
TCS -TR-B-05-01

TCS Technical Report

Course Notes on Theory and Practice of Algorithms –
Part I: Algorithmic Learning

by

Thomas Zeugmann

Division of Computer Science

Report Series B

June 7, 2005

Hokkaido University
Graduate School of

Information Science and Technology

Email: thomas@ist.hokudai.ac.jp Phone: +81-011-706-7684
Fax: +81-011-706-7684

Abstract

This report contains the course notes of Part I ofTheory and Practice of Algorithms.
Within this part we deal withalgorithmic learning. Some learning algorithms for funda-
mental learning problems are studied. Furthermore, we focus our attention on the complex-
ity theoretical issues involved.

In addition to the usual wort-case analysis, we also deal with the average-case behav-
ior. Therefore, one lecture is devoted to introduce the subject of average-case analysis of
algorithms.

Finally, after having gained a deeper understanding of what algorithmic learning really
is, we exemplify the application of algorithmic learning to the field of data mining.

Contents

LECTURE1: ALGORITHMIC LEARNING 1

1.1. What is Learning? .3

1.2. Examples .4

1.3. Specifying a Learning Model .9

LECTURE2: LEARNING MODELS 15

2.1. Modeling a Learning Task .15

Variant 1: On-line Prediction .16

2.2. Learning in the Limit .19

2.2.1. Basic Notations and Definitions .20

LECTURE3: MORE ABOUT LEARNING IN THE L IMIT 25

3.1. The Weakness of Text .26

3.2. The Pattern Languages .27

3.2.1. Learning the Pattern Languages via Descriptive Patterns29

3.3. Learning Recursive Functions .32

3.4. Points of Concern .34

3.5. Consistency .35

3.6. Total Learning Time .41

LECTURE4: AVERAGE-CASE COMPLEXITY 45

4.1. Introductory Examples .45

4.2. Analyzing the Common Algorithm for Finding the Maximum47

LECTURE5: AVERAGE-CASE ANALYSIS II 53

5.1. Average-Case Analysis for Learning in the Limit from Positive Presentations55

i

ii Thomas Zeugmann

LECTURE6: STOCHASTIC FINITE LEARNING AND PAC LEARNING 61

6.1. Stochastic Finite Learning .61

6.2. Learning Monomials from Informant .63

6.3. PAC Learning .65

6.3.1. PAC Learning - the Finite Case .69

LECTURE7: DECISION TREE LEARNING 73

7.1. Decision Tree Representation .74

7.2. The Basic Decision Tree Learning Algorithm76

7.3. Information, Entropy and Information Gain81

7.4. ID3’s Hypothesis Space .85

7.5. Inductive Bias in Decision Tree Learning85

1

“Everything should be made as simple as possible, but not simpler.”

Albert Einstein

LECTURE1: ALGORITHMIC LEARNING

This course is about algorithms. The history of algorithms goes back, approximately, to
the origins of mathematics at all. For thousands of years, in most cases, the solution of a
mathematical problem had been equivalent to the construction of an algorithm thatsolved
it. The ancient development of algorithms culminated in Euclid’s famous “Elements”. Un-
fortunately, after Euclid the design of algorithms faced roughly 2000 years of decline. It got
increasingly popular to prove the existence of mathematical objects by using the technique
of reductio ad absurdum.

Modern computation theory starts with the question:

Which problems can be solved algorithmically?

It was posed due to the fact that despite enormous efforts of numerous mathematicians sev-
eral problems had remained unsolved yet, e.g., the construction of an algorithm deciding
whether a given Diophantine equation has an integral solution (Hilbert’s 10th problem). In
order to answer it, first of all, theintuitive notion of an algorithm has to be formalized math-
ematically. Starting from different points of view, Turing [16], Church [3], and Gödel [4]
have given their formalizations (i.e., the Turing machine, theλ–calculus, the recursive func-
tions). However, all these notions are equivalent, i.e., each computation in formalism-1 can
be simulated in formalism-2 and vice versa. Since then, many other proposals had been
made to fix the notion of an algorithm (e.g., by Post [10] and by Markov [7]). This led to
the well-known “Church Thesis,” i.e., “the intuitive computable functions are exactly the
Turing machine computable ones.

After the theory explaining which problems can and cannot be solved algorithmically
had been well-developed, the attention has turned to the qualitative side, i.e.,How “good” a
problem can be solved?First influential papers in this direction were written by Rabin [11]
and [12], as well as by Hartmanis and Stearns [5]; the latter paper gave the field its title:
computational complexity. The central topic studied here was to clarify what does it
mean to say that a functionf is more difficult to compute than a functiong. The distinction
between problems solvable within a time bounded by a polynomial in the length of the
input (that is, problems having a feasible solution) and those not having this property, first
was made by J. von Neumann (1953). Since then, the class of polynomial time-bounded
algorithms has been an object of intensive and continuing research. On the other hand, it is
not known whether many of the problems that are very important for numerous applications
can be solved in polynomial time.

Since this is a very large area, we have to select certain problems we wish to study.
Recently, the field of knowledge discovery has attracted enormous interest. Therefore, we

2 LECTURE1: ALGORITHMIC LEARNING

would like to focus our attention in the first part of this course to several aspects related to
this area. In particular, we shall deal withalgorithmic learning. But also this area is much
too large to be covered within such a short amount of time. Throughout this course, we
shall have a closer look at the developments within the field of algorithmic learning. We
shall study some learning algorithms for fundamental learning problems. Additionally, we
focus our attention on the complexity theoretical issues involved.

After having gained a deeper understanding of what algorithmic learning really is, we
shall turn our attention to the application of algorithmic learning to the field of data mining.

The second part of this course is onefficient data structures for manipulating Boolean
functions. This part will be covered in a separate report.

Next, we would like to motivate the subject of algorithmic learning. So, let us ask
Why do we dream about algorithmic learning?

After all, humans are excellent learners. As Bertrand Russell [14] already noted

“How comes it that human beings, whose contacts with the world are brief and
personal and limited, are nevertheless able to know as much as they do know?”

But nowadays, it becomes more and more difficult to know what is already known.
There are many learning tasks that are far too complex for humans, or solving them by
humans is quite expensive, and/or takes a huge amount of time, thus, the knowledge gained
may be out of data before it is even ready. So, it would be better, if computers could learn,
for instance, knowledge bases from examples. It would also be desirable to have computers
that can discover knowledge by their own.

This idea, however, is not as new as it may seem. Shortly after the first computers have
been emerged, pioneering researchers formulated the goal to construct a machine which is
capable to learn. Allan Turing [17] considered the capability to learn as a major part of
intelligence.

Nevertheless, the problem reached a new dimension during the last decade. Nowadays,
across a wide variety of fields, data are being collected and accumulated at a dramatic pace.
For example, within the human genome project there are now billions of data available. But
researchers in this field are not mainly interested in the data themselves. Instead, they want
to find out, for example, which genes may cause a particular kind of cancer. So, there is an
urgent need for a new generation of computational techniques and tools to assist humans in
extracting useful information (knowledge) from the rapidly growing volumes of data.

As Pieter Adriaans and Dolf Zantinge [1] put it:

“We are confronted with the paradox of the growth of data, that more data
means less information. In the future, the ability to read and to interpret alone
will not be enough to sur vive as a professional, a scientist or a commercial
organization. The mechanical production and reproduction of data force us to
adapt our strategies and develop mechanical methods of filtering, selecting, and
interpreting data.”

WHAT IS LEARNING? 3

A similar viewpoint has been expressed by Richteret al. [13]

“Moreover, nowadays the data collected in in various fields such as biology, fi-
nance, retail, astronomy, medicine are extremely rapidly growing, but our abil-
ity to discover useful knowledge from such huge data sets is still too limited.
Clearly, powerful learning systems would be an enormous help in automati-
cally extracting new interrelations, knowledge, patterns and the like from those
and otherhugecollections of data.”

Within the process of discovering knowledge from data bases, very often algorithmic
learning plays an important role. Therefore, we shortly introduce this subject here. Before
doing this, it is very useful to recall a point made by Donald Knuth [6] in his Turing Award
lecture.

“Science is knowledge that we understand so well that we can teach it to a
computer; and if don’t fully understand something, it is an art to deal with it.
. . . we should continually be striving to transform every art into science: in the
process, we advance the art.”

Thus it is only natural to ask whether learning is anart or ascience.

1.1. What is Learning?

Since humans are excellent learners, at first glance it should be easy to define what
learning is. So, let us continue by looking at some of the definitions proposed.

Simon [15] gave the following well-known definition;

“Learning denotes changes in the system that . . . enable the system to do the
same task or tasks drawn from the same population more efficiently and more
effectively the next time.”

It is not hard to see that this definition also covers phenomena that are usually not con-
sidered as learning. For example, if we run the same program on a faster computer then
execution will be faster. Please think about more examples along this line. On the other
hand, this definition does not cover all aspects of learning. For example you may study
a map before driving to destination unknown to you. Then just by knowing your way
(because you learned it before starting your drive) you behave probably much better than
someone who has not studied the map in advance. But you can do better thefirst time and
not only when driving the second time.

So, let us see what else has been proposed.

“Learning is making useful changes in our minds.”

4 LECTURE1: ALGORITHMIC LEARNING

This definition has been given by Marvin Minsky [9]. However, it may be require substan-
tial effort to make it applicable to the construction of a learning computer.

Another famous definition is due to Michalski [8].

“Learning is constructing or modifying representations of what is being expe-
rienced.”

And sometimes we even find (cf. Adriaans and Zantinge [1])

“We will not state what learning is.”

So, we see it is by no means easy to arrive at a useful definition. The state of the art can
be characterized as follows (cf. Richteret al. [13]).

Numerous mathematical models of learning have been proposed during the
last three decades. Nevertheless, different models give vastly different results
concerning the learnability and non-learnability of objects one wants to learn.
Hence, finding an appropriate definition of learning which covers most aspects
of learning is also part of the goals aimed at in algorithmic learning theory.

For getting a first understanding of what we have to talk about, let us continue by looking
at some examples.

1.2. Examples

We restrict ourselves here to inductive learning, i.e., to scenarios in which the learner, at
every stage, has access to a finite set of data, though it has possibly to generalize its findings
to an infinite set of data. Our first example is drawn from the area of function learning. A
teacher is providing input-output examples of the target function. So, let us assume that we
have received

f(0) = 0 and f(1) = 1 .

What function could it be? Since there is no need to introduce anything sophisticated at this
point, most people would conjecture that the target function can be expressed asf(x) = x.

But the next example is destroying this conjecture, our teacher just supplied

f(3) = 720! ,

where thefactorial functionn! is inductively defined as0! = 1 and(n + 1)! = (n + 1)n!

for all n ≥ 0.

At this point we make the following observation.

f(3) = 720! = (6!)! = ((3!)!)! = 3!!!

EXAMPLES 5

This suggests the following solution.

g(x, 0) = x

g(x, n+ 1) = g(x, n)!

f(x) = g(x, x) .

A quick check shows that we are correct, since

f(0) = g(0, 0) = 0

f(1) = g(1, 1) = g(1, 0 + 1) = g(1, 0)! = 1! = 1

f(3) = g(3, 3) = g(3, 2 + 1) = g(3, 2)! = g(3, 1 + 1)! = (g(3, 1)!)!

= (g(3, 0 + 1)!)! = ((g(3, 0)!)!)! = ((3!)!)!

As a matter of fact, for finding this solution we have applied a famous principle from the phi-
losophy of science usually referred to asOccam’s Razor which was formulated around
1320 by William of Occam as follows.

“Entities should not be multiplied unnecessarily.”

The best reformulation of this principle for scientists is:When you have two competing
theories which make exactly the same predictions, the one that is simpler is the better.

Therefore, if we look at the examples as expressions of the formy = f(x) we had to
expressy in termini ofx.

Furthermore, we made a couple of implicit assumptions which we would like to make
explicitly right now. First, we have assumed that we have to learn a function. This target
function is chosen by the teacher from a set of functions. Additionally, we assumed that
the function is defined over the setN of natural numbers. So, thedomain is a class of
computable functions over the natural numbers.

Note that the assumption to have a computable function is essential in this context, since
otherwise we cannot find afinite description for the target function. Moreover, we can
interpret our solution as aprogramcomputingf . Thus, our learner produced a sequence of
hypotheses and each hypothesis has been chosen from the set of all programs computing
functions overN. From now on, we shall refer to set of all allowed hypotheses as to the
hypothesis space.

Assuming that we indeed learned the target function, we see that the learning success
occurred only after a certain number of examples. So, in general we always have to define
acriterion of success.

Last but not least, since we want to clarify what algorithmic learning is, we have assumed
the learner to be an algorithm. This learner may have searched for the simplest program
explaining the data.

6 LECTURE1: ALGORITHMIC LEARNING

Putting it all together, we can summarize our approach as follows.

domain:

Information source:

hypothesis space:

Learning method:

Semantics of hypotheses:

Success criterion:

class of computable functions

examples:(x, f(x))

all programs

search

program

correct after finitely many examples
Next, we look a problem that may serve as a typical example for many data mining tasks.

So, let us look at the following tiny data set called the weather data. Of course, this data set
is fictitious, but it serves its purpose to explain some typical features. The data concern the
conditions for playing some unspecified game.

outlook temperature humidity windy play

sunny hot high false no
sunny hot high true no

overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no

overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes

overcast mild high true yes
overcast hot normal false yes

rainy mild high true no

Figure 1.1:The Weather Data

In the table displayed above, we have fourattributes, i.e.,outlook , temperature ,
humidity , andwindy . These attributes can take symbolic values rather than numerical
values. The rightmost column shows the recommendation, that is whether or not one should
play.

outlook temperature humidity windy play

sunny cool high true ?

Figure 1.2: The data for tomorrow.

Next, we ask if there are any rules behind this table. This is the typical question asked in
data mining. The typical problem is then to make predictions. For example, we are given
the following data for tomorrow (cf. Figure1.2).

EXAMPLES 7

So, what should we do, play or not play? Of course, this prediction should be be con-
sistent with the table given above. Now, the idea is first to learn a decision tree from the
table above. Then, we apply it to the data for tomorrow. A decision tree explaining the data
above could look as follows.

sunny overcast rainy

high normal false true

no yes yes no

yes

outlook

windyhumidity

Figure 1.3: Decision tree for the weather data.

In order to see that this decision tree explains the table, let us look at the following
example (the first data row of the table shown in Figure 1.1).

outlook temperature humidity windy play

sunny hot high false no

Figure 1.4: First entry of the weather data.

Using the decision tree above, we obtain the classification shown in Figure 1.4 by fol-
lowing the path determined by the values given for the attributes (cf. Figure 1.5).

sunny overcast rainy

high normal false true

yes yes no

yes

no

outlook

windyhumidity

Figure 1.5: Application of the decision tree to the data in Figure

The rest of the table is verified analogously.

8 LECTURE1: ALGORITHMIC LEARNING

Now, we can apply the decision tree from Figure 1.3 to make the desired prediction.
Sinceoutlook is sunnyandhumidity is high we have to follow the same path as in
Figure 1.5 and obtainno. Thus, we obtain:

outlook temperature humidity windy play

sunny cool high true no

Figure 1.6: The data for tomorrow completed.

Of course, you may wonder why the attributetemperature does not appear in our
decision trees. Answering this question is closely related to the problem of how to construct
decision trees for tables such as the weather data. We shall deal with these questions in
Lecture 7.

Finally, we again summarize the approach undertaken in an analogous way as we did
for the function learning problem. Thus, we obtain the following.

domain:

Information source:

hypothesis space:

Learning method:

Semantics of hypotheses:

Success criterion:

discrete functions

positive and negative examples

all decision trees

decision tree learner

classifier

correct after finitely many examples
Next, we take a look at a slightly different example. We wish to model learning tasks

such as “Learning of Data Structures” from examples. Data structures are used in many
applications. In order to keep the example simple, let us look at something familiar, i.e., a
list of references.

GOLD, M.E. (1967), Language identification in the limit,Information and Control10,
447 – 474.

LANGE, S.AND WIEHAGEN, R. (1991), Polynomial-time inference of arbitrary pattern
languages,New Generation Computing8, 361 – 370.

Of course, this list is a very short one. Usually, one has large or even huge bibliographies.
These bibliographies may come from different sources and thus one may wish to unify
them. So, one could choose the liked best, learn its underlying data structure and apply the
result to the remaining ones.

Looking at the two examples given, the underlying data structure might have the follow-
ing pattern:

AUTHORS, INITIALS . (Year), Title,JournalVolume, number – number.

or more formally:x1, x2.(x3), x4, x5x6, x7 − x8.

