + 2tpe ≡ 2(1 + 2tpe) + x2
0 · a−1 − 2 mod p2e

1 + 2tpe ≡ 2 − x2
0 · a−1 mod p2e

tpe ≡
(
1 − x2

0a
−1

)
2−1 mod p2e . (37)

So we need the modular inverse of 2 modulo p2e. Recall that p is odd. Hence, p2e +1

is even. Since (p2e + 1) ≡ 1 mod p2e, it is advantageous to replace (37) by

tpe ≡
(
1 − x2

0a
−1

)
· p2e + 1

2
.

Finally, in order to obtain the desired lifting algorithm we also have to update
the modular inverse of a in each iteration. This is done by using Step 2 of the
Algorithm INV. Thus, we shall use ca,i to denote the modular inverse of a modulo p2i.
Alternatively, one may use the Algorithm ECLA to compute the modular inverse
modulo pe and then reduce it modulo p2i. For sequential computations both methods
seem feasible. But if one aims to perform parallel computations, then the first method
is more appropriate.

Summarizing, we thus have the following lifting algorithm:
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Algorithm LIFT1

Input. An odd prime p, an integer e > 2, a quadratic residue a ∈ Z∗
pe , ca,0, and a

solution x0 of x2 ≡ a mod p.

Output. xm ∈ Z∗
pe such that x2

m ≡ a mod pe and xm ≡ xo mod p.

Step 1. for i = 1, 2, . . . , dlog ee compute ca,i :=
(
2ca,i−1 − ac2

a,i−1

)
mod p2i and

xi ≡
(
xi−1 + xi−1

(
1 − x2

i−1ca,i

)
·
(
p2i + 1

)
/2

)
mod p2i

.

Step 2. Let m = dlog ee. Output xm mod pe.

As described above, the Algorithm LIFT1 needs dlog ee many iterations of Step 1.
On the other hand, each iteration is easy to compute and does not involve any modular
exponentiation as Tonelli’s [24] lifting technique does.

We continue with the case p = 2, which deserves special attention by at least two
reasons. First, observe that in all the cases considered so far we have gcd(p, 2) = 1,
where 2 is the degree of the polynomial. Since 2 is even, a new situation arises, i.e.,
gcd(2, 2) = 2. Second, we have to clarify how many solutions may occur. For example,
the congruence x2 ≡ 3 mod 2 is equivalent to x2 ≡ 1 mod 2, which has precisely one
solution, i.e., x = 1. But x2 ≡ 3 mod 22 and x2 ≡ 3 mod 2 do not have any solution
as a quick check reveals. Moreover, x2 ≡ 1 mod 22 possesses the two solutions x1 = 1

and x2 = 3 and the congruence x2 ≡ 1 mod 23 possesses the four solutions x1 = 1,
x2 = 3, x3 = 5, and x4 = 7.

So, it is no longer true that x2 ≡ a mod 2e is solvable iff x2 ≡ a mod 2 is solvable,
provided e > 2. We have also seen that 1 is the only quadratic residue modulo 8. So,
it also no longer true that half of the elements of Z∗

2e are quadratic residues and half
of them are quadratic nonresidues.

We also observe that the solutions of x2 ≡ 1 mod 23 can be written as x1 = 1,
x4 = −x1 mod 23, x3 = (x1 + 22) mod 23, and x2 = (−x1 + 22) mod 23.

Let us check the latter observation for the modulus 24. We already know that
Z∗

24 = {1, 3, 5, 7, 9, 11, 13, 15}. Squaring all these elements we obtain

12 ≡ 1 mod 24 , 92 ≡ 1 mod 24 ,

32 ≡ 9 mod 24 , 112 ≡ 9 mod 24 ,

52 ≡ 9 mod 24 , 132 ≡ 9 mod 24 ,

72 ≡ 1 mod 24 , 152 ≡ 1 mod 24 .