Any pattern is a non-empty string overA∪X, whereA is an alphabet,X is a countably
infinite set of variables andA ∩ X = ∅. Pattern define languages in a natural way. The

SPECIFYING A LEARNING MODEL 9

language generated by a patternπ is the set of all strings that can be obtained by substituting
all occurrences of variables by (non-empty) strings overA, where the same variables have
to be substituted by the same string. For example, the patternxx generates the language
L = {ww w ∈ A+}. We shall formally define patterns and pattern languages in Lecture 3.

So, in our example above,A consists of the Latin alphabet, the punctuation symbols,
the digits{0, 1, . . . , 9}, and the parentheses().

Note, however, that the references given above could be already generated by the fol-
lowing pattern

x1, x2.(19x3), x4, x5x6, x7 − x87x9 .

Summarizing in an analogous way as above, now we obtain:

domain:

Information source:

hypothesis space:

Learning method:

Semantics of hypotheses:

Success criterion:

pattern languages

positive examples

all patterns

string algorithms

interpretation of patterns

correct after finitely many examples

1.3. Specifying a Learning Model

After having seen three examples, we continue by clarifying the subject of Algorithmic
Learning Theory. We focus our attention in partially answering of whatmachine learn-
ing is supposed to mean. Answering this question includes bothdeveloping mathematical
modelsof machine learning andderiving results within the modelsdeveloped. Both parts
deserve special attention. In general, a model should capture at least significant applica-
tions. However, as already mentioned, the state of the art in modeling learning is still much
less satisfactory than in other areas of theoretical computer science.

For example, around 60 years agocomputability theoryemerged. Initially, many dif-
ferent models have been introduced, e.g., Turing machines, partial recursive functions,
Markov algorithms, Church’λ-calculus. Nevertheless, later on, all those models have been
proved to be equivalent. Subsequently, researchers focused their attention to obtaining re-
sults within the model.

Another example is the rapidly emerging field of parallel computation. Unlike sequential
algorithms, for which the above standard models exist, there are many contending models
on which parallel algorithms can be based. Different parallel computer models differ from
each other in various ways, e.g., whether or not different instructions on different data can
be performed at one time, with respect to the geometrical arrangement of the processors
and their interconnection, etc. However, there is a huge amount of literature relating these
models to one another, and there is at least a universal interconnection pattern; i.e., the so
calledparallel computation thesis(cf., e.g., Zeugmann [18] and the references therein).

10 LECTURE1: ALGORITHMIC LEARNING

The situation in algorithmic learning theory is however, quite different. Numerous math-
ematical models of learning have been proposed during the last three decades. Never-
theless, different models give vastly different results concerning the learnability and non-
learnability of objects one wants to learn. Hence, finding an appropriate definition of learn-
ing which covers most aspects of learning is also part of the goals aimed at in algorithmic
learning theory.

As we have seen above, every learning model has to specify several aspects. In the
following we provide a more detailed explanation of the main aspects to be modeled.

1. The Learner: Specifying the learner means answering the question “Who” is doing the
learning? The most general answer one may give in algorithmic learning is that the
learner is supposed to be an algorithm, i.e., a computer program. For example, the
subfield of inductive inference generally specifies the learner in this way (cf., e.g., An-
gluin and Smith [2]). However, the learner may be restricted in one way or another.
One may require the learner to be time efficient, i.e., to use an amount of time that is
uniformly bounded by a polynomial in the length of its inputs. The learner may be
also restricted with respect to its available amount of space. Further restrictions are
possible, and we shall discuss them throughout this course.

2. The Domain: “What” is being learned? The answer to this question specifies the objects
the learner has to deal with. For example, we may request the learner to learn an
unknown concept, such as a table, a chair, a sofa. Then, thelearning goalconsists in
synthesizing a “rule” to separate positive examples from negative ones. That means,
after having finished its learning task, the learner must be able to correctly classify an
object presented to him either as being a chair (a table, a sofa) or as not being a chair
(a table, a sofa). This type of learning is referred to as concept learning, and has been
studied extensively.

However, there are many other objects the learnability of which has been extensively
studied, too. For example, the object to be learned may be an unknown function, an
unknown language, an unknown device, an unknown technique (e.g., how to drive a
car), an unknown environment (e.g., a new building), an unknown family of similar
phenomena (e.g., voice recognition, face recognition, character recognition (hand
written or printed), an unknown graph, and many, many more.

3. The Information Source: This part of the specification deals with the question from
“what” information the learner should perform its task. That means, one has to clarify
how the learner is informed about the target object. There is a huge variety of ways
how this can happen. In the following we provide several examples that focus on
widely studied models.

(i) Examples: In this scenario, the learner is fed with examples of the object to
be learned. For example, when learning the concept of a chair, the learner is
provided particular instances that constitute or do not constitute a chair. When

SPECIFYING A LEARNING MODEL 11

learning an unknown functionf , the learner is provided input–output exam-
ples, i.e.,(x0, f(x0)), (x1, f(x1)), (x2, f(x2)), When learning a language,
the learner may be fed arbitrary strings over the underlying alphabet that are
classified with respect to their containment in the target language. Alternatively,
the learner may be also requested to learn frompositiveexamples, only. More-
over, examples can be chosen in very different ways. They might be chosen
with respect to some underlying but unknown (or known) probability distribu-
tion. Furthermore, they might be chosen arbitrarily, they can be chosen sys-
tematically, they can be chosen maliciously (this is of special interest if one is
aiming to study the worst-case behavior of a learning algorithm). On the other
hand, the examples can be chosen carefully, too, e.g., by a teacher who wants to
facilitate the learning process.

There is another important aspect that will be described later, i.e., the problem
how todescribethe examples.

(ii) Queries: In this scenario, the learner is enabled to ask questions about the
target object to a teacher. For example, when learning the concept of a car,
the learner may ask “Is an Audi an example of a car?” Or, when learning a
language, it may ask “Isw a word of the target language?” This type of question
is usually referred to asmembership query. Alternatively, it may ask “IsG a
grammar for the target language?” When learning an unknown environment, it
may ask “Is this a correct floor plan of the ground floor?” The latter type of
question is referred to asequivalence queries, since the learner provides a rule
and asks if that rule is correct. There are further types of possible questions,
e.g.,subset queries, superset queries, anddisjointness queriesthat have been
studied intensively.

(iii) Experimentation: In this scenario, the learner may get information concerning
the object to be learned by actively experimenting with it. For example, the
learner may learn a new environment by walking through it. Again, different
walking strategies are imaginable, e.g., a random walk, a nondeterministic walk,
a systematic walk, a.s.o.

When talking about the information source, another very important aspect has to be
considered. This issue is whether or not the model can handlenoisyor erroneous
information sources. As an example, consider a learner that aims to recognize zip
codes on letters. The learner is given examples provided by a post office employee.
However, sometimes the employee may misread the handwritten codes. This results
in erroneous information.

4. Hypothesis Space:Generally, a learner is supposed to map evidence (e.g., examples)
on the object to be learned into a hypotheses about it. Therefore, one has to choose a
set of possible descriptions. Clearly, each rule contained in the learning domain has
to possess at least one description in the hypothesis space. However, the hypothesis
space may additionally contain descriptions not describing any object in the learning

12 LECTURE1: ALGORITHMIC LEARNING

domain. Furthermore, the descriptions provided by the hypothesis space may be
slightly different from those ones used in defining the objects to be learned in the
learning domain.

5. Prior Knowledge: Here, one has to specify what does the learner know about the do-
main initially? This generally restricts the learner’s uncertainty and/or biases and
expectations about the objects to be learned. Obviously, specifying the hypothesis
space already provides some prior knowledge. In particular, the learner knows that
the target object is representable in a certain way, e.g., as a graph having at most 1000
nodes, as a language acceptable by a finite automaton, or as function computable by
a program having at most 100 instructions. However, such type of assumptions can
be very unrealistic in practice. Furthermore, prior knowledge my also be provided
by “telling” the learner that “simple” answers are preferable to more “complex” hy-
potheses. Finally, looking at important applications one has to take into account that
prior knowledge may be “incorrect.” Thus, when developing advance learning tech-
niques one has to deal with the problem how to combine or trade-off prior versus new
information.

6. Success Criteria:Finally, one has to specify the criteria for successful learning. This
part of the specification must cover at least some aspects of our intuitive understand-
ing of learning. For example, an automatic camera may record everything around it,
but it is intuitively obvious that it does not learn. On the other hand, if we have an
algorithm which, after having been provided a set of examples for the concept sofa,
can label objects as either being a sofa or not being a sofa, we may agree that it has
learned something, i.e., the concept sofa. In particular, we have to deal with questions
like: “How do we know whether, or how well, the learner has learned?” “How does
the learner demonstrate that it has learned something?”

Each specification of the six items described above leads to a model of learning. The
interested reader is referred to the references listed below for further information. In the
following lecture, we shall continue by exemplifying the general outline given above.

References

[1] P. ADRIAANS AND D. ZANTINGE (1997),Data Mining, Addison-Wesley Longman
Publishing Co, Boston, MA.

[2] D. ANGLUIN AND C.H. SMITH (1983), Inductive inference: theory and methods,
Computing Surveys15, 237 - 269.

[3] A. CHURCH (1936), An unresolvable problem of elementary number theory,Am. J.
Math. 58, 345 – 365.

[4] K. GÖDEL (1931), Über formal unentscheidbare Sätze der Principia Mathematica
und Verwandter Systeme,Monatshefte Mathematik Physik38, 173 – 198.

SPECIFYING A LEARNING MODEL 13

[5] J. HARTMANIS AND R.E. STEARNS (1965), On the computational complexity of
algorithms,Trans. Am. Math. Soc.117, 285 – 306.

[6] D.E. KNUTH (1974), Computer Programming as an Art,Commun. ACMbf 17
No. 12, 667-673.

[7] A.A. M ARKOV (1954), Theoria Algorithmov,Akad. Nauk SSSR, Math. Inst. Trudy
42.

[8] R. MICHALSKI (1986), Understanding the nature of learning: issues and research
directions,in (R.S. Michalski, J.G. Carbonell and T.M. Mitchell, eds.), “Machine
Learning: An Artificial Intelligence Approach, Vol. 2,” pp. 3 – 25, Morgan Kaufman,
Los Altos, Calif.

[9] M. M INSKY, The Society of Mind(1985), Simon & Schuster Inc., New York.

[10] E. POST (1943), Formal Reductions of General Combinatorial Decision Problems,
Am. J. Math.65, 197 – 215.

[11] M.O. RABIN (1959), Speed of computation and classification of recursive sets,in
Third Convention Sci. Soc., Israel, pp. 1 – 2.

[12] M.O. RABIN (1960), Degrees of difficulty of computing a function and a partial
ordering of recursive sets,in Technical Report No. 1, University of Jerusalem.

[13] M.M. RICHTER, C.H. SMITH R. WIEHAGEN AND T. ZEUGMANN (1998), Editors’
Introduction, in (M.M. Richter, C.H. Smith R. Wiehagen and T. Zeugmann, eds.),
Algorithmic Learning Theory, 9th International Conference, ALT ’98, Otzenhausen,
Germany, October 1998, Proceedings, Lecture Notes in Artificial Intelligence 1501,
pp. 1 – 10, Springer, Berlin.

[14] B. RUSSELL (1948),Human Knowledge: Its Scope and Limits, Simon and Shuster,
New York.

[15] H. SIMON (1983), Why should machines learn?,in (R.S. Michalski, J.G. Carbonell
and T.M. Mitchell, eds.), “Machine Learning: An Artificial Intelligence Approach,”
pp. 25–38, Tioga Publishing, Palo Alto, Calif.

[16] A.M. TURING (1936/1937), On computable numbers with an application to the
Entscheidungsproblem,Proc. London Math. Soc.42, 230 – 265.

[17] A.M. TURING (1950), Computing Machinery and Intelligence, Mind59, 433-460.

[18] T. ZEUGMANN (1990), Parallel Algorithms,Encyclopedia of Computer Science and
TechnologyVol. 21, Supplement 6, Allen Kent and James G. Williams (eds.), pp. 223
– 244, Marcel Dekker Inc. New York and Basel.

15

LECTURE2: LEARNING MODELS

After having seen what one has to specify in order to arrive at a learning model, we aim
at defining some learning models.

2.1. Modeling a Learning Task

Humans are able to distinguish between different “things,” e.g., chair, table, sofa, book,
newspaper, car, airplane, a.s.o. Also, there is no doubt that humans have to learn how to
distinguish “things.” Therefore, we ask whether this particular learning problem allows an
algorithmic solution, too. That is, we specify the learner to be analgorithm. Furthermore,
we may be tempted to specify the learning domain to be the set of all things. However, since
we aim to model learning, we have to convert “real things” intomathematical descriptions
of things. This can be done as follows. We fix some language to express afinite list of
properties. Afterwards, we decide which of these properties are relevant for the particular
things we want to deal with, and which of them have to be fulfilled or not to be fulfilled,
respectively. For example, the list of properties may be fixed as follows:

- possesses 4 legs, - possesses a rest, - has brown color, - possesses 4 wheels,

- it needs fuel, - possesses a seat,- possesses wings, . . . , - has more than 100 pages.

Now, we can answer
“What is achair?” “What is atable?”

by deciding which of the properties are relevant for the concept “chair,” and which of
them have to be fulfilled or not to be fulfilled, respectively.

For chair, we obtain:

1. possesses 4 legs -yes

2. possesses a rest -yes

3. has brown color -irrelevant

4. possesses 4 wheels -no

5. it needs fuel -no

6. possesses a seat -yes

7. possesses wings -no

.

.

.

n. has more than 100 pages -no

and for table:

- yes

- no

- irrelevant

- no

- no

- no

- no

.

.

.

- no
As you can see, there are two rows at which the entries differ, i.e., possesses a rest and
possesses a seat. Thus, by using our properties, we could distinguishchairandtable.

16 LECTURE2: LEARNING MODELS

Next, we denote then properties by the variablesx1, . . . , xn, whererange(xj) ⊆ {0, 1}
for j = 1, . . . , n. The semantics is then obviously as follows.xj = 1 means propertyj is
fulfilled, while xj = 0 refers to propertyj is not fulfilled.

Thenchair: {0, 1}n → {0, 1}, where

chair(x1, . . . , xn) =

{
1, if x1 = x2 = x6 = 1, and x4 = x5 = x7 = . . . = xn = 0

0, otherwise

Now, settingLn = {x1, x̄1, x2, x̄2 . . . , xn, x̄n} (set of literals) we can express the con-
cept “chair” by the monomial that contains precisely the relevant literals, i.e.,chair =

x1x2x̄4x̄5x6x̄7 . . . x̄n. Note thatx3 does not appear in the monomial “chair, ” since it is
irrelevant.

Hence, we may redefine thelearning domainto be the setX = {0, 1}n. We regardX
as the instance space consisting of instances described by bit vectors of lengthn. Then the
collection of objects to be learned is the setC of all conceptsc:X → {0, 1} that arede-
scribable by a monomialoverX . Thus, the conceptsc classify each instanceb as negative
(if c(b) = 0) or positive (if c(b) = 1). Hence, we may identify the conceptc with the set
of all positive instances for it. That means, we regardc as a subset ofX , and identify it
with its characteristic function. There are two constant characteristic functions, i.e.,1 and0

referring to the concept “TRUE” and “FALSE,” respectively. “TRUE” can be represented
by the empty monomial, and “FALSE” can be represented by, e.g.,x1x̄1. There is acon-
ceptional differencebetween the classC of all concepts describable by a monomial and the
set of all monomials itself. Namely, different monomials may describe thesameconcept.
For example, the concept “FALSE” can be represented byx1x̄1, x2x̄2, ..., x1x̄1 . . . xnx̄n.
However, the concept “FALSE” is the only one allowing different descriptions. Therefore,
in the following we often identify the set of all monomials overLn and the concept classC.
Note thatn is fixed. Thus,C is finite.

Exercise 1.Determinecard(C).

We still have to specify the source of information, the hypothesis space, the prior knowl-
edge, and the criterion of success. There are several ways to do this, and we shall have a
look at some variants. In all variants we are going to consider, theprior knowledgeis that
the target concept is a monomial.

Variant 1: On-line prediction

In this setting, thesource of informationis specified as follows. The learner will be
fed successively more and more labeled examples of the monomial to be learned. That
is, the learner is given a sequence〈b1,m(b1), b2,m(b2), . . .〉, where thebj ∈ {0, 1}n, i.e.,
Boolean vectors, andm(bj) ∈ {0, 1} denote the value of the target monomial under the
obvious assignment of the values provided inbj to its literals. The examples are picked up
arbitrarily, and are noise free.

We do not specify thehypothesis spaceexplicitly. It is left to the learner to choose it.

VARIANT 1: ON-LINE PREDICTION 17

Finally, we have to specify thecriterion of success. In this example, we consideron-
line prediction. That is, the learner must predict eachm(b), after having fedb. Then, it
receives the true value ofm(b), and the next Boolean vector. We measure the performs
of the learner by the number of prediction mistakes made. The learner has successfully
learned if it eventually reaches a point beyond which it always correctly predicts.

Obviously, there is a trivial solution. The learner simply keeps track of all examples
and their labels provided. If it is fed a vectorb the label of which it has already seen, it
predicts the correct label. Otherwise, it predicts 0. After having seen all possible examples,
it surely can correctly predict. However, there are2n Boolean vectors of lengthn. As a
consequence, this trivial algorithm may make many prediction errors.

Exercise 2.Determine the number of prediction errors made by the trivial algorithm in
the worst-case.

This number is terribly large. For anyn of practical relevance, it may take centuries
before the algorithm has achieved its learning goal. Clearly, this is not acceptable. Hence,
we continue by asking whether we can do it better. The affirmative answer is provided by
the following theorem.

Theorem 2.1.On-line prediction of monomials overLn can be done with at mostn+ 1

prediction errors.

Proof.For all i = 1, 2, . . . let bi = b1i b
2
i . . . b

n
i denote theith Boolean vector. First of all,

we describe the prediction algorithmP.

Algorithm P: “On successive input〈b1,m(b1), b2,m(b2), . . .〉 do the following:

Initialize h0 = x1x̄1 . . . xnx̄n.

For i = 1, 2, . . . let hi−1 denoteP’s internal prediction hypothesis produced before
receivingbi. After having receivedbi predicthi−1(bi). Then, readm(bi).

If hi−1(bi) = m(bi) thenhi = hi−1 else

for j := 1 to n do

if bji = 1 then deletēxj in hi−1 else deletexj in hi−1.

Denote the result byhi. By convention, if all literals have been removed, thenhi = ∅,
andhi(b) = 1 for all b ∈ X .

end.”

Before analyzing the prediction algorithmP we illustrate it at the following example.
Let n = 7, and letm = x1x̄2x4x7 be the target monomial. Suppose the input sequence to
start as follows:〈1001111, 1, 0110110, 0, 1011101, 1, 1011001, 1, . . .〉.

Then,P initially predictsh0(1001111) = 0. However, the true value is1, and thus
P executes the loop described above resulting inh1 = x1x̄2x̄3x4x5x6x7. After having
readb2 = 0110110, P predictsh1(0110110) = 0 which is true. Hence,h2 = h1 =

x1x̄2x̄3x4x5x6x7. Next,P reads1011101, and predictsh2(1011101) = 0 which is wrong.

18 LECTURE2: LEARNING MODELS

Thus,P executes the loop, and computesh3 = x1x̄2x4x5x7. Now,P reads1011001 and
predicts0 which is again wrong. Therefore,P executes the loop again, and computes
h4 = x1x̄2x4x7. Since this internal hypothesis equals the target monomial,P makes no
more prediction errors. Consequently, it does not change its internal hypothesis any further.

We proceed by proving the correctness ofP. SinceP computes all its internal hypothe-
ses by possibly removing literals fromh0, it suffices to show that all the literals in the target
monomial survive and that every prediction error results in removing at least one literal
fromP’s actual internal hypothesis. This is done via the following claims.

Claim 1. No literal in the target conceptm is ever removed fromh0.

Suppose the converse, i.e., there is a literal, say`i, in the target monomialm which
is sometimes removed fromh0. Let `i be the first such literal. Consequently, before this
literal `i is removed, all literals inm are still contained inP’s internal hypothesish. Thus,
every exampleb satisfyingP’s internal hypothesis satisfiesm, too, i.e.,h(b) = 1 implies
m(b) = 1. Thus, the removal must happen on an exampleb such thatm(b) = 1 but
h(b) = 0. However, while processing its loopP removes exclusively those literals`j for
which `j(bj) = 0. But for all literals`k in m we havè k(b

k) = 1, and hence they survive.
This contradiction proves Claim 1.

Claim 2. Prediction errors are exclusively made on positive examples.

By construction,P performs all of its predictions by its internal hypotheses which con-
stitute monomials. The value of a monomial is1 if and only if all its literals evaluate to
1. Hence, ifm(b) = 0, then at least one of its literals must evaluate to0. By Claim 1, all
literals contained inm are contained in all ofP’s internal hypotheses, too. Thus, at least
one of the literals inP’s actual internal hypothesis also evaluates to0 causingP to predict
0. Hence, no prediction error can occur on a negative example.

Claim 3. Each prediction error causesP to remove at least one literal from its actual
internal hypothesis.

Suppose the converse, i.e., after some prediction error no literal is removed. Thus, the
example on which the prediction error occurred must satisfy all literals inP’s actual internal
hypothesis, since otherwise at least one literal is removed. Consequently,P has predicted
1, but since we had a prediction error, the true value of the target must be0. Therefore, the
prediction error had to occur on a negative example. This contradicts Claim 2.

Finally, we have to prove that at mostn + 1 prediction errors occur. Initially,P’s
internal hypothesish0 contains2n literals. However, for each example exactlyn literals
evaluate to1 and exactlyn literals evaluate to0. Hence, the first prediction error causesP
to remove preciselyn literals from its actual internal hypothesish = h0. Now, the worst-
case obviously occurs ifall literals must be eliminated fromh0, i.e., if m is the constant
monomial1 (= TRUE). Now, the assertion directly follows by Claim 3. This proves the
theorem.

Exercise 3.Construct a sequence of examples such that the worst-case bound stated in
Theorem 2.1 happens.

LEARNING IN THE L IMIT 19

You may test your sequence by using our implementation of AlgorithmP (there called
Wholist Algorithm) at:
http://www-alg.ist.hokudai.ac.jp/ thomas/BOOLE/menue1.jhtml

As we have seen, when learning the class of all concepts describable by a monomial
over the domain{0, 1}n within the on-line prediction model, thenn + 1 prediction errors
may occur in theworst-case.

It is also easy to see that two prediction errors are sufficient in thebest-case.

Moreover, if we run our algorithmP in practice, we may just observe that usually much
less thann + 1 prediction errors occur. So, we may ask how many prediction errors do
occur during a “typical” run of algorithmP. Clearly, dealing with the latter question also
requires to define what is meant by “typical” run. This will directly lead us to the subject
of average-caseanalysis.

Note that it is often much more complicated to perform an average-case analysis than to
determine the worst-case and (or) best-case behavior of an algorithm. Therefore, we shall
come back to this point later. But in the meantime, you can perform some experiments with
the on-line prediction algorithms at:
http://www-alg.ist.hokudai.ac.jp/ thomas/BOOLE/menue2.jhtml

As a matter of fact, it is advantageous to introduce another learning model at this point.

2.2. Learning in the Limit

As we have seen, the class of concepts describable by a monomial is learnable in the
on-line prediction model. Of course, the class of concepts describable by a monomial is not
too difficult. Thus, it would be only natural to ask what other concept classes are learnable
within the prediction model. Instead of answering this question right now, we want to
take a broader approach and continue with the fundamental notion of learning in the limit.
The corresponding theory, calledinductive inference may be viewed as roughly as
computational theory is to complexity and analysis of algorithms. Thus, dealing with this
part of algorithmic learning theory will provide us a deeper understanding of what can be
or cannot be expected from algorithmic learning in general.

Note that induction constitutes an important feature of learning. Inductive inference
may be characterized as the study of systems that map evidence on a target concept into
hypotheses about it. Investigating scenarios in which the sequence of hypotheses stabilizes
to an accurate and finite description of the target concept is of particular interest. Precise
definitions of the notions evidence, stabilization, and accuracy go back to Gold [4] who
introduced the model oflearning in the limit.

Next, we informally describe this model. The source of information are infinite se-
quences of examples. We distinguish learning from positive data and learning from positive
and negative data, synonymously called learning fromtext andinformant, respectively.
A text for a target conceptc is an infinite sequence of elements ofc such that every element
from c appears eventually. Alternatively, an informant is an infinite sequence of elements

20 LECTURE2: LEARNING MODELS

exhausting the underlying learning domain that are classified with respect to their contain-
ment in the target concept.

An algorithmic learner, henceforth called inductive inference machine (abbr. IIM), takes
as input larger and larger initial segments of a text (an informant) and outputs, from time to
time, a hypothesis about the target concept. The set of all admissible hypotheses is called
hypothesis space. The sequence of all hypotheses output is required to converge to a a
hypothesiscorrectlydescribing the target concept.

By the definition of convergence, only finitely many data about the target conceptc have
been observed by an IIMM at the (unknown) point of convergence. Hence, some form
of learning must take place in order forM to learn the target conceptc. For this reason,
hereafter the termsidentify, learnandinfer are used interchangeably.

So far we left it open what kind of convergence we are going to require. We shall distin-
guish betweensyntacticalconvergence, where the sequence of hypotheses has to stabilize.
That is, after some point the IIM always outputs one and the same hypothesis. The resulting
learning model is usually calledlearning in the limit.

Alternatively, we shall also considersemanticalconvergence, where the sequence of
hypotheses has to behave as follows. After some point, the IIM always outputs hypotheses
that arecorrect for the target concept, but which are not necessarily equal to one another.
For example, looking again at our class of concepts describable by a monomial, an IIM
which is supposed to infer the concept “FALSE” may output many different hypotheses for
it, e.g.,x1x1, x1x2x1, x1x2 · · ·xnx1 · · ·xn. Though the resulting learning model also learns
in the limit, one usually refers to it asbehaviorally correct learningin order to distinguish
it from the one where syntactical convergence is required.

We continue with a formal introduction of learning in the limit and behaviorally correct
learning.

2.2.1. Basic Notations and Definitions

Let N = {0, 1, 2, . . .} be the set of all natural numbers and letN+ = N \ {0}.

Any recursively enumerable setX is called alearning domain. By ℘(X) we denote the
power set ofX . Let C ⊆ ℘(X) and letc ∈ C. We refer toC andc as to aconcept class
and aconcept, respectively. Sometimes, we will identify a conceptc with its characteristic
function, i.e., we writec(x) = 1, if x ∈ c, andc(x) = 0, otherwise.

Within this course, we mainly study the learnability of indexable concept classes (cf.
Angluin [1]). A class of non-empty conceptsC is said to be anindexable concept classiff
there are an effective enumeration(cj)j∈N of all and only the concepts inC and a recursive
functionf such that, for allj ∈ N and allx ∈ X , f(j, x) = cj(x) holds. ByIC we denote
the collection of all indexable classes.

Next, we describe some well-known examples of indexable classes. LetΣ denote any
fixed finite alphabet of symbols, and letΣ∗ be the free monoid overΣ. We setΣ+ =

Σ∗ \ {ε}, whereε denotes the empty string. ThenX = Σ∗ serves as the learning domain.

BASIC NOTATIONS AND DEFINITIONS 21

As usual, we refer to subsetsL ⊆ Σ∗ as to languages (instead of concepts). Then, the set
of all context sensitive languages, context free languages, regular languages, respectively,
form indexable classes.

Next, letXn = {0, 1}n be the set of alln-bit Boolean vectors. We considerX =⋃
n≥1Xn as learning domain. Then, the set of all concepts expressible as a monomial, a

k-CNF, ak-DNF, and ak-decision list form indexable classes.

Angluin [1] started the systematic study of learning indexable concept classes. This
setting attracted a lot of attention, since many natural concept classes are indexable (see
above). For an overview we refer the interested reader to Zeugmann and Lange [6].

Let c ⊆ X be any concept, and lett = s0, s1, s2, . . . be any infinite sequence such
that range(t) = {sk k ∈ N} = c. Thent is said to be atext for c, or synonymously,
a positive presentation. By (c) we denote the set of all positive presentations ofc.
Furthermore, for every indexable classC we settext(C) =

⋃
c∈C (c).

Furthermore, leti = (s0, c(s0)), (s1, c(s1)), (s2, c(s2)), . . . be any infinite sequence such
thatrange(i) = {sk k ∈ N} = X ; then we refer toi as aninformant, or synonymously
as topositive and negative data. By info(c) we denote the set of all informants ofc.
Furthermore, for every indexable classC we setInfo(C) =

⋃
c∈C info(c).

Moreover, lett, i be a text and an informant, respectively, and letx ∈ N. Thentx, ix
denote the initial segment oft and ofi of lengthx + 1, respectively. Furthermore, we use
t+x to denote the range oftx, andi+x and i−x to denote the set of all positive and negative
instances inix, respectively.

Furthermore, the learner is an algorithmic device which works as follows: It takes as its
input larger and larger initial segments of a textt (an informanti) and it either requests the
next input string (labeled input string), or first outputs a hypothesis, i.e., a number encoding
a certain computer program, and then it requests the next input string (the next labeled
example). Note that an IIM, when learning a target classC, is required to produce an output
on every initial segment of all texts intext(C).

It is common to refer to the learner as to aninductive inference machine (abbr.
IIM) in this setting. The hypotheses output by an IIM are interpreted with respect to a
suitably chosen hypothesis spaceH = (hj)j∈N. When an IIMM outputs some numberj,
we interpret it to mean thatM hypothesizeshj.

When dealing with indexable concept classes, we usually require the hypothesis space
H to be an indexing of some possibly larger indexable concept class. Hence, in this case,
membership is uniformly decidable inH, too. In general, however, we allow any mapping
h:X → {0, 1} such that the partial characteristic function of it is computable as hypothesis
and assume furthermore the set of all hypotheses to be recursively enumerable. So, as a
most general hypothesis space one could choose any fixed Gödel numberingϕ (sometimes
also calledacceptable programming system) of the recursively enumerable sets over the
underlying learning domain.

Furthermore, we shall distinguish the following types of hypothesis spaces. LetC be
any concept class. A hypothesis spaceH is said to beclass preservingfor C iff each

22 LECTURE2: LEARNING MODELS

conceptc ∈ C possesses a descriptionh in the hypothesis space, and each description
available in the hypothesis space corresponds to a concept in the target concept class. More
formally, we can express the requirement for a hypothesis space to be class preserving by
range(C) = range(H). Next, we weaken this requirement torange(C) ⊆ range(H), i.e.,
we allow the hypothesis space to contain descriptions of sets not necessarily corresponding
to target concepts. We refer to such hypothesis spaces as toclass comprisinghypothesis
spaces. At first glance, it might seem useless to enlarge the hypothesis space, since any
hypothesis not describing a target concept is definitely wrong. However, as we shall see
later, sometimes it is unavoidable to allowclass comprisinghypothesis spaces in order to
achieve superior learners.

Next, we specify thecriterion of success. Letσ be a text or informant, respectively, and
x ∈ N. Then we useM(σx) to denote the last hypothesis produced byM when successively
fed σx. The sequence(M(σx))x∈N is said toconverge in the limit to the numberj if
and only if either(M(σx))x∈N is infinite and all but finitely many terms of it are equal toj,
or (M(σx))x∈N is non-empty and finite, and its last term isj. Now we are ready to define
learning in the limit.

Definition 1 (Gold [4]). LetC be a concept class, letc be a concept, and letH = (hj)j∈N

be a hypothesis space.An IIM M CLimTxt– [CLimInf]–identifies c from text

[informant] with respect to H iff for every textt [informanti] for c, there exists a
j ∈ N such that the sequence(M(tx))x∈N [(M(ix))x∈N] converges in the limit toj and
c = hj.

Furthermore, MCLimTxt– [CLimInf]–identifiesC with respect toH iff, for eachc ∈ C,
M CLimTxt– [CLimInf]–identifies c with respect toH.

Finally, let CLimTxt [CLimInf] denote the collection of all concept classesC for
which there are an IIMM and a hypothesis spaceH such that MCLimTxt– [CLimInf]–
identifiesC with respect toH.

In the above definition,Lim stands for limit and theC preceding it points to the fact
that we allow class comprising hypothesis spaces. If we just writeLimTxt then we ad-
ditionally requireH to be a class preserving hypothesis space. Moreover, we sometimes
write CLimTxtH to denote the fact that learning has to be performed with respect to the
hypothesis spaceH. We use these conventions for all learning types defined within this
course, unless otherwise stated.