This directly shows that the quadratic residues of Z∗
24 are 1 and 9, i.e., a ∈ Z∗

24 is
a quadratic residue iff a ≡ 1 mod 8. We also see that x1 = 3, x2 = −x1 = 13,
x3 = (x1 + 23) ≡ 11 mod 24, and x4 = (x2 + 23) ≡ 5 mod 24 are the solutions of
x2 ≡ 9 mod 24. The four solutions of x2 ≡ 1 mod 24 can be analogously represented.
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Next, we provide a lifting method for moduli of the form 2e, where e > 4 (cf. Zeug-
mann [27]). The cases e = 1, 2, 3 are trivial and thus omitted.
Algorithm LIFT2

Input. A natural number e > 4, and a quadratic residue a ∈ Z∗
2e .

Output. The four solutions of x2 ≡ b mod 2e.

Step 1. Compute an x0 such that x2
0 ≡ a mod 24 and initialize d = 3.

Step 2. Assume that we are given a solution x of x2 ≡ a mod 2d+1.

Compute the modular inverse ca,2d of a modulo 22d. Then calculate

x̂ :=
(
x + x(1 − x2 · ca,2d)/2

)
mod 22d .

Set d := 2d − 1, and iterate the construction until the exponent 2d reaches e.
That means, from x0 we calculate x1 mod 26, then x2 mod 210, a.s.o.

Step 3. Let xm be the last iterate obtained. Then output xm mod 2e, −xm mod 2e,(
xm + 2e−1

)
mod 2e, and

(
−xm + 2e−1

)
mod 2e.

Here we left it open how the modular inverses are computed. One could use our
Algorithm INV, Euler’s theorem 5, or the ECLA.

It remains to show the correctness of the Algorithm LIFT2. This is done inductively
as follows: By assumption we possess a solution of x2 ≡ a mod 2d+1; i.e., we know
that 2d+1 | (1 − x2 · ca,2d). Consequently, 2d | (1 − x2 · ca,2d)/2. This in turn
implies that 22d divides

(
(1 − x2 · ca,2d)/2

)2. We have to show that x̂2 ≡ a mod 22d.
Squaring x̂ yields

x̂2 ≡ x2 + 2x2
(
1 − x2 · ca,2d

)
/2 +

(
(1 − x2 · ca,2d)/2

)2︸ ︷︷ ︸
≡0

≡ x2 + x2
(
1 − x2ca,2d

)
mod 22d . (38)

At this point we need an idea of how to proceed, et voilà, here it comes. It suffices to
show that x̂2 · ca,2d − 1 ≡ 0 mod p2d. Using (38) we thus have

x̂2 · ca,2d − 1 ≡ x2 · ca,2d + x2 · ca,2d

(
1 − x2 · ca,2d

)
− 1

≡ −
(
1 − x2 · ca,2d

)
+ x2 · ca,2d

(
1 − x2 · ca,2d

)
≡ −

(
1 − x2 · ca,2d

)2

≡ 0 mod 22d ,

where the last step is due to 22d |
(
1 − x2 · ca,2d

)
.

Clearly, if x is a solution of x2 ≡ a mod 2e the so is −x. Taking into account that(
x + 2e−1

)2 ≡ x mod 2e we see that the four elements output are indeed solutions.
Hence, the correctness is shown.
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Moreover, if x2 ≡ a mod 2e for any e > 4 then we also know that x2 ≡ a mod 23.
Consequently, if there is a solution modulo 2e then we have a ≡ 1 mod 23, since 1

is the only quadratic residue modulo 23.
Hence, it remains to show that there are no other solutions. If x ∈ Z∗

2e then x

must be odd. Consequently, suppose we have x2 ≡ y2 ≡ a mod 2e. Then we directly
obtain x2 − y2 ≡ 0 mod 2e; i.e., we know that

(x + y)(x − y) ≡ 0 mod 2e . (39)

Since both x and y are odd and since (x + y) + (x − y) = 2x we conclude that either
(x + y) or (x − y) is divisible by 4. The Congruence (39) thus implies that the factor
which is divisible by 4 must be even divisible by 2e−1. That means we have just
four possibilities; i.e., x ≡ y mod 2e, x ≡ y + 2e−1 mod 2e, x ≡ −y mod 2e, and also
x ≡ −y + 2e−1. Consequently the Algorithm LIFT2 computes all solutions. It is also
easy to see that these four solutions are pairwise incongruent modulo 2e.