Note that, in general, it is not decidable whether or not an IIMM has already inferred a
target conceptc. Hence, when dealing with learning in the limit, we have a limiting effective
criterion of learning instead of an effective one. However, this scenario also reflects some
typical aspects of human learning. For example, when humans are learning their mother
tongue, usually they are gradually improving their ability to speak and to understand it.
These intermediate stages may be viewed as the generation of a sequence of hypotheses
that eventually converges to a grammar that is (sufficiently) correct.

Figure 2.1 displays the basic features of the learning in the limit model.

BASIC NOTATIONS AND DEFINITIONS 23

Description at timet:

ht
Out←− M

In←− dt, . . . , d0

M learns successfully in this modeliff there is a pointT such thathT is correct
for c andhT = hT+1 = hT+2 = hT+3 =

Figure 2.1: Learning in the Limit

The following exercise is intended to help you gaining a first understanding of learning
in the limit.

Exercise 4.Prove or disprove.

(a) Letn ∈ N be arbitrarily fixed. The setCn of all monomials overLn can beCLimInf –
identified with respect to the set of all monomials as hypothesis space. Does your
answer remain valid forCLimTxt?

(b) Let X =
⋃
n∈N{0, 1}n, let C =

⋃
n∈N Cn be the set of all monomials over

⋃
n∈N Ln.

ThenC is CLimInf –identifiable with respect toC. Does your answer remain valid
for CLimTxt?

(c) Let X be any learning domain, letC be any concept class overX , and letH be any
hypothesis space forC such that eachh ∈ H is recursive. Then,

(α) C ∈ CLimInf implies thatC is on-line predictable.

(β) If C is on-line predictable thenC ∈ CLimInf .

Next, we formally definebehaviorally correct learning. For the sake of presentation,
this is only done for learning from positive data.

Definition 2 (Bārzdiņš [2], Case and Lynes [3]). Let C be a concept class, letc be a
concept, and letH = (hj)j∈N be a hypothesis space. An IIM MCBcTxt–identifies c
with respect toH iff for every textt ∈ (c) and for all but finitely manyy ∈ N, hM(ty) = c.

Furthermore,M CBcTxt–identifiesC with respect toH iff M CBcTxt–identifies each
c ∈ C with respect toH.

Finally, letCBcTxt denote the collection of all concept classesC for which there are an
IIM M and a hypothesis spaceH such thatM CBcTxt–identifiesC with respect toH.

If you compare Definitions 1 and 2 then you see that the only difference is the kind of
convergence required. That is, Definition 1 requires syntactical concergence while Defini-
tion 2 weakens this requirement tosemanticalconvergence.

Exercise 5.Formally define behaviorally correct learning from informant.

24 LECTURE2: LEARNING MODELS

Finally, we refer the interested reader to Osherson, Stob and Weinstein [5] for a com-
prehensive treatment of learning recursively enumerable languages in the limit. The learn-
ability of language classes with uniformly decidable membership is surveyed in Zeugmann
and Lange [6].

References

[1] D. ANGLUIN (1980), Inductive inference of formal languages from positive data,
Information and Control45, No. 2, 117–135.

[2] J. BĀRZDIŅ Š (1974), Two theorems on the limiting synthesis of functions, InThe-
ory of Algorithms and Programs Vol. 1, pages 82–88, Latvian State University, (in
Russian).

[3] J. CASE AND C. LYNES (1982), Machine inductive inference and language identi-
fication, in Automata, Languages and Programming, 9th Colloquium, Proceedings,
volume 140 ofLecture Notes in Computer Science, pages 107–115. Springer-Verlag.

[4] E.M. GOLD (1967), Language identification in the limit,Information and Control
10, 447 – 474.

[5] D. OSHERSON, M. STOB, AND S. WEINSTEIN (1986),Systems that Learn, An Intro-
duction to Learning Theory for Cognitive and Computer Scientists, The MIT-Press,
Cambridge, MA.

[6] T. ZEUGMANN AND S. LANGE (1995), A guided tour across the boundaries of learn-
ing recursive languages,in “Algorithmic Learning for Knowledge-Based Systems”
(K.P. Jantke and S. Lange, eds.), Lecture Notes in Artificial Intelligence 961, pp. 190
– 258, Springer-Verlag, Berlin.

25

LECTURE3: MORE ABOUT LEARNING IN THE L IMIT

We finished the last lecture by introducing learning in the limit. As far as learning of
indexed families from informant is concerned, a very general result can be obtained which
we present here.

Theorem 3.1 (Gold [5]). C ∈ LimInf for all C ∈ IC.

Proof. Let X be the underlying learning domain. SinceC ∈ IC, there are an indexing
(cj)j∈N of all and only the concepts inC and a recursive functionf such thatf(j, x) = cj(x)

for all j ∈ N and allx ∈ X . Now, letc ∈ C be any concept and leti = ((sk, c(sk)))k∈N ∈
info(c) be any informant forc.

The desired IIMM learns by the so-calledidentification by enumerationprinciple which
is formally defined as follows.

Let y ∈ N. On inputiy we set:

M(iy) = “Search the leastk ∈ N such that(sj, c(sj)) = f(k, sj) for all j = 0, . . . , y.”

Sincec ∈ C and(cj)j∈N is an indexing forC with the above properties forf , we see that
the test(sj, c(sj)) = f(k, sj) is recursive for allk ∈ N and allj ∈ N. Furthermore, letk∗

be the leastk ∈ N such thatc = ck. Consequently,(sj, c(sj)) = f(k∗, sj) for all j ∈ N and
hence, the search performed byM will always terminate. That is, all hypothesesk output
by M satisfyk ≤ k∗. Moreover,c` 6= c for all ` < k∗. Therefore, for everỳ < k∗ there
must be ay` such that(sy`

, c(sy`
)) 6= f(`, sy`

). Hence, fory ≥ max{y` ` < k∗} the IIM
M cannot output anỳ < k∗. Thus, for ally ≥ max{y` ` < k∗} it outputsk∗ and thus
converges tok∗. Sincec = ck∗,M learnsc as required.

Consequently,M LimInf –identifiesC with respect to(cj)j∈N and we are done.

The learning method used by the IIM defined in the proof of Theorem 3.1, i.e., identi-
fication by enumeration, has some interesting and important properties which we want to
discuss shortly.

First, it is consistent. Here byconsistency we mean thati+x ⊆ ck andi−x ∩ ck = ∅
wheneverk is output byM . We shall discuss the consistency phenomenon in some detail
below.

Second, anymind changeperformed byM is justified by a “provable misclassification”
of its previous guess. Here, by mind change we mean thatM(iy) 6= M(iy+1). Therefore,
M will never reject a guess that is correct for the concept to be learned. Hence,M is
semantical finite.

Third,M is set-driven, too, i.e., its output exclusively depends on the range of its input
(cf. Definition 5 below).

Finally, identification by enumeration is the most efficient learning method with respect
to learning time, i.e., the first time such thatM outputs a correct guess that will be repeated

26 LECTURE3: MORE ABOUT LEARNING IN THE L IMIT

in every subsequent learning step (cf. Gold 5). More precisely, Gold 5 proved that there
is no IIM M̂ inferringL which is uniformly fasterthan the IIMM described above with
respect to learning time. Hence, in the setting of learning indexed families identification by
enumeration is particularly tailored for learning from informant.

3.1. The Weakness of Text

First, we present a very simple example for a concept class that is not inLimTxt .

Example 1. The following language classL cannot be learned in the limit from positive
data with respect to the hypothesis spaceL.

We define the language classL by the following enumeration of languages over the
alphabet{a}. Let L = (Lj)j∈N whereL0 = {a}+ andLj = {am 1 ≤ m ≤ j} for
all j ∈ N+. We show thatL is not learnable in the limit from positive data. Suppose the
converse, i.e., there is an IIMM which witnessesL ∈ CLimTxt with respect toL. Then,
M in particular has to identify the languageL1 on its uniquely defined textt. Hence, there
exists anx ∈ N such thatM(tx) = 1. Obviously, it is possible to extendtx in order to
obtain a text for the infinite languageL0. Namely, we may choose the texttx · t̂ wheret̂ is
the lexicographically ordered text ofL0. That is,̂t = a, aa, aaa, aaaa, SinceM has to
infer L0 from this text, too,M is forced to change its mind to the hypothesis0. Therefore,
there is ay ∈ N+ such thatM(tx · t̂y) = 0. But now we may conclude thattx · t̂y is an initial
segment of a text̃t for the finite languageLy. Consequently,M has to perform one more
mind change when successively fedt̃. By iterating this idea one may effectively construct
a text for the infinite languageL0 on whichM has to change its mind infinitely often, a
contradiction. HenceL /∈ CLimTxt with respect toL.

Exercise 6.Prove or disprove: The language classC = range(L), whereL is defined
as above, cannot be learned in the limit with respect to every hypothesis spaceH for it.

This negative result is mainly caused by the problem that both finite and infinite lan-
guages have to be simultaneously handled.

We continue with Gold’s [5] famous result.

Theorem 3.2 (Gold [5]).LetL be any class of languages containing all finite languages
and at least one infinite languageL. ThenL /∈ CLimTxt .

Proof. Assume any hypothesis spaceH for L, and suppose there is an IIMM learning
L in the limit with respect toH. We are going to construct a textt for the infinite language
L on whichM does not converge in the limit. First, consider any textt̂ = s0, s1, s2, . . .

for L. Since we haveM supposed to learnL, there must be anx such thatj0 = M(tx)

fulfills L = L(hj0). Settx = t̂x. Clearly, t̂x is finite, and thuŝtx is an initial segment of
the finite languageL1 = t̂+x . SinceM has to learn the finite languageL1, too, the initial
segment̂tx can be extended bys0, s0 s0, . . . resulting in a text̃t for L1. Thus, there must
be ay such thatj1 = M(t̃x+y) satisfiesL1 = L(hj1). Note that̃tx+y is an initial segment
extendingt̂x such that̃t+x+y ⊆ L. Thus, we may continue the definition oft by setting
tx+y = tx s0, . . . , s0︸ ︷︷ ︸

y times

.

THE PATTERN LANGUAGES 27

Now, we continue by extending̃tx+y by t̂. Again, there must bez > x + y such that
M , when fedt̃x+y · t̂z outputs a hypothesisj2 such thatL = L(hj2). Thus, we continue
the definition oft as follows:tx+y+z = t̂x s0, . . . , s0︸ ︷︷ ︸

y times

t̂z. Noting thatt+x+y+z is again a finite

language, it is obvious how to iterate this procedure. The requirementz > x + y ensures
thatt will be indeed a text forL, and by construction,M changes its hypotheses infinitely
often when successively fedt, a contradiction.

The latter theorem allows the following corollary.

Corollary 3.3. Neither the class of all regular languages nor any superset thereof can
be learned in the limit from positive data.

Taking the latter corollary into account, many researchers thought that there is no in-
teresting class of languages at all that can be learned from positive data. As a result, the
study of learning from positive data faced more than a decade of decline after Gold’s [5]
pioneering paper. In order to gain a better understanding why this has been the case, you
should solve the following exercise.

Exercise 7. Prove or disprove: LetL be any class of languages containing all finite
languages and at least one infinite languageL. ThenL /∈ CBcTxt .

But the situation considerably changed when Angluin [1] showed that the pattern lan-
guages are learnable in the limit from text. Therefore, we continue with the pattern lan-
guages which we have already met in Lecture 1.

3.2. The Pattern Languages

Patterns are a very natural way to define formal languages. Suppose you are interested
in the language of all strings over the alphabetA = {0, 1} starting with11, ending with
010, and containing the substring01011 somewhere, but may be otherwise arbitrary. Thus,
all strings in your language follow the patternπ1 = 11x001011x1010, provided you are
willing to allow the variablesx0, x1 to be substituted by any string over{0, 1} including
the empty one. As for another example, consider the set of all strings having even length
2n such that the prefix of lengthn is identical to the suffix starting at positionn+ 1. In that
case, the wanted language follows the patternπ2 = x0x0.

Though patterns have already been considered since the beginning of this century (cf.,
e.g., Thue [15], and Beanet al. [3]), the formal introduction of patterns and pattern lan-
guages goes back to Angluin [1]. Since then, pattern languages and variations thereof have
been widely investigated (cf., e.g., Salomaa [12, 13], and Shinohara and Arikawa [14] for
an overview).

Following Angluin [1] we define patterns and pattern languages as follows. LetA =

{0, 1, . . .} be any non-empty finite alphabet containing at least two elements. ByA∗ we
denote the free monoid overA (cf. Hopcroft and Ullman [6]). The set of all finite non-null
strings of symbols fromA is denoted byA+, i.e.,A+ = A∗ \ {ε}, whereε denotes the
empty string. By|A| we denote the cardinality ofA. Furthermore, letX = {xi i ∈ N}

28 LECTURE3: MORE ABOUT LEARNING IN THE L IMIT

be an infinite set of variables such thatA ∩ X = ∅. Patternsare non-empty strings from
A ∪ X, e.g.,01, 0x0111, 1x0x00x1x2 are patterns. The length of a stringw and of a
patternπ is denoted by|w| and|π|, respectively. A patternπ is in canonical formprovided
that if k is the number of different variables inπ then the variables occurring inπ are
preciselyx0, . . . , xk−1. Moreover, for everyj with 0 ≤ j < k − 1, the leftmost occurrence
of xj in π is left to the leftmost occurrence ofxj+1 in π. The examples given above are
patterns in canonical form. In the sequel we assume, without loss of generality, that all
patterns are in canonical form. ByPat we denote the set of all patterns in canonical form.
Let π ∈ Pat , 1 ≤ i ≤ |π|; we useπ(i) to denote thei-th symbol inπ. If π(i) ∈ A,
then we refer toπ(i) as to a constant; otherwiseπ(i) ∈ X, and we refer toπ(i) as to a
variable. By#var(π) we denote the number of different variables occurring inπ, and by
#xi

(π) we denote the number of occurrences of variablexi in π. If #var(π) = k, then
we refer toπ as ak-variable pattern. Let k ∈ N, by Patk we denote the set of allk-
variable patterns. Furthermore, letπ ∈ Patk, and letu0, . . . , uk−1 ∈ A+; then we denote
by π[x0 : u0, . . . , xk−1 : uk−1] the stringw ∈ A+ obtained by substitutinguj for each
occurrence ofxj, j = 0, . . . , k − 1, in the patternπ. The tuple(u0, . . . , uk−1) is called
substitution. Furthermore, if|u0| = · · · = |uk−1| = 1, then we refer to(u0, . . . , uk−1) as
to ashortest substitution. Now, letπ ∈ Patk, and letS = {(u0, . . . , uk−1) uj ∈ A+, j =

0, . . . , k − 1} be any finite set of substitutions. Then we setS(π) = {π[x0 : u0, . . . , xk−1 :

uk−1] (u0, . . . , uk−1) ∈ S}, i.e.,S(π) is the set of all strings obtained from patternπ by
applying all the substitutions fromS to it. For everyπ ∈ Patk we define thelanguage
generated by patternπ byL(π) = {π[x0 : u0, . . . , xk−1 : uk−1] u0, . . . , uk−1 ∈ A+}.

By PAT k we denote the set of allk-variable pattern languages. Finally, PAT =⋃
k∈N PAT k denotes the set of all pattern languages overA. Note that for everyL ∈ PAT

there is precisely one patternπ ∈ Pat such thatL = L(π) (cf. Angluin [1]).

If we take a look back to the patterns considered in Lecture 1, we that they have a pecu-
liarity, i.e., each variable occurs at most once. Such pattern are calledregular patterns.
the following exercise sheds some more light on this naming.

Exercise 8.Prove or disprove:

(1) If π ∈ Pat is regular, thenL(π) is a regular language.

(2) If π is not regular, thenL(π) is necessarily a non-regular language.

The pattern languages constitute an indexable class. Clearly, one can recursively enu-
merate all canonical patterns, say byπ0, π1, π2, Moreover, given any patternπ and a
string s it suffices to check all substitutions having a length not exceeding|s| until either
s is generated byπ or all substitutions have been tested. Thus,(L(πj))j∈N is indeed an
indexable class.

Angluin [1] showed thatPAT is learnable from text with respect to the hypothesis space
Pat . The key idea of her proof was to observe that it suffices to find descriptive patterns
which we define next.

Definition 3. LetA be any finite alphabet.

LEARNING THE PATTERN LANGUAGES VIA DESCRIPTIVEPATTERNS 29

(1) A finite set{s0, s1, . . . , sr} ⊆ A+ of strings is called asample.

(2) A patternπ is consistent with a sampleS if S ⊆ L(π).