Summarizing, we thus have the following theorem:

Theorem 19. Let p = 2, let e ∈ N be such that e > 3, and let a ∈ Z∗
p. Then we

have the following:

(1) The element a is a quadratic residue modulo 2e if and only if a ≡ 1 mod 8;

(2) if a is a quadratic residue modulo 2e then the congruence x2 ≡ a mod 2e has
exactly four solutions and these solutions are of the form x mod 2e, −x mod 2e,(
x + 2e−1

)
, and

(
−x + 2e−1

)
.

4.4. Lifting Discrete qth Roots

At this point it is only natural to ask whether or not we can generalize our lifting
methods to qth roots. The affirmative answer is presented below. We follow here
Zeugmann [27]. As in the case of discrete square roots we have to distinguish the
cases whether or not the exponent and the modulus have a nontrivial common factor.
We start with the case that gcd(p, q) = 1.

Theorem 20. Let p be any prime, let e ∈ N+, let q ∈ N+ be such that gcd(p, q) = 1,
and let a ∈ N+ and x0 ∈ Z∗

p be such that x
q mod (p−1)
0 ≡ a mod p. Then one can lift

this solution x0 to a uniquely determined solution x1 of xq ≡ a mod pe.

Proof. First, we compute the modular inverses ca,0 and cq,0 in {1, . . . , p − 1} of a

and q modulo p, respectively, and set x0,0 = x0. Then start Algorithm LIFT3.
Algorithm LIFT3

Input. A prime p, a natural number e > 2, q ∈ N+ such that gcd(p, q) = 1, a qth
residue a ∈ Z∗

pe , an initial solution x0,0 of x
q
0 ≡ a mod p, and the modular

inverses ca,0 and cq,0 modulo p.
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Output. The solution x1 of xq ≡ b mod pe such that x1 ≡ x0,0 mod p.

Step 1. For i = 1, 2, . . . dlog ee compute

ca,i :=
(
2 · ca,i−1 − a · c2

a,i−1

)
mod p2i

cq,i :=
(
2 · cq,i−1 − q · c2

q,i−1

)
mod p2i

x0,i :=
(
x0,i−1 + x0,i−1

(
1 − x

q
0,i−1ca,i

)
cq,i

)
mod p2i

.

(Note that ca,i and cq,i are the modular inverses of a and q modulo p2i)

Step 2. Let m = dlog ee. Output x1 := x0,m mod pe.

It remains to show the correctness of this algorithm. Since a ∈ Z∗
pe , we know that its

modular inverse modulo pe exists. By assumption we also know that gcd(p, q) = 1,
and thus the modular inverse of q modulo pe exists, too. Furthermore, the com-
putation of ca,i and cq,i, respectively, are just done as in Algorithm INV, and thus
correct.

In order to show that x1 is a solution of xq ≡ a mod pe, it suffices to prove that
x

q
0,ica,i ≡ 1 mod p2i for i = 0, . . . , dlog ee. This is done inductively.

The induction basis is clear by construction. Assuming the induction hypothesis
that p2i−1

|
(
1 − x

q
0,i−1ca,i−1

)
the induction step is done as follows:

x
q
0,ica,i ≡ ca,i

(
x0,i−1 + x0,i−1

(
1 − x

q
0,i−1ca,i

)
cq,i

)q

≡ x
q
0,i−1ca,i

(
1 +

(
1 − x

q
0,i−1ca,i

)
cq,i

)q

≡ x
q
0,i−1ca,i

q∑
ν=0

(
q

ν

) (
1 − x

q
0,i−1ca,i

)ν
cν

q,i

≡ x
q
0,i−1ca,i + x

q
0,i−1ca,i

(
1 − x

q
0,i−1ca,i

)
mod p2i

,

where the latter step results from the fact that, in accordance with the induction hy-
pothesis, we have p2i−1

|
(
1 − x

q
0,i−1ca,i−1

)
. Hence, we see that p2i

|
(
1 − x

q
0,i−1ca,i−1

)ν

for every ν > 2. Moreover, we have
(

q
1

)
= q and cq,iq ≡ 1 mod p2i .

Thus, finally we obtain

x
q
0,ica,i ≡ x

q
0,i−1ca,i −

(
1 − x

q
0,i−1ca,i − 1

) (
1 − x

q
0,i−1ca,i

)
≡ x

q
0,i−1ca,i + 1 − x

q
0,i−1ca,i −

(
1 − x

q
0,i−1ca,i

)2

≡ 1 mod p2i

.

Consequently, x1 is a solution of xq ≡ a mod pe. So, it also satisfies the congruence
x

q
1 ≡ a mod p. Since x

q
0 ≡ a mod p by assumption, we have x1 − x0 ≡ 0 mod p.

Therefore, x1 and x0 are, when taken modulo p, the same.
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Remarks. By Theorem 20 we know how to efficiently lift one given solution x0 of the
congruence x

q mod (p−1)
0 ≡ a mod p to a solution x1 of the congruence xq ≡ a mod pe.

On the other hand, if b = gcd(p − 1, q) then the congruence x
q mod (p−1)
0 ≡ a mod p

possesses precisely b many solutions (cf. Theorem 11). Taking into account that
ϕ(pe) = pe−1(p − 1) and that gcd(p, q) = 1, we conclude that gcd(ϕ(pe), q) = b,
too. Thus, the congruence xq ≡ a mod pe also has precisely b many solutions.

Therefore, it is only natural to ask whether or not one has to lift each solution
obtained modulo p to its corresponding solution modulo pe or if we can compute the
remaining solutions modulo pe more efficiently.

Looking at the proof of Theorem 11, we see that we can use the same algorithm
to find the remaining solutions; i.e., by computing a solution ζ of xq ≡ 1 mod pe,
then calculating ζ2, . . . , ζb−1, and finally by multiplying x1 with each of the obtained
values ζ, . . . , ζb−1. Note that ζ can be found as before. We randomly pick an ele-
ment η ∈ Z∗

pe until we find a qth nonresidue.

4.5. The Case gcd(p, q) 6= 1

Next, we have to solve the case that gcd(p, q) 6= 1. Since we have already studied
the subcase p = 2, it remains to handle the case that the prime p is odd. First, we
consider the case that p = q, and then we shall consider the general case.

Mutatis mutandis we have to overcome the same problems mentioned before pre-
senting the Algorithm LIFT2. In particular, it is no longer true that xp ≡ a mod pe

is solvable if and only if xp ≡ a mod p is solvable. In particular, Theorem 6 implies
that xp ≡ a mod p has the uniquely determined solution x = a. In contrast, provided
that a is a pth residue modulo pe, then we always have p solutions.

Theorem 21. Let p be any odd prime, let e ∈ N+, and let a ∈ N+. Then one can
(efficiently) compute all solutions of xp ≡ a mod pe.

Proof. First, if a = 0 or a is such that p divides a then x = 0 is the only solution,
and we are done.

Second, if a ∈ N+ and p does not divide a then we distinguish the following cases:
Case 1. e = 1.
Then, we know that gcd(p, a) = 1, and so a ∈ Z∗

p. Consequently x0 := a mod p

is the only solution of xp ≡ a mod p, and the theorem is shown.
Case 2. e > 1.
We note that Theorem 11 is applicable. Since b = gcd(ϕ(p), p) = p we have to

check whether or not a is a pth residue modulo pe. If it is not, then there is no
solution.

If a is a pth residue modulo pe, then we know by Theorem 11, Assertion (3),
that there are precisely p solutions. So, it remains to show how these solutions are
computed. This is done as follows:
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Note that if a is a pth residue modulo pe then it is also a pth residue modulo pk

for all k = 1, . . . , e − 1. This is a direct consequence of Theorem 11, Assertion (1).
Then we also know that a ∈ Z∗

pe . Our strategy is to find a solution modulo p2.
Having the latter solution we lift it to a solution modulo p3. Afterwards, we shall use
a modification of the Algorithm LIFT2. This ensures that the number of lifting steps
is bounded by O(log e).