(3) A patternπ is said to bedescriptive for S if it is consistent and there is no other
consistent patternτ such thatL(τ) ⊂ L(π).

The following structural property of indexable classes is important with respect to their
learnability from text. This property has been first observed for the class of all pattern
languages, but its importance justifies the following definition.

Definition 4. LetX be any learning domain and letC be any indexable class.C is said
to havefinite thickness provided for eachS ⊆ X the set{c S ⊆ c and c ∈ C} is of
finite cardinality.

Now, let us check whether or notPAT indeed has finite thickness.

Lemma 3.4.PAT has finite thickness.

Proof. Let S ⊆ A∗ be any set, and letm = min{|s| s ∈ S}. Since we restricted
ourselves to nonempty substitutions, we can immediately conclude that for every pattern
π ∈ Pat , |π| > m impliesS 6⊆ L(π). But {π π ∈ Pat , |π| < m} is finite, and thus,
{π π ∈ Pat , S ⊆ L(π)} must be finite, too.

Corollary 3.5. For every setS ⊆ A∗ there is always at least one descriptive pattern.

Proof.For every setS we haveS ⊆ L(x0). Thus, the set of all consistent patterns forS

is always nonempty. SincePAThas finite thickness, the set of all consistent patterns forS is
finite, too. Consequently, there must be a minimal element (with respect to set-containment)
in the set of all consistent patterns forS.

Next, we establish the learnability of the set of all pattern languages from text.

3.2.1. Learning the Pattern Languages via Descriptive Patterns

We continue with the following important theorem.

Theorem 3.6.Assume any recursive subproceduredes computing descriptive patterns
for every setS ⊆ A∗. Then,PAT ∈ CLimTxt .

Proof.Let L ∈ PAT , let t = (sj)j∈N ∈ text(L), andx ∈ N. We define the wanted IIM
as follows:

M(tx) = “If x = 0 computeπ =des({s0}), and output it.

If x > 0, let τ = M(tx−1). If t+x ⊆ L(τ), outputτ .

Otherwise, computeπ =des(t+x), and output it.”

30 LECTURE3: MORE ABOUT LEARNING IN THE L IMIT

Since the subproceduredes is recursive,M is indeed an IIM. It remains to show thatM
infersL. Let π ∈ Pat be the unique pattern satisfyingL = L(π). Clearly,π is consistent
with t+x for everyx ∈ N. Now, consider anyτ output byM . If τ = π we are done, since
π will be then output ontx+r for everyr ≥ 0. Suppose,τ 6= π. Sinceτ is descriptive,
we already know thatL(π) 6⊂ L(τ). Hence,L(π) \ L(τ) 6= ∅. But that means, there must
be at least one strings ∈ L(π) \ L(τ) which has to appear sometimes int, say at position
x0. Thus,M(tx0) 6= τ . Now, taking into account that there are only finitely many patterns
that are consistent withs0, we see that every mind change does shrink the set of descriptive
patterns by at least one element. Since every descriptive pattern butπ has to be abandoned
as shown above,M has to converge toπ.

Thus, for establishing the learnability of all pattern languages from text, we finally have
to prove that there is a proceduredes computing descriptive patterns. This is done next.
The main problem we have to handle is how to figure out whether or notL(π) ⊂ L(τ) for
any two patternsπ andτ that are consistent with some given sampleS. For that purpose,
we need the following definitions and notations.

Let Hom be the set of all non-erasing homomorphism with respect to concatenation
of Pat to itself. An element ofHom that is the identity when restricted toA is called
substitution. Next, we define a binary relation� over Pat by π � τ iff π = f(τ) for
some substitutionf . The intuitive meaning of�may be taken to be “is less general than.”

Example. LetA = {0, 1}, and letπ = x00x001 andτ = x1x1x0. Thenπ � τ .

For seeing this, we define a substitutionf by f(x0) = 1 andf(x1) = x00 (remember,
f(0) = 0 as well asf(1) = 1). Thusf(τ) = x00x001 = π.

Exercise 9.Prove that for allπ, τ ∈ Pat ,

(1) � is transitive,

(2) π � τ impliesL(π) ⊆ L(τ),

(3) L(π) = L(τ) iff π � τ andτ � π,

(4) � is computable.

Now, we are ready to establish the following theorem.

Theorem 3.7. There is a recursive proceduredes which, for every sampleS given as
input, outputs a descriptive patternπ for S.

Proof. The proceduredes is defined as follows. LetS be any sample, and let` =

min{|s| s ∈ S}. Enumerate the finitely many canonical patternsπ satisfying|π| ≤ `.
For every pattern enumerated check whether or notS ⊆ L(π). Let C be the set of all
enumerated patterns successfully passing this test. Letm = max{|π| π ∈ C}, and let
Ĉ = {π π ∈ C, |π| = m}. Find and output any elementπ in Ĉ that is minimal with
respect to�.

LEARNING THE PATTERN LANGUAGES VIA DESCRIPTIVEPATTERNS 31

We have to show thatπ is descriptive forS. Let τ be any consistent pattern forS. Then
|τ | ≤ `, and if |τ | < |π|, thenL(τ) 6⊂ L(π), too. Now, assume|τ | = |π|. Consequently,
τ ∈ Ĉ. By construction, eitherτ = π or τ 6� π. If τ = π, we are done. The proof is finished
by showing the following claim actually stating that the second case cannot happen.

Claim. Letπ, τ ∈ Pat such that|π| = |τ |. ThenL(τ) ⊆ L(π) impliesτ � π.

Let 0, 1 ∈ A be distinct. Consider the substitutionsf0(xi) = 0, andf1(xi) = 1 for all
i ∈ N as well as the substitutionsgj defined for alli , j ∈ N as follows:

gj(xi) =

{
0, if i = j,
1, otherwise.

Let S(π) consist of the set of all strings{f0(π), f1(π), g0(π), g1(π), g2(π), . . .}, and de-
fine S(τ) analogously. If#var(π) = 0, thenS(π) = L(π) = {π}, and we are already
done. If #var(π) = 1, thenS(π) = {f0(π), f1(π)}, and in the general case, i.e., if
#var(π) = k ≥ 2, then|S(π)| = k + 2.

Furthermore, by construction we obtain: For all1 ≤ m, n ≤ |π|:

(1) if π(m) = c ∈ A, thens(m) = c, for all s ∈ S(π), and the same holds forτ ,

(2) if π(m), π(n) ∈ X such thatπ(m) 6= π(n), then there is a strings ∈ S(π) such that
s(m) 6= s(n), and again, the same holds forτ .

Now, taking into account thatL(τ) ⊆ L(π), for everys ∈ S(τ) there exists a substitution
h such thats = h(π). But |s| = |τ | = |π|; thush must map each variable inπ into
a string of length one. Let1 ≤ m, n ≤ |π|. If π(m) = c ∈ A, thens = h(π) must
fulfill s(m) = c, and since this holds for alls ∈ S(τ), we already knowτ(m) = c. If
π(m) = π(n) = xi ∈ X, thens = h(π) must satisfys(m) = s(n) ∈ A, and since this
holds for alls ∈ S(τ), we concludeτ(m) = τ(n). Thus, the set of positions ofxi are all
occupied by the same symbol, sayg(xi), in τ . Hence, we may extendg to be a substitution
such thatτ = g(π), and therefore,τ � π.

Now the principal learnability of all pattern languages in the limit from positive data has
been established.

Note that Angluin’s [1] learnerM as described above has two additional properties.
First, it is consistent. Here consistency means that for all textst of pattern languages,
andx ∈ N we have, ifπ = M(tx), thent+x ⊆ L(π). Moreover, it isset-driven, where
set-drivenness is formally defined as follows:

Definition 5. Let L be any indexable class. An IIM is said to beset-driven with
respect toL iff its output depends only on the range of its input; that is, iffM(tx) = M(t̂y)

for all x, y ∈ N and all textst, t̂ ∈
⋃
L∈L Text(L) providedt+x = t̂+y .

Note that in general one cannot expect to learn set-drivenly. For more information con-
cerning this subject the reader is referred to Lange and Zeugmann [8].

32 LECTURE3: MORE ABOUT LEARNING IN THE L IMIT

Actually, our proof for the learnability of the pattern languages from text was a bit more
complicated than necessary. The solution to the following exercise will establish an easier
proof.

Exercise 10.LetC ∈ IC such thatC has finite thickness. ThenC ∈ CLimTxt .

Of course, the next issue one should study is the complexity of learning the pattern
languages. Unfortunately, due to the lack of time, we have to skip this issue. Instead, we
take a short look at another branch of learning in the limit, i.e., function learning.

3.3. Learning Recursive Functions

Next, we want to adapt our model tofunction learning. Here, the objects to be learned
are classesU of recursive functions. Following a general convention in recursion theory,
by recursive functionswe usually mean the total recursive functions synonymously called
general recursive functions.

The source of information are then growing sequences of the graph of the target function,
i.e.,

〈(x0, f(x0)), (x1, f(x1)), (x2, f(x2)), . . .〉

where we require{xn | n ∈ N} = N.

As hypothesis space we can choose all programs in a universal programming language
(e.g. JAVA), or more formally natural numbers which are then interpreted asencodingsof
such programs (recall a universal Turing machine, a universal RAM, . . .). Alternatively, we
can also use any restricted programming language as long as we can we can write at least
one program for every function to be learned. Below, we shall formalize this idea by the
notion ofnumbering.

The sequence of all computed hypotheses has then toconvergeto acorrectprogram for
the target functionf .

Figure 3.1 displays the basic features of the function learning in the limit model.

Description at timet:

ht
Out←− M

In←− 〈(xt, f(xt)), . . . , (x0, f(x0))〉

M learns successfully in this modeliff there is a pointT such thathT is correct for
f andhT = hT+1 = hT+2 = hT+3 =

Figure 3.1: Function Learning in the Limit

In order to arrive at a formal definition, some more notations are needed. We denote
the set of all finite sequences of natural numbers byN∗. The classes of all partial recursive

LEARNING RECURSIVEFUNCTIONS 33

and recursive functions of one, and two arguments overN are denoted byP , P2, R, and
R2, respectively.R0,1 denotes the set of all0 − 1 valued recursive functions. Sometimes
it will be suitable to identify a recursive function with the sequence of its values, e.g., let
α = (a0, ..., ak) ∈ N∗, j ∈ N, and p ∈ R0,1; then we writeαjp to denote the functionf
for whichf(x) = ax, if x ≤ k, f(k + 1) = j, andf(x) = p(x− k − 2), if x ≥ k + 2.

Any functionψ ∈ P2 is called a numbering. Moreover, letψ ∈ P2, then we writeψi
instead ofλxψ(i, x) and setPψ = {ψi i ∈ N} as well asRψ = Pψ ∩ R. Consequently,
if f ∈ Pψ, then there is a numberi such thatf = ψi. If f ∈ P and i ∈ N are such
thatψi = f , theni is called aψ–program forf . A numberingϕ ∈ P2 is called a G̈odel
numbering (cf. Rogers [11]) iffPϕ = P, and for any numberingψ ∈ P2, there is ac ∈ R
such thatψi = ϕc(i) for all i ∈ N. Göd denotes the set of all G̈odel numberings.

Using a fixed encoding〈. . .〉 of N∗ onto N we write fn instead of〈(f(0), . . . , f(n))〉,
for anyn ∈ N, f ∈ R. Furthermore, the set of all permutations ofN is denoted byΠ(N).
Any elementX ∈ Π(N) can be represented by a unique sequence(xn)n∈N that contains
each natural number precisely ones. LetX ∈ Π(N), f ∈ P andn ∈ N. Then we writefX,n

instead of〈(x0, f(x0), . . . , xn, f(xn))〉 providedf(xk) is defined for allk ≤ n. Finally, a
sequence(jn)j∈N of natural numbers is said toconverge to the numberj iff all but finitely
many numbers of it are equal toj.

Now we are ready to define learning in the limit for functions.

Definition 6 (Gold [5]). Let U ⊆ R and letψ ∈ P2. The classU is said to be
learnable in the limit with respect toψ iff there is an IIMM ∈ P such that for each
functionf ∈ U and everyX ∈ Π(N)

(1) for all n ∈ N,M(fX,n) is defined,

(2) there is aj ∈ N such thatψj = f and the sequence(M(fX,n))n∈N converges toj.

If U is learnable in the limit with respect toψ by an IIMM , we writeU ∈ LIM arb
ψ (M). Let

LIM arb
ψ = {U U is learnable in the limit w.r.t. ψ}, and letLIM arb =

⋃
ψ∈P2 LIM arb

ψ .

Some remarks are mandatory here. Let us start with the semantics of the hypotheses
produced by an IIMM . If M is defined on inputfX,n, then we always interpret the number
M(fX,n) as aψ–number. This convention is adopted to all the definitions below.

Furthermore, note thatLIM arb
ϕ = LIM arb for every G̈odel numberingϕ. In the above

definitionLIM stands for “limit.” Moreover, in accordance with the definition of conver-
gence, only finitely many data of the graph of a functionf were available to the IIMM up
to the unknown point of convergence. Therefore, some form of learning must have taken
place. Thus, the use of the term “learn” in the above definition is indeed justified.

Moreover, thearb in LIM arb points to the requirement to learn from arbitrary input.
That is, within Definition 6 we make no assumptions concerning theorder in which input
data should be presented.

For the sake of illustration, let us look at the following example. Consider the classU of
all polynomials of one variable with coefficients fromN. For constructing an appropriate

34 LECTURE3: MORE ABOUT LEARNING IN THE L IMIT

hypothesis spaceψ we can proceed by canonically enumerating ford = 0, 1, 2, . . . the
finite number of(d+ 1) tuples of natural numbers in the range[0, d] and using them as the
coefficients of1, x, x2, . . . , xd. One such enumeration begins

0, 1 + x, x, 0, 1

2 + 2x+ 2x2, 2 + 2x+ x2, . . .

Then, one could learn the classU of all polynomials of one variable with coefficients
from N by using again theidentification by enumeration principle. But there is another
method which is much more efficient (though not universally faster).

On input
〈(x0, f(x0)), (x1, f(x1)), . . . , (xt, f(xt))〉

one simply outputs the canonical index of the Lagrangian interpolation polynomial, i.e.,

pt(x) =
t∑
i=0

f(xi)
t∏

k=0
k 6=i

x− xk
xi − xk

The fundamental theorem of algebra implies convergence.

Note that in the literature you will quite often find the following definition for learning
in the limit for functions.

Definition 7 (Gold [5]). Let U ⊆ R and letψ ∈ P2. The classU is said to be
learnable in the limit with respect toψ iff there is an IIMM ∈ P such that for each
functionf ∈ U ,

(1) for all n ∈ N,M(fn) is defined,

(2) there is aj ∈ N such thatψj = f and the sequence(M(fn))n∈N converges toj.

If U is learnable in the limit with respect toψ by an IIMM , we writeU ∈ LIMψ(M). Let
LIMψ = {U U is learnable in the limit w.r.t. ψ}, and letLIM =

⋃
ψ∈P2 LIMψ.

The difference between Definitions 6 and 7 is that Definition 7 assumes the graph of the
function to be presented in natural order while Definition 6 does not make any assumption
concerning the order in which the graph is presented. However, it is quite easy to show that
LIM = LIM arb (cf., e.g., Jantke and Beick [7]).

3.4. Points of Concern

Next, we address some fundamental remarks concerning the definition of learning in the
limit. These remarks apply to both learning languages and functions.

Our learning model is not satisfactory with respect to the following points of concern.

– The limit learner has access to the whole initial segment of the data sequence pro-
vided.

CONSISTENCY 35

– The limit learner is only supposed to converge but onenever knowswhether or not it
already did so.

– We have not incorporated any complexity requirement. So, what is the right measure
of complexity to be used here?

We shall address all these points in this and later lectures. Let us start with the problem
to define an appropriate measure of complexity for learning in the limit.

The first complexity measure we will consider is themind change complexity. A
mind change occurs if

M(dj) 6= M(dj+1) , whered is a text or an informant,

M(fn) 6= M(fn+1) , wheref is a recursive function.

Clearly, this measure is closely related to the number of prediction errors. Both complexity
measures say little about the total amount of data and time needed until a concept is guessed
correctly.

Therefore, one has also proposed to study theupdate-time. By update-time we mean
the time needed by a learner to compute itsnew hypothesis from the actual input. We
measure this time as a function of the length of the input. But this measure also has a serious
drawback. That is, one can always achieve linear update-time if no extra requirements are
made to the hypotheses. We leave it as an exercise to prove this statement formally.

3.5. Consistency

In order to deal with this problem, the actual hypotheses are often required to be consis-
tent. Intuitively speaking, a hypothesis is consistent if and only if all information obtained
so far about the unknown object is completely and correctly encoded in this hypothesis.
Otherwise, a hypothesis is said to beinconsistent. Consistency seems to be a very natural
requirement. If we look at function learning then the functiong computed by an inconsis-
tent hypothesis produced on inputfX,n has the following property. There must be anxi,
i ≤ n such thatg(xi) 6= f(xi). Note that there are two possible reasons forg to differ
from f on argumentxi; namely,g(xi) may be not defined, or the valueg(xi) is defined and
does not equalf(xi). Hence, if a hypothesis is inconsistent then it is not only wrong but it
is wrong on an argument for which the IIM does already know the correct value. At first
glance we are tempted to totally exclude IIMs producing inconsistent hypotheses from our
considerations. It might seem thatconsistent IIMs, i.e., IIMs that produce always consistent
hypotheses, are the only reasonable learning devices.

Surprisingly enough this is a misleading impression. As it turns out, in a sense learning
seems to bethe art of knowing what to overlook. Since this phenomenon is of fundamental
importance, we shall deal with it in some more detail here. Interestingly enough, there are
also different ways to define consistency and these different definitions will also provide
some surprises. We start our investigations of consistent learning within the setting of
function learning.

36 LECTURE3: MORE ABOUT LEARNING IN THE L IMIT

Next we formally define different models of consistent learning.

Definition 8 (Barzdin [2]). LetU ⊆ R and letψ ∈ P2. The classU is calledconsis-

tently learnable in the limit with respect toψ iff there is an IIMM ∈ P such that

(1) U ∈ LIMψ(M),

(2) ψS(fn)(x) = f(x) for all f ∈ U , n ∈ N andx ≤ n.

CONSψ(M), CONSψ andCONS are defined analogously as above.

Intuitively, a consistent IIM does correctly reflect all the data it has already seen. If an
IIM does not always work consistently, we call it inconsistent.

Next, we add a requirement to the definition of the learning typeCONSψ that is of-
ten implicitly assumed in applications, namely, that the strategy is defined on every input,
cf. Michalskiet al. [9,10].

Definition 9 (Jantke and Beick [7]). LetU ⊆ R and letψ ∈ P2. The classU is called
R–consistently learnable in the limit with respect toψ iff there is an IIMM ∈ R such
thatU ∈ CONSψ(M).

R-CONSψ(M),R-CONSψ andR-CONS are defined analogously as above.

The latter definition has a peculiarity that should be mentioned. Although the strategy is
required to be recursive, consistency is only demanded for inputs that correspond to some
function f from the class to be learned. With the next definition we model the scenario
in which consistency is required on all inputs. In order to distinguish the resulting learn-
ing type from the latter defined one, we use the prefixT . Informally, T points to total
consistency.

Definition 10 (Wiehagen and Liepe [16). Let U ⊆ R and letψ ∈ P2. The class
U is calledT–consistently learnable in the limit with respect toψ iff there is an IIM
M ∈ R such that

(1) U ∈ CONSψ(M),

(2) ψS(fn)(x) = f(x) for all f ∈ R, n ∈ N andx ≤ n.

T -CONSψ(S), T -CONSψ andT -CONS are defined in the same way as above.

Finally, looking at potential applications it is often highly desirable to make no assump-
tions concerning theorder in which input data should be presented. Therefore, we sharpen
Definitions 8 through 10 by additionally demanding an IIM to behave consistently indepen-
dently of the order of the input.

Definition 11 (Blum and Blum [4]). LetU ⊆ R and letψ ∈ P2. U ∈ T -CONSarb
ψ

iff there is an IIMS ∈ R such that

(1) for all f ∈ U and everyX ∈ Π(N), there is aj ∈ N such thatψj = f , and
(M(fX,n))n∈N converges toj,

CONSISTENCY 37

(2) ψM(fX,n)(xm) = f(xm) for every permutationX ∈ Π(N), f ∈ R, n ∈ N, and
m ≤ n.

T -CONS arb
ψ (M) as well asT -CONS arb are defined in analogy to the above.

Furthermore, appropriately incorporating the requirement to learn from arbitrary in-
put directly yields the learning typesCONS arb, andR-CONS arb. Therefore, the for-
mal definition of these learning models is omitted here. Note that for all learning types
LT ∈ {T -CONS , T -CONS arb , R-CONS , R-CONS arb , CONS , CONS arb} we have
LTϕ = LT for every G̈odel numberingϕ.

In the following we aim to compare the learning power of the different models of con-
sistent learning to one another as well as to learning in the limit. Note that in the following
⊆ denotes subset and⊂ denotespropersubset. Finally, incomparability of sets is denoted
by #.

As already mentioned, in machine learning it is often assumed that learning algorithms
are defined on all inputs. On the one hand, this requirement is partially justified by a
result of Gold [5]. He proved that learning in the limit is insensitive with respect to the
requirement to learn exclusively with recursive IIMs, i.e., ifU ∈ LIM(M), then there is
an IIM M̂ ∈ R such thatU ∈ LIM(M̂). One the other hand, consistency is a common
requirement in machine learning. Therefore, it is natural to ask whether or not the power
of consistent learning algorithms further decreases if one restricts itself to recursive IIMs.
The answer to this question is provided by our next theorem.

Theorem 3.8. T -CONS ⊂ R-CONS ⊂ CONS .

Proof.By definition,T -CONS ⊆ R-CONS ⊆ CONS . In order to showR-CONS \
T -CONS 6= ∅, let U = {f f ∈ R, ϕf(0) = f} whereϕ ∈ Göd. Obviously,U ∈
R-CONSϕ(M) by the IIMM(fn) = f(0) for all n ∈ N .

Now assume thatU ∈ T -CONSϕ(M) for some IIM M . Hence, by Definition 10,
M ∈ R andϕM(fn)(x) = f(x) for everyf ∈ R, n ∈ N andx ≤ n. By an implicit use of
the Recursion Theorem, letf = ϕi be the following function.

f(0) = i,

f(n+ 1) =

{
0, if M(fn0) 6= M(fn)
1, if M(fn0) = M(fn) andM(fn1) 6= M(fn).

Clearly, f ∈ U (note that one of the two cases in the definition off must happen
for all n ≥ 1). On the other hand,M(fn) 6= M(fn+1) for all n ∈ N, contradicting
U ∈ T -CONSϕ(M). HenceU 6∈ T -CONS . This completes the proof ofT -CONS ⊂
R-CONS .

The proof ofCONS \ R-CONS 6= ∅ can be done by using a class similar to the class
above, namely

U = {f f ∈ R, eitherϕf(0) = f or ϕf(1) = f} .

Next, we show thatU ∈ CONS . The wanted IIMM is defined as follows. Letf ∈ R and
n ∈ N.

38 LECTURE3: MORE ABOUT LEARNING IN THE L IMIT

M(fn) = “Compute in parallelϕf(0)(x) andϕf(1)(x) for all x ≤ n until (A) or (B) hap-
pens.

(A) ϕf(0)(x) = f(x) for all x ≤ n.

(B) ϕf(1)(x) = f(x) for all x ≤ n.

If (A) happens first, then outputf(0). If (B) happens first, then outputf(1). If neither
(A) nor (B) happens, thenM(fn) is not defined.”

By the definition ofU , it is obvious thatM(fn) is defined for allf ∈ U and alln ∈ N.
Moreover,M is clearly consistent. Hence, it suffices to prove that(M(fn))n∈N converges
for all f ∈ U . But this is also an immediate consequence of the definition ofU , since either
ϕf(0) 6= f or ϕf(1) 6= f . HenceM cannot oscillate infinitely often betweenf(0) andf(1).
Consequently,U ∈ CONSϕ(M).

Now, it is intuitively clear thatU /∈ R-CONS . The formal proof is done by using
Smullyan’s Recursion Theorem. We refer the interested reader to Wiehagen and Zeug-
mann [18].

Next, consider

U1 = {f ∈ R | ϕf(0) = f andf(x) > 0 for all x} ,
U2 = {f ∈ R | ϕf(0) = f} , and

U0 = {f ∈ R | f(x) = 0 for almost allx} .

Then, it is not hard to verify thatU1, U2, U0 ∈ LIM . Moreover, using similar ideas as
above one can easily show the following exercise.

Exercise 11.U1 ∪ U0 ∈ LIM \ CONS .

Moreover, again using similar ideas it is not hard to see that the following theorem holds.

Theorem 3.9 (Barzdin [2]).U2 ∪ U0 /∈ LIM .

The latter theorem directly implies thatR /∈ LIM . Therefore, the property of a function
classU to be learnable isnot trivial. Furthermore, Theorem 3.9 also shows that it is not
always possible to combine two learners into a more powerful one. So, it is only natural to
ask whether or not the different consistent learning typesLT are closed under union. Here,
by closure under union we mean that for all classesU, V ∈ LT we also haveU ∪ V ∈ LT .

The answer is provided by the following theorem.

Theorem 3.10.

(1) CONS , CONS arb , R-CONS andR-CONS arb are not closed under finite union.

(2) T -CONS andT -CONS arb are closed under recursively enumerable union.

CONSISTENCY 39

Proof.For showing Assertion (1) we can use the classesU0 andU2 defined above. After a
bit of reflection, one easily sees thatU0, U2 ∈ R-CONS arb. Hence, we also haveU0, U2 ∈
R-CONS as well asU0, U2 ∈ CONS arb andU0, U2 ∈ CONS . But by Theorem 3.9 we
already knowU0 ∪ U2 /∈ LIM .

In order to prove (2), we restate this assertion more formally. Let(Mi)i∈N be a recursive
enumeration ofT–consistent IIMs. Then there exists an IIMM such thatT -CONS (M) =⋃

i∈N T -CONS (Mi).

Without loss of generality, we may assume that all the IIMsMi output as hypotheses
programs in some fixed G̈odel numberingϕ. Let f ∈ R. Then two cases are possible.
Either there is an IIMMi that learnsf or all IIMs fail to learn it. However, in the latter
case each of the IIMsMi has to change its mind infinitely often. On the other hand, iff is
learned by someMi then at least one IIM stabilizes its output. The wanted IIMM searches
for an enumerated machine that might learnf as follows.

The IIM M dovetails the computation of more and more outputs of the enumerated
IIMs. For each IIMMi that is already included in its dovetailed computations, it counts
the number of equal outputs. This number is called weight. As long as an IIM repeats its
actual guess on the next input, the weight increments. If an IIM performs a mind change,
its weight reduces to zero. After having read the initial segmentfk of the functionf the
IIM M favors from the firstk+1 IIMs M0, . . . ,Mk that one which actually has the greatest
weight. In case there are two IIMsMi andMj taking the greatest weight the IIMM chooses
that one having the smallest index.

We formally defineM as follows. Letf ∈ R, and letk ∈ N.

M(fk) = “Compute in parallel

M0(f
0), . . . , M0(f

k),

M1(f
0), . . . , M1(f

k),

–

–

–

Mk(f
0), . . . , Mk(f

k),

and assign to each IIMMi, i ≤ k, its weight, i.e., the greatest numberm ≤ k − i

satisfying the condition thatMi(f
k−i−m) = Mi(f

k−i−m+1) = · · · = Mi(f
k−i). Note

that we calculate the weights in a triangular fashion. This is necessary in order to
achieve convergence ofM . Choosew(k) to be the smallesti ≤ k such that the IIM
Mi has the greatest weight.

In case all considered IIMs have weight zero, output aϕ–program off(0) · · · f(k)0∞.

If w(k) = w(k − 1), then outputMw(k)(f
k). Otherwise, output aϕ–program of

f(0) · · · f(k)0∞ that is different fromM(fk−1).”

40 LECTURE3: MORE ABOUT LEARNING IN THE L IMIT

It remains to show thatT -CONSϕ(M) =
⋃

i∈N T -CONSϕ(Mi). Obviously,M is con-
sistent on any initial segment it is fed, since all of the IIMsMi, i ∈ N, do so. Now, let
f ∈ R and suppose thatf is learned by some IIMMi. Consequently, there exists numbers
j, n0 such thatMi(f

n) = j for all n ≥ n0, andϕj = f . Hence, for any IIM that learns
f its weight increases after some point in each step ofM ’s computation. Therefore, for all
but finitely manyk the IIM M must favor exactly one of the IIMsMi that learnsf and,
after some point,M outputs alwaysMi(f

k). Note that the computation of weights in a
triangular fashion really ensures the desired convergence, since any new IIM included in
M ’s computation initially gets weight zero.

On the other hand, if none of the IIMsMi, i ∈ N, learnsf , then each IIMMi has to
perform infinitely many mind changes. This is ensured by our assumption that eachMi is
T–consistent. Hence, the casew(k) 6= w(k−1) occurs infinitely often. But each occurrence
of this case forcesM to perform a mind change. Consequently,M cannot converge.

So far we have seen that the requirement to learn consistently may have serious conse-
quences including the loss of learnability at all. Next, we outline that the requirement to
learn consistently may also seriously affect the complexity of learning. For doing this, we
look again at the pattern languages. But this time we investigate their consistent learnability
from informant.

Definition 12. PAT is calledconsistently learnable in the limit from infor-

mant with respect toPat (abbr.PAT ∈ CONS -INF) iff there is an IIMM such that

(1) PAT ∈ LimInf w.r.t. Pat byM ,

(2) for all L ∈ PAT , i ∈ info(L) andn ∈ N, i+n ⊆ L(M(in)) andi−n ∩ L(M(in)) = ∅.

We addPoly if the time to computeM(in) ≤ pol(length(in)), wherepol is a fixed
polynomial.

Then, one can prove the following (cf. Wiehagen and Zeugmann [17]). Note thatP
stands here for the set of all languages acceptable in deterministic polynomial time and
NP denotes the set of all languages acceptable in nondeterministic polynomial time.

Theorem 3.11.

(1) PAT ∈ CONS -INF .

(2) PAT /∈ Poly-CONS -INF , providedP 6= NP.

(3) PAT ∈ Poly-LimInf .

Summarizing, we may conclude the following interpretation.

If it comes to “reasonable” ideas, it is not a good a idea to trust the common sense.

Now, let us return to the problem of defining an appropriate measure of complexity for
learning in the limit.

TOTAL LEARNING TIME 41

3.6. Total Learning Time

So, as we have seen, it is not a good idea to introduce “natural” requirements such as
consistency. Instead, we shall study the total amount of data and time needed by a learner
until convergence.

�� �� ��

�� �	
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

'
'
'
'
'
'
'
'
'
'
'
'
(
(
(
(
(
(
(
(
(
(
(
(

)
)
)
)
*
*
*
* +
+
+
+
+
+

,
,
,
,
,
,
-
-
-
-
-
-
-
-

.
.
.
.
.
.
.
.

/
/
/
/
/
/
/
/
/
/

0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3
3
3

4
4
4
4
4
4
4
4
4
4

5
5
5
5
5
5
5
5
5
5

6
6
6
6
6
6
6
6
6
6

7
7
7
7
7
7
7
7
7
7

8
8
8
8
8
8
8
8
8
8

9
9
9
9
9
9
9
9
9
9

:
:
:
:
:
:
:
:
:
:

;
;
;
;
;
;
;
;
;
;

<
<
<
<
<
<
<
<
<
<

=
=
=
=
=
=
=
=
=
=

>
>
>
>
>
>
>
>
>
>

?
?
?
?
?
?
?
?
?
?

@
@
@
@
@
@
@
@
@
@

A
A
A
A
A
A
A
A
A
A

B
B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C

D
D
D
D
D
D
D
D
D
D

E
E
E
E
E
E
E
E
E
E

F
F
F
F
F
F
F
F
F
F

G
G
G
G
G
G
G
G
G
G

H
H
H
H
H
H
H
H
H
H

s0 s6 s1070

s0

s

s8 s12987

The Total Learning Time

stage of convergence

stage of convergence

total learning time

displays the

The learners’s behavior on input sequence 1

The learner’s behavior on input sequence 2

Figure 3.2: The total learning time

We define the total learning time as follows. LetM be any IIM that learns a concept
classC in the limit. Then, forc ∈ C and a text or informantd for c, let

Conv(M,d) =df the least number i ∈ N+ such that for all j ≥ i, M(dj) = M(di)

denote thestage of convergence of M on d. Moreover, byTM(dj) we denote the
number of steps to computeM(dj). We measure this quantity as a function of the length of
the input and refer to it as theupdate time. Finally, thetotal learning time taken by the
IIM M on a sequenced is defined as

TT (M,d) =df

Conv(M,d)∑
j=1

TM(dj) .