Next, we take x1 := (a + p) mod p2, and show the following claim:
Claim 1. x1 is a solution of xp ≡ a mod p2.
We have to compute x

p
1 . Note that pp−ν is divisible by p2 for all ν 6 p−2. Hence,

we have

x
p
1 ≡ (a + p)p ≡

p∑
ν=0

aνpp−ν

≡
(

p

p − 1

)
ap−1 · p + ap ≡ ap mod p2 ,

since
(

p
p−1

)
= p. Recall that a is a pth residue modulo p2. Using Theorem 11,

Assertion (1), and ϕ(p2) = (p − 1)p, we obtain aϕ(p2)/p ≡ ap−1 ≡ 1 mod p2,
where the latter step is due to Theorem 6. Consequently, ap ≡ a mod p2, and
therefore x

p
1 ≡ a mod p2. So, Claim 1 is shown.

So, if e = 2 then the p solutions are (x1 + t · p) mod p2 for t = 0, . . . , p − 1. We
shall prove that these values are indeed solutions of xp ≡ a mod p2 below in more
generality. If e > 3, we continue as follows:

We compute the modular inverse ca,3 of a modulo p3 and set

x2 := (x1 + x1 (1 − x
p
1 · ca,3) /p) mod p3 .

Claim 2. x2 is a solution of xp ≡ a mod p3.
Since x

p
1 ≡ a mod p2, we also know that x

p
1 · ca,3 − 1 ≡ 0 mod p2. Consequently,

we see that (1 − x
p
1 · ca,3) /p ∈ Z.

Now, it suffices to show that x
p
2 · ca,3 ≡ 1 mod p3. We obtain

x
p
2 · ca,3 ≡ ca,3 · (x1 + x1 (1 − x

p
1 · ca,3) /p)

p

≡ ca,3 · xp
1 (1 + (1 − x

p
1 · ca,3) /p)

p

≡ ca,3 · xp
1

p∑
ν=0

(
p

ν

)
((1 − x

p
1 · ca,3) /p)

ν

≡ x
p
1 · ca,3

(
1 +

(
p

1

)
(1 − x

p
1 · ca,3) /p

)
≡ x

p
1 · ca,3 + x

p
1 · ca,3 (1 − x

p
1 · ca,3)

≡ x
p
1 · ca,3 − (1 − x

p
1 · ca,3 − 1) (1 − x

p
1 · ca,3)

≡ x
p
1 · ca,3 + 1 − x

p
1 · ca,3 − (1 − x

p
1 · ca,3)

2

≡ 1 mod p3 .
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Note that we used p| ((1 − x
p
1 · ca,3) /p) in order to go from line 3 to line 4. There-

fore,
(

p
p−2

)
((1 − x

p
1 · ca,3) /p)

2 is divisible by p3 and ((1 − x
p
1 · ca,3) /p)

ν is itself
divisible by p3 for all ν > 3. The first part of the latter observation also shows that
we cannot directly lift x1 to a solution modulo p4. Finally, in line 7 we used the fact
that x1 · ca,3 − 1 ≡ 0 mod p2. Thus, Claim 2 is shown.

Consequently, if e = 3 then we are done. We output x2 + t ·p2 for t = 0, . . . , p−1.

If e > 4 then we use the following Algorithm LIFT4, which is a modification of
Algorithm LIFT2. We denote the modular inverse of a modulo pk by ca,k. Analo-
gously, we write x0,0 for the initial solution x0 and x0,k for the solution lifted to pk.
Note that we skip below the formulae for the computation of the modular inverse,
since it is the same as in the Algorithm INV.

Algorithm LIFT4

Input. An odd prime p, a natural number e > 3, a pth residue a ∈ Z∗
p, and an initial

solution x1 ∈ Z∗
p3 of xp ≡ a mod p3.

Output. The ϕ(pe)/p solutions of xp ≡ b mod pe.

Step 1. Initialize d = 2 and x0,2 = x1.

Step 2. Compute the modular inverse ca,2d of a modulo p2d. Then calculate

x0,2d := (x0,d + x0,d(1 − x
p
0,d · ca,2d)/p) mod p2d .

Set d := 2d − 1, and iterate the construction until the exponent 2d reaches e.
That means, from x0,0 we calculate x0,4 mod p4, then x0,6 mod p6, a.s.o.

Step 3. Let xm be the last iterate computed. Output the following p solutions:
xm mod pe,

(
xm + pe−1

)
mod pe,

(
xm + 2 · pe−1

)
mod pe, . . . ,(

xm + (p − 1)pe−1
)

mod pe.

The correctness proof for xm is mutatis mutandis the same as the proof of Claim 2,
and the small modifications are done as in the demonstration of Theorem 19. We
therefore omit it here.

It remains to show the correctness and completeness of the solutions output. Since
for e > 2 we have gcd(ϕ(pe), p) = p, we conclude from Theorem 11 that there are
always p solutions. So, it remains to show that the p solutions given are correct. Here
we assume that xm mod pe is a correct solution. Taking into account that

(
p

p−1

)
= p

and that
(
pe−1

)p−ν is divisible by pe for ν = 0, . . . , p−2, we obtain for ` = 1, . . . , p−1

that

(
xm + ` · pe−1

)p ≡
p∑

ν=0

(
p

ν

)
xν

m ·
(
` · pe−1

)p−ν

≡ xp
m ≡ a mod pe ,
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and we are done.

Finally, the Algorithm LIFT4 requires mainly one modular exponentiation and
the computation of a modular inverse. Hence, the algorithm is efficient provided that
a and pe have roughly the same number of bits. Furthermore, it is also efficient if
e 6 max{log a, log p}, since then pe has at most O

(
max{log a, log p}2

)
many bits.

Some more remarks are mandatory here, and so we continue with them.

Remarks. As we mentioned above, the congruence xp ≡ a mod p possesses always
precisely one solution. This is also directly implied by Theorem 11, Assertion (3),
since b = gcd(p − 1, p) = 1 and ap−1 ≡ 1 mod p for every a ∈ Z∗

p.

On the other hand, if e = 2 then ϕ(p2) = (p−1)·p (cf. Theorem 4). Consequently,
now we know that there are precisely p − 1 many pth residues in Z∗

p2 . And for each
of them there are precisely p solutions. And if e > 2 then we always have p solutions.
Furthermore, since p itself does not possess a modular inverse in Z∗

pe for all e > 2, we
have do perform the division by p in our Algorithm LIFT4. This is the reason that
we always take the solution modulo pe+1 and interpret it as a solution modulo pe.
This guarantees that the resulting quotient is always an integer. Furthermore, the
example shows that it may be beneficial to perform the lifting steps with the smallest
solution available.

Note that Theorem 21 generalizes to the case that gcd(p, q) = p but q 6= p,
where p is any odd prime. Let us start with the case that q = pk, where p is an
odd prime and k ∈ N+, k > 2. The idea is to iterate the computation of the roots
as described in the proof of Theorem 21. First, let k = 2; then we have to solve the
congruence zp2 ≡ a mod pe, where e ∈ N+.

The key observation is the following: Assume that a is a qth residue modulo pe.
This can be checked by using Theorem 11, Assertion (1). If a is a qth residue mod-
ulo p, we know that aϕ(pe)/b ≡ 1 mod pe, where b = gcd(ϕ(pe), q). Now, recalling
that q = p2 we thus have b = p2, since q 6= p. Hence, we obtain

1 ≡ 1p ≡
(
aϕ(pe)/p2

)p

≡ aϕ(pe)/p ;

i.e., a is also a pth residue modulo pe.

Consequently, we can use the algorithm presented in the proof of Theorem 21 and
compute a solution x0 of xp ≡ a mod pe. Thus, we know that x0 = p

√
a. Now, we

iterate the computation and solve yp ≡ x0 mod pe. Therefore, for every solution y

of yp ≡ x0 mod pe we know that (yp)
p ≡ a mod pe. Since there are p solutions

of xp ≡ a mod pe, we obtain p2 solutions of zp2 ≡ a mod pe, and Theorem 11 it
telling us that we have found all possible solutions.