42 LECTURE3: MORE ABOUT LEARNING IN THE L IMIT

Given a probability distributionD on the data sequencesd, we like to evaluate theexpecta-
tion of TT (M,d) with respect toD, theaverage total learning time.

Figure 3.11 displays the total learning time on different input sequences as the measure
under the curve until the stage of convergence happened. Looking at Figure 3.11 we see the
following. On different input sequences the amount of data needed until convergence may
considerably vary.

Still, there is a problem. What one usually likes to have is a learner that has a polynomial
total learning time. This could be easily said, however, we have to specify what is really
meant, i.e., polynomial in what? Thus, the crucial point is the right definition of the problem
size. If one takes the sum of the length of all elements seen until convergence (and possibly
the length of target concept as additional parameter) then a learner could simply delay
convergence until sufficiently long examples have been appeared. On the other hand, if we
take the length of the shortest hypothesis describing the target concept as problem size then
the total learning time is usually unbounded in theworst-case. This is caused by the fact that
the learner has to learn from all data sequences. Thus, taking a data sequence containing
as many repetitions as necessary of elements that do not suffice to learn the target, every
bound can be exceeded. See for example the learner’s behavior on input sequence 2 below.

On the other hand, such worst-case data sequences may be rare in practice if they occur
at all. Consequently, in order to arrive at a complexity measure that has much more practical
value than a worst-case analysis, one has to study the average-case behavior of a learner.

So, in the next lecture, we shall explain what an average-case analysis is by using a much
simpler example than learning in the limit.

References

[1] D. ANGLUIN (1980), Finding patterns common to a set of strings,Journal of Com-
puter and System Sciences21, 46 – 62.

[2] J. BARZDIN (1974a), Inductive inference of automata, functions and programs,in
“Proceedings International Congress of Math.,” Vancouver, pp. 455 – 460.

[3] D.R. BEAN, A. EHRENFEUCHT, AND G.F. MCNULTY (1979), Avoidable patterns
in strings of symbols,Pacific J. of Mathematics85, Vol. 2, 261 – 294.

[4] L. BLUM AND M. BLUM (1975), Toward a mathematical theory of inductive infer-
ence,Information and Control28, 122 – 155.

[5] E.M. GOLD (1965), Limiting recursion,Journal of Symbolic Logic30, 28 – 48.

[6] J.E. HOPCROFT ANDJ.D. ULLMAN (1969),Formal Languages and their Relation
to Automata, Addison-Wesley, Reading, Massachusetts.

[7] K.P. JANTKE AND H.R. BEICK (1981), Combining postulates of naturalness in in-
ductive inference,Journal of Information Processing and Cybernetics (EIK)8/9, 465
– 484.

TOTAL LEARNING TIME 43

[8] S. LANGE AND T. ZEUGMANN (1996), Set-driven and rearrangement-independent
learning of recursive languages,Mathematical Systems Theory29, No. 6, 599 – 634.

[9] R.S. MICHALSKI , J.G. CARBONELL, AND T.M. M ITCHELL (1984), “Machine
Learning, An Artificial Intelligence Approach,” Vol. 1, Springer-Verlag, Berlin.

[10] R.S. MICHALSKI , J.G. CARBONELL, AND T.M. M ITCHELL (1986), “Machine
Learning, An Artificial Intelligence Approach,” Vol. 2, Morgan Kaufmann Publishers
Inc., San Mateo.

[11] H.JR. ROGERS(1967), “Theory of Recursive Functions and Effective Computabil-
ity,” McGraw–Hill, New York.

[12] A. SALOMAA (1994), Patterns, (The Formal Language Theory Column). EATCS
Bulletin 54, 46 – 62.

[13] A. SALOMAA (1994), Return to patterns (The Formal Language Theory Column),
EATCS Bulletin55, 144 – 157.

[14] T. SHINOHARA AND S. ARIKAWA (1995), Pattern inference,in “Algorithmic Learn-
ing for Knowledge-Based Systems” (K.P. Jantke and S. Lange, eds.), Lecture Notes
in Artificial Intelligence 961, pp. 259 – 291, Springer-Verlag, Berlin.

[15] A. THUE (1906), Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat.
Nat. Kl., Christiana No. 7, 1 – 22.

[16] R. WIEHAGEN AND W. L IEPE (1976), Charakteristische Eigenschaften von erkenn-
baren Klassen rekursiver Funktionen,Journal of Information Processing and Cyber-
netics (EIK)12, 421 – 438.

[17] R. WIEHAGEN AND T. ZEUGMANN (1994), Ignoring data may be the only way to
learn efficiently,Journal of Theoretical and Experimental Artificial Intelligence6,
131 – 144.

[18] R. WIEHAGEN AND T. ZEUGMANN (1995), Learning and Consistency,in “Algo-
rithmic Learning for Knowledge-Based Systems” (K.P. Jantke and S. Lange, eds.),
Lecture Notes in Artificial Intelligence 961, pp. 1 – 24, Springer-Verlag, Berlin.

45

LECTURE4: AVERAGE-CASE COMPLEXITY

Within this lecture we exemplify the task to perform an average-case analysis of the
complexity of a particular algorithm. When dealing with data mining, usually huge data
sets have to be analyzed. Thus, an excellent average-case behavior is often more important
than a good worst-case time complexity. However, performing an average-case analysis
of the complexity of a given algorithm is often much more complicated than analyzing its
worst-case complexity. Due to the lack of time, therefore we shall often omit such average-
case studies throughout this course.

Before we can perform any average-case analysis, we have to understand what average-
case analysis is all about. For reaching this goal, we use this lecture to provide some easy
examples.

4.1. Introductory Examples

We start with a very simple question. Let us assume all five digit numbers are equally
likely including 00000 (that is we also allow leading zeros). Now, we want to add 1 to such
a number. The question is

How many digits will be changed?

In the best-case, the last digit is not 9, and we have to change just one digit, i.e., the last
one.

In the worst-case, the number is 99999 and we have to change 6 digits, since

99999 + 1 = 100000

Now, we are interested in theexpected numberof digits that will be changed. Saying
that all five digit numbers are equally likely is equivalent to the following. We choose
each digit independently of the other digits and the probability to choose a digit from
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is 1/10.

So, with probability9/10 we donotchoose 9 to be the last digit. That is, with probability
9/10 weonlyhave to change the last digit.

What can be said about the probability that we have to change exactly two digits? This
event will happen if and only if the last digit is9 and the second digit (from the right) isnot
9. Furthermore, the probability for the last digit to be9 is 1/10 and the probability for the
second digit to be not9 is 9/10. Thus, the probability to change exactly two digits is

1

10
· 9

10
=

9

100
.

For seeing the general pattern, we also calculate the probability that we have to change
exactly 3 digits. This event will happen if and only if the last digit is9, the second digit is
9 and the third digit isnot9. Thus, the probability to change exactly three digits is

1

10
· 1

10
· 9

10
=

9

1000
.

46 LECTURE4: AVERAGE-CASE COMPLEXITY

Analogously, the probability to change exactly4 digits is9/104 and the probability to
change exactly5 digits is9/105. Additionally, we need the probability to change exactly6

digits. As shown above, this event will happen if the number is99999, i.e., with probability
1/105.

For completing our analysis, letR denote the random variable telling us how many digits
we have to change. Thus,R can take the values1, 2, 3, 4, 5, 6. The formula for computing
the expection is

E[R] =
6∑

x=1

x · Pr(R = x) .

Thus, the expected number of digits to be changed is

E[R] =
5∑

x=1

x · 9

10x
+

6

105
= 1, 11111 .

Next, we look at the more general case of having ann digit number, wheren ∈ N,
n ≥ 1. Now, we denote the random variable byRn and obviously the range ofRn is the set
{1, . . . , n, n+ 1}. Clearly, then we get

E[R] =
n∑
x=1

x · 9

10x
+
n+ 1

10n
(4.1)

How can we calculate the sum on the right hand side? Let us start from something we
know, i.e., the finite geometrical series. That is, we take into account that

f(q) =
n∑
x=0

qx =
1− qn+1

1− q
, for all q 6= 1 .

Now, taking derivatives on both sides yields

f ′(q) =
n∑
x=0

xqx−1 =
1− (n+ 1)qn + nqn+1

(1− q)2
, q 6= 1 .

Consequently, we arrive at

n∑
x=0

xqx =
q − (n+ 1)qn+1 + nqn+2

(1− q)2
, q 6= 1 .

This allows us to rewrite the expectation in (4.1) as follows.

E[R] = 9 ·
n∑
x=1

x ·
(

1

10

)x

+
n+ 1

10n

= 9 · (1/10)− (n+ 1)(1/10)n+1 + n(1/10)n+2

(1− (1/10))2
+
n+ 1

10n

=
10

9
− 1

9 · 10n
.

ANALYZING THE COMMON ALGORITHM FOR FINDING THE MAXIMUM 47

Thus, asn tends to infinity, the expected number of digits to be changed if you add1 to
ann digit number in decimal notation chosen uniformly at random is10/9. So, this is very
close to the best-case (just one digit) and far from the worst case ofn+ 1 digits.

Exercise 12.Compute the expected number of bits to be changed if you add1 to ann
bit number chosen uniformly at random.

4.2. Analyzing the Common Algorithm for Finding the Maximum

Let us consider the following well-known algorithm for finding the maximum in a list
of elements.

Algorithm Max

Input: n elementsX[1], X[2], . . . , X[n] of a totally ordered set.

Output: Numbersm andj such thatm = X[j] = max{X[k] 1 ≤ k ≤ n}.

Method:

A1. (Initialize) j := n, k := n,m := X[n]

A2. (All tested ?) Test whetherk = 0.

If it is, outputj, m, and stop.

Otherwise, execute A3.

A3. (Compare) IfX[k] ≤ m, goto A5.

Otherwise, execute A4.

A4. (Changem) j := k,m := X[k]

A5. (Decreasek) k := k − 1, goto A2.

Algorithm Max requires a fixed amount of storage. So, we shall analyze the time
required to perform it. For doing this, we count the number of times each step is executed.
This is done Figure 4.1 below.

Instruction Number of executions

A1 1
A2 n
A3 n− 1
A4 A
A5 n− 1

Figure 4.1: Counting the number of executions of A1 through A5

Everything is clear except the quantityA. Therefore, we study the quantityA, only.
Before looking at the expectation ofA, we look at the minimum and maximum of it.

48 LECTURE4: AVERAGE-CASE COMPLEXITY

(1) The minimum value ofA is zero; this happens iffX[n] = max{X[k] 1 ≤ k ≤ n}.

(2) The maximum value ofA is n− 1; this happens iffX[1] > X[2] > · · · > X[n].

Thus, the best-case and worst-case behavior ofAlgorithm Max are clear and trivially
to obtain. But what can be said about the average?

To answer this question, we need to define what we mean by average. For doing that, we
must make some assumptions about theexpectedcharacteristics of the input data. These
assumptions are:

(1) All X[k] are pairwise distinct.

(2) Without loss of generality we can assume that{1, 2, . . . , n} is the the range of the
input data.

(3) We assume all possiblen! permutations of the input data{1, 2, . . . , n} to be equally
likely.

In particular, we made Assumption (3), since we do not have any reason here to assign
different probabilities to the different possible permutations. When dealing with particular
input data sets, things may change, however. In such cases one has to figure out the un-
derlying probability distribution of the inputs. But for our goal and in many applications
Assumption (3) is reasonable.

Next, we introduce some notations. Bypnk we denote the probability thatA has valuek.
Using the classical definition of probability, we can thus write

pnk =
number of permutations of{1, 2, . . . , n} for whichA = k

n!
.

Then, theaverage(mean) value is defined by

E[A] = An =
∑
k

kpnk .

Moreover, thevarianceVn is defined as

Vn = E[(A− An)2] =
∑
k

(k − An)2pnk =
∑
k

k2pnk − A2
n .

Furthermore, thestandard deviationσn is defined to be
√
Vn. Thus, all we have to do is to

computeAn, Vn andσn. But how can we do this?

Approach 1. Determinepnk.

Claim 1. pnk =
1

n
· p(n−1)(k−1) +

n− 1

n
· p(n−1)k, wherep1k = δ0k, andpnk = 0 if

k < 0.

Proof. If x1 = n, then the value ofA is one higher than the value ofA obtained
on {x2, . . . , xn}. Moreover, ifx1 6= n, then the value ofA is thesameas its value on
{x2, . . . , xn}.

ANALYZING THE COMMON ALGORITHM FOR FINDING THE MAXIMUM 49

But how can we proceed? There is a very powerful tool, calledgenerating functions
which seems appropriate to be used here. Therefore, we shortly recall the definition of
generating functions and an important theorem from calculus.

Let (an)n∈N be any sequence of real (or complex) numbers. Then

g(z) =
∞∑
n=0

anz
n

is calledgenerating function of (an)n∈N. The following theorem is often applied to
generating functions.

Theorem 4.1. Let (an)n∈N and (bn)n∈N be any sequences such that their generating
functions have a radiusr > 0 of convergence. Then

∞∑
n=0

anz
n =

∞∑
n=0

bnz
n

iff an = bn for all n ∈ N.

Moreover, recall that power series can be differentiated by differentiating their sum-
mands. Thus, we also know that

g′(z) =
∞∑
n=0

n · anzn−1 .

For more information about generating functions the interested reader is referred to Gra-
ham, Knuth, and Patashnik [1]. Furthermore, you should consult myAdditional Notes on
Counting and Probabilitywhich are available at

http://www-alg.ist.hokudai.ac.jp/ thomas/TCSTRB/tcstr05 2/tcstr 05 2.ps.gz

So, let us try to apply generating functions for computing thepnk. We consider

Gn(z) =
∑
k≥0

pnkz
k .

In fact,Gn is even a polynomial but due to the convention made in Claim 1, we can write
it as a power series, which is technically more convenient for our purposes. Also, note that
G1(z) = 1. Then, we obtain

Gn(z) =
∑
k≥0

pnkz
k =

∑
k≥0

(
1

n
· p(n−1)(k−1) +

n− 1

n
· p(n−1)k

)
· zk

=
z

n

∑
k≥0

p(n−1)(k−1)z
k−1 +

n− 1

n

∑
k≥0

p(n−1)kz
k

=
z

n
Gn−1(z) +

n− 1

n
Gn−1(z) =

z + n− 1

n
Gn−1(z) .

50 LECTURE4: AVERAGE-CASE COMPLEXITY

Hence, we arrive at

Gn(z) =
1

n!

n−1∏
i=1

(z + n− i) =
1

(z + n)n!

n−1∏
i=0

(z + n− i)

=
1

(z + n)n!
· n!

(
z + n

n

)
=

1

z + n

(
z + n

n

)
Thus, we have found a closed formula forGn. Using Stirling numbers of the first kind∗,

we get

n∏
i=0

(z + n− i) =
n−1∏
i=0

(z + i) =
n∑
k=1

[n
k

]
zk ,

and hence, we can conclude

n−1∏
i=0

(z + n− i) =
1

z

n∏
i=0

(z + n− i) =
1

z

n∑
k=1

[n
k

]
zk

=
n∑
k=1

[n
k

]
zk−1 =

∑
k≥0

[
n

k + 1

]
zk .

Consequently, we can apply Theorem 4.1 and get

Gn(z) =
1

n!

n−1∏
i=0

(z + n− i) =
∑
k≥0

(
1

n!

[
n

k + 1

])
zk ,

and therefore

pnk =
1

n!

[
n

k + 1

]
.

However, it is not easy to computeAn by using the formula just obtained. You are strongly
advised to try it as an exercise. We shall provide here an easier and even more general
method. Consider

G(z) =
∑
k≥0

qkz
k ,

where theqk are probabilities. Then

G(1) =
∑
k≥0

qk = 1 ,

and moreover
G′(1) =

∑
k≥0

kqk = E[G] .

Analogously, one easily verifies

V (G) = G′′(1) +G′(1)− (G′(1))2 .

∗We use here the notation from [1] to denote Stirling numbers of the first kind.

ANALYZING THE COMMON ALGORITHM FOR FINDING THE MAXIMUM 51

Thus,An = G′
n(1) which can be computed as follows. Using the identity

Gn(z) =
z + n− 1

n
Gn−1(z)

derived above, we directly obtain

G′
n(z) =

1

n
Gn−1(z) +

z + n− 1

n
G′
n−1(z) .