Now, it is easy to see that these ideas nicely generalize to the case that q = pk,
where k > 2. However, if we increment k and if e is larger, then the amount of the
necessary computations grows exponentially in k.
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Furthermore, the general case that q = ` · pk, where gcd(`, p) = 1 can be handled
mutatis mutandis. Now, one has to take the `th root, and then we are back to the
case that q is a power of p.

Finally, we provide an example.

Example 7. Let a = 324, let q = 49, let p = 7 and e = 4. The reader should
verify that 324 is a 49th residue modulo 74. Using our algorithm from the proof of
Theorem 21 we find x1 = 863 and verify that 8637 ≡ 324 mod 74.

Next, we solve y7 ≡ 863 mod 74 by using the same algorithm. So the solution
modulo 7 is 2, the solution modulo 72 is 37, and then we obtain c863,3 = 312 and

y3,1 :=
(
37 + 37

(
1 − 377 · 312

)
/7

)
mod 73 = 156 .

The final step yields c863,4 = 1341 and

y4,1 :=
(
156 + 156

(
1 − 1567 · 1341

)
/7

)
mod 74 = 793 .

A quick check shows that 79349 ≡ 324 mod 74. The seven solutions obtained from 793

are thus

793, 1136, 1479, 1822, 2165, 107, 450 .

Repeating the calculations for x2 := (863 + 73) mod 74 = 1206 results in the seven
solutions

842, 1185, 1528, 1871, 2214, 156, 499 .

Next, we take x3 := (863+2 ·73) mod 74 = 1549, x4 = 1892, x5 = 2235, x6 = 177,
and x7 = 520 in order to find the remaining 35 solutions, which are

1920, 2263, 205, 548, 891, 1234, 1577,

1969, 2312, 254, 597, 940, 1283, 1626,

2018, 2361, 303, 646, 989, 1332, 1675,

2067, 9, 352, 695, 1038, 1381, 1724,

744, 1087, 1430, 1773, 2116, 58, 401 .

It should be noted that only the last lifting step has to be repeated in all these
calculations. We leave it to the reader to figure out why this is so.

5. Conclusions and Open Problems

In this paper we have studied the problem to take discrete qth roots in the field Zp and
the ring Zpe . In a first step we showed a generalization of the generalized Adleman,
Manders, and Miller [1] algorithm, which solves this problem modulo p (cf. Algorithm
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AMMG 1). Second, we generalized the obtained algorithm to solve the problem of
taking discrete qth root directly in the ring Zpe resulting in the Algorithm AMMG 2.

The computational difficult part in these two algorithms is a discrete logarithm
problem. The present algorithms solve this problem by computing the b-adic repre-
sentation of the desired discrete logarithm digit-wise. Recall that b = gcd(p − 1, q).

However, looking at the Congruence shown in (14) it is easy to see that we just
have to find an m ∈ N+ such that aq`−1 · (ηt)

m ≡ 1 mod p. This problem looks
easier than the general strategy presented in the proof of Theorem 11 by at least two
reasons. First, we do not need a generator, just a qth nonresidue η. Though we have
to choose randomly an element from Z∗

p until a qth residue is found, the advantage is
the verification by using Assertion (1) of Theorem 11. As far as I am aware of, there is
no comparable method to check whether or not an element from Z∗

p is a generator. Of
course, these remarks directly apply to the Algorithm AMMG 2, too. So it would be
nice to know whether or not improvements are possible, e.g., along the lines explored
by Bernstein [3].

Furthermore, for several years I have been interested in lifting algorithms and have
studied algorithms as presented in Section 4 and also some that allowed for a lifting an
element given modulo p to a corresponding element modulo pe (cf. Zeugmann [26, 27]).
The lifting algorithms obtained are well-suited for parallel computations provided p

and e are bounded by nc, c constant, where n is the number of bits of the remaining
inputs. Note that all these algorithms strictly avoid modular exponentiation.

On the other hand, the lifting algorithms included in Algorithm Tonelli 2, presented
as Tonelli’s [24] lifting in Section 4.3, and included in the Algorithm AMMG 2, all
use modular exponentiation to achieve the lifting. This indicates the strength and
usefulness of modular exponentiation. On the other hand, so far I am not aware of
any optimal or close to optimal parallel modular exponentiation algorithm.
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