Consequently,

G′
n(1) =

1

n
+G′

n−1(1)

=
1

n
+

1

n− 1
+ · · ·+G′

1(1)︸ ︷︷ ︸
=0

.

Therefore, we can rewriteG′
n(1) =

∑n
k=2

1
k

and recalling that thenth Harmonic number is
defined asHn =

∑n
k=1

1
k

we finally get

An = Hn − 1 .

Furthermore, taking into account that∫ n

1

dx

x
= lnn− ln 1 = lnn

it is easy to see thatlnn < Hn < lnn+ 1.

Now, lettingH(2)
n =

∑n
k=1

1
k2 and putting it all together, we finally get

V (An) = Hn −H(2)
n .

Thus, the complete picture concerningA can be written as

A =

(
min : 0, average:Hn − 1, max : n− 1,dev:

√
Hn −H(2)

n

)
.

Hopefully, this easy example has provided you a basic idea of what average-case analysis
is all about and what basic techniques one might apply.

References

[1] R.L. GRAHAM , D.E. KNUTH AND O. PATASHNIK (1989),Concrete Mathematics
(Addison-Wesley, Reading, Massachusetts).

53

LECTURE5: AVERAGE-CASE ANALYSIS II

Within this lecture, we want to perform an average-case analysis for a small variation of
AlgorithmP, synonymously called Wholist Algorithm, introduced in Lecture 2.

Recall that our concept classCn is the set of all conceptsc ⊆ Xn = {0, 1}n describable
by a monomial. For the concept classCn the hypothesis spaceHn will be chosen as the set
of all monomials overLn for the learners considered below.

This is a good place to address the issue of our points of concerns that a limit learner
has always access to the whole initial segment of the data sequence provided. In contrast to
that we next defineiterative IIMs.

An iterative IIM is only allowed to use its last guess and the next element in the data
presentation of the target concept for computing its actual guess. Conceptionally, an itera-
tive IIM M defines a sequence(Mn)n∈N of machines each of which takes as its input the
output of its predecessor. We usedata(c) to denote the set of all data sequences forc. In
order to avoid misunderstandings it should be recalled that data sequences are either texts
or informants. Furthermore, ifd = (dj)j∈N ∈ data(c) is any data sequence, then we use
heredj to denote thejth entry of it.

Definition 13 (Wiehagen [2]). Let C be a concept class, letc be a concept, and let
H = (hj)j∈N be a hypothesis space.An IIM M IT-infers c from data sequence

d with respect to H iff for everyd = (dj)j∈N ∈ data(c) the following conditions are
satisfied:

(1) for all n ∈ N, Mn(d) is defined, whereM0(d) =df M(d0) and for all n ≥ 0:
Mn+1(d) =df M(Mn(d), dn+1),

(2) the sequence(Mn(d))n∈N converges to a numberj such thatc = hj.

Finally, M IT-infers C with respect toH iff, for eachc ∈ C, M IT-infers c from data
sequence with respect toH.

In the latter definitionMn(d) denotes the(n + 1)th hypothesis output byM when suc-
cessively fed the data sequenced.

When the data sequence are informants and texts, then we also say thatM IT-infers C
from informant and text, respectively, with respect to the hypothesis spaceH considered.

For the sake of better understandability we first modify AlgorithmP into an iterative
learner (cf. AlgorithmIML). Again, we identify the target conceptc and the monomialm
describing it. The iterative learner is defined in stages, where Stage` conceptually describes
M`.

Algorithm IML: “Let c ∈ Cn, let i = (b0,m(b0)), (b1,m(b1)), . . . be any informant
for c. Go to Stage 0.

54 LECTURE5: AVERAGE-CASE ANALYSIS II

Stage0. IML receives as input(b0,m(b0)).

Initialize h0 = x1x̄1 . . . xnx̄n.

If m(b0) = 0 then h0 remains unchanged ; else

for j := 1 to n do

if bj0 = 1 then delete x̄j in h0 else delete xj in h0.

Denote the result by h0, output h0 and go to Stage 1.

Stagè , ` ≥ 1. IML receives as inputh`−1 and the(` + 1)th element(b`,m(b`))

of i.

If m(b`) = 0 then set h` = h`−1; else

for j := 1 to n do

if bj0 = 1 then delete x̄j in h`−1 else delete xj in h`−1.

Denote the result by h`, output h` and go to Stage `+ 1.

By convention, if all literals have been removed, thenh` = ∅, andh`(b) = 1 for all
b ∈ Xn.

end .”

Now, we can directly state the following theorem.

Theorem 5.1. For everyn ≥ 1 we have:IML IT-learnsCn from informant with
respect to the hypothesis spaceHn.

Proof. Using the same arguments as in the proof of Theorem 2.1 one easily sees that
Algorithm IML IT-learnsCn from informant with respect to the hypothesis spaceHn.
We omit the details.

Moreover, AlgorithmIML can be easily adapted to learn from positive data only.
We have just to omit the tests whether or notm(b`) = 0. We call the resulting algorithm
IMLP. Now, the following corollary is obvious.

Corollary 5.2. For everyn ≥ 1 we have:IMLP IT-learnsCn from positive data only
with respect to the hypothesis spaceHn.

Also, it should be noted that AlgorithmIMLP is a true limit learner, since its con-
vergence is undecidable. You should prove this as an exercise. On the other hand, for
Algorithm IML convergence isdecidable. This is due to the fact that{0, 1}n is finite for
all n ∈ N. However, deciding whether or not AlgorithmIML has already converged is
practically infeasiblefor all n of practical relevance, since|{0, 1}n| = 2n.

Let us first take a quick look at the best and worst case complexity with respect to the
number of prediction errors (mind changes) made. AlgorithmP does not make any predic-
tion errors and AlgorithmIML does not make any mind change iff the initial hypothesis
h0 equals the target monomial, i.e., if the concept to be learned is “FALSE.” We call this
conceptminimal. The remaining concepts are said to benon-minimal.

AVERAGE-CASE ANALYSIS FOR LEARNING IN THE L IMIT FROM POSITIVE PRESENTATIONS 55

To study the general case, let us call the literals appearing in a non-minimal monomialm

relevant. All the other literals inLn will be calledirrelevant for m. There are2n−#(m)

irrelevant literals, where#(m) denotes the number of literals in monomialm. One can also
consider#(m) to be the length of monomialm.

We call biti relevant for m if xi or x̄i is relevant form and use

k =df k(m) =df n−#(m)

throughout the rest of the lecture to denote the number of irrelevant bits.

Now we can expresses the best-case and worst-case number of prediction errors and
mind changes made by AlgorithmP and AlgorithmIML as follows:

Theorem 5.3. If c is a non-minimal concept ofCn AlgorithmP (AlgorithmIML)

makes2 prediction errors(mind changes) in the best-case and1 + k(m) prediction errors
(mind changes) in the worst-case.

Note that Theorem 5.3 remains valid for AlgorithmIMLP. So, the gap between the
best-case and the worst-case can become quite large. But still, we have no idea about the
average. The situation changes even more, if we consider the total learning time. Since the
hypotheses internally computed by AlgorithmP or output by AlgorithmIML can be cal-
culated in linear time, it is easy to see that the best-case requires a total learning timeO(n).
However, the worst case total learning time isunbounded, since every positive presentation
and every informant may contain as many repetitions of data that do not possess enough
information to achieve the learning goal.

Hence, as far as learning in the limit and the complexity measuretotal learning timeare
concerned, there is a huge gap between the best-case and the worst-case behavior. There-
fore, we continue by studying the average-case behavior of the limit learnerIML. We
start by restricting ourselves to learning from positive presentations only.

This restriction is also quite natural, since AlgorithmIML does not learn anything
from negative examples and so does AlgorithmP.

Note that one can also study further questions such as estimating the accuracy of a
hypothesis after the AlgorithmIML has seeǹ many positive (or̀ many positive and
negative) examples. You are encouraged to think about this question.

5.1. Average-Case Analysis for Learning in the Limit from Positive Presen-
tations

For the following average case analysis we assume that the data sequences are gener-
ated at random with respect to some probability distributionD taken from some class of
admissible distributionsD, which will be specified later.

We are interested in theaverage numberof positive examples necessary to achieve con-
vergence. Letd be a positive presentation of the conceptc to be learned that is generated at
random according toD.

56 LECTURE5: AVERAGE-CASE ANALYSIS II

If the concept to be learned is “FALSE” no examples are needed (and none exist). Oth-
erwise, if the target concept contains preciselyn literals then one positive example suffices
(note that this one is unique). Thus, for these two cases everything is clear and the proba-
bility distributionsD on the set of positive examples forc are trivial.

Thus it remains to analyze the nontrivial cases. Letc = L(m) ∈ Cn be a concept with
monomialm =

∧#(m)
j=1 `ij . Letk := k(m) = n−#(m) > 0. Note that there are2k positive

examples forc.

We shall consider the class ofbinomial distributions, where in a random positive
example all entries corresponding to irrelevant bits are selected independently to one an-
other. With some probabilityp this will be a1, and with probabilityq =df 1 − p a 0. We
consider only nontrivial distributions where0 < p < 1. Note that otherwise the data se-
quence does not contain all positive examples. The resulting data sequences are referred to
as to binomially distributed with parameterp.

We would like to compute the expected number of examples taken byIMLP until
convergence.

The first example received forcesIMLP to delete preciselyn of the2n literals inh0.
Thus, this example always plays aspecialrole.

Note that the resulting hypothesish0 depends onb0, but the numberk of literals that
remain to be deleted fromh0 until convergence isindependentof b0. It is therefore conve-
nient to compute the expectation by consideringIMLP’s behavior after having read the
first example.

For the following analysis, we will denote byCON a random variable that counts the
number of examples till the algorithm has converged to a correct hypothesis.

Theorem 5.4. Let c = L(m) be a non-minimal concept inCn, and let the positive
examples forc be binomially distributed with parameterp. Defineψ:= min{ 1

1−p ,
1
p
} and

τ = max{ p
1−p ,

1−p
p
}. Then the expected number of positive examples needed by algorithm

IMLP until convergence can be bounded by

E[CON] ≤ dlogψ k(m)e+ τ + 2 .

Proof.Let k := k(m). The first positive example containsν times a1 andk − ν many
0 with probability

(
k
ν

)
pνqk−ν at the positions not corresponding to a literal in the target

monomialm. Now, assuming any such vector, we easily see thath0 containsν positive
irrelevant literals andk − ν negative literals. Therefore, in order to achieve convergence,
the algorithmIMLP now needs positive examples that contain at least one0 for each
positive irrelevant literal and at least one1 for each negative irrelevant literal. Thus, the
probability that at least one irrelevant literal survivesµ subsequent positive examples is
bounded byνpµ + (k − ν)qµ. Therefore,

Pr(CON− 1 > µ) ≤
k∑
ν=0

(
k

ν

)
pνqk−ν · (νpµ + (k − ν)qµ) .

AVERAGE-CASE ANALYSIS FOR LEARNING IN THE L IMIT FROM POSITIVE PRESENTATIONS 57

Next, we derive a closed formula for the sum given above.

Claim 1.
k∑
ν=0

(
k

ν

)
pνqk−ν · ν = kp and

k∑
ν=0

(
k

ν

)
pνqk−ν · (k − ν) = kq

The first equality can be shown as follows.

k∑
ν=0

(
k

ν

)
pνqk−ν · ν =

k∑
ν=1

(
k

ν

)
pνqk−ν · ν

=
k−1∑
ν=0

(
k

ν + 1

)
pν+1qk−1−ν · (ν + 1)

=
k−1∑
ν=0

k ·
(
k − 1

ν

)
pν+1qk−(ν+1)

= kp ·
k−1∑
ν=0

(
k − 1

ν

)
pνq(k−1)−ν

= kp · (p+ q)k−1 = kp .

The other equality can be proved analogously, which yields Claim 1.

Now, proceeding as above, we obtain

E[CON− 1] =
∞∑
µ=0

Pr(CON− 1 > µ)

≤ λ+
∞∑
µ=λ

k∑
ν=0

(
k

ν

)
pνqk−ν · (νpµ + (k − ν)qµ)

= λ+
∞∑
µ=λ

k∑
ν=0

(
k

ν

)
pνqk−ν · νpµ +

∞∑
µ=λ

k∑
ν=0

(
k

ν

)
pνqk−ν · (k − ν)qµ

= λ+
∞∑
µ=λ

pµ ·
k∑
ν=0

(
k

ν

)
pνqk−νν︸ ︷︷ ︸

=kp by Claim 1

+
∞∑
µ=λ

qµ ·
k∑
ν=0

(
k

ν

)
pνqk−ν · (k − ν)︸ ︷︷ ︸

=kq by Claim 1

= λ+ kp ·
∞∑
µ=λ

pµ + kq ·
∞∑
µ=λ

qµ = λ+ k ·
(
p

q
· pλ +

q

p
· qλ

)
≤ λ+ k ·

(
p

q
· ψ−λ +

q

p
· ψ−λ

)
≤ λ+ kψ−λ · (1 + τ) .

Finally, choosingλ = dlogψ ke gives the statement of the theorem.

As a corollary we get

58 LECTURE5: AVERAGE-CASE ANALYSIS II

Corollary 5.5. For every binomially distributed positive presentation with parameter
0 < p < 1 the average total learning time of algorithmIMLP for concepts inCn is at
mostO(n log n). More precisely, a conceptc = L(m) requires timeO(n log(n−#(m)+2))

on the average.

The expectation alone does not provide complete information about the average case be-
havior of an algorithm. It is helpful to know larger moments, too, in particular the variance.
Then one can deduce bounds how often the algorithm exceeds the average considerably by
applying, for example, Chebyshev’s inequality. If the variance is not available, Markov’s
inequality provides us with worse tail bounds:

If X is any random variable taking only positive real values then

Pr(X ≥ t · E[X]) ≤ 1

t
for all k ≥ 1 .

Markov’s inequality is quite general but produces only weak bounds.

However, AlgorithmIMLP possesses two favorable properties that simplify the anal-
ysis considerably, it isset-driven and conservative. They allow to establish good
bounds for the tail probabilities.

Set-driven means that the output depends only on therangeof the input sequence. More
formally, for all c ∈ Cn all t, t̂ ∈ text(c) and alli, j ∈ N+ the equalityt+i = t̂+j of the range
of the two prefixes impliesIMLP(ti) = IMLP(t̂j).

It is easy to see that AlgorithmIMLP fulfills this property.

Furthermore, a learner is said to beconservativeif every mind change is caused by an
inconsistency with the data seen so far. AlgorithmIMLP satisfies this condition, too, i.e.,
for all c ∈ Cn, all t ∈ text(c) and alli, j ∈ N+ it holds: if IMLP(ti) 6= IMLP(ti+j)

thent+i+j 6⊆ L(IMLP(ti)).

Now, we can apply the following theorem to obtain exponentially shrinking tail bounds
for the expected number of examples needed in order to achieve convergence.

Theorem 5.6 (Rossmanith and Zeugmann [1]). LetCON be the sample complexity of
a conservative and set-driven learning algorithm. Then for arbitraryt ∈ N it holds

Pr (CON > 2 t · E[CON]) ≤ 2−t .

Since Theorem 5.6 is of central importance, we also provide a proof. First, recall the
definition ofmedian. If X is a random variable thenµX is a median ofX iff

Pr(X ≥ µX) ≥ 1/2 and Pr(X ≤ µX) ≥ 1/2.

A nonempty set of medians exists for each random variable and consists either of a single
real number or of a closed real interval. We will denote the smallest median ofX by µX,
since this choice gives the best upper bounds. Now, we can show the following theorem.

AVERAGE-CASE ANALYSIS FOR LEARNING IN THE L IMIT FROM POSITIVE PRESENTATIONS 59

Theorem 5.7 (Rossmanith and Zeugmann [1]). LetX be the sample complexity of
a conservative and set-driven learning algorithm. ThenPr(X ≥ t · µX) ≤ 2−t for all
t ∈ N.

Proof.We divide the data sequenced0, d1, . . . into blocks of lengthµX. The probability
that the algorithm converges after reading any of the blocks is then at least1/2. Since the
algorithm is set-driven the order of the blocks does not matter and since the algorithm is
conservative it does not change its hypothesis after computing once the right hypothesis.

Theorem 5.6 now follows by taking into account thatµX ≤ 2E[X] for every positive
random variableX in accordance with the Markov inequality. Therefore,

Pr(X ≥ 2t · E[X]) ≤ 2−t for everyt ∈ N .

A simple calculation shows that in case of exponentially shrinking tail bounds the vari-
ance is bounded byO(E[CON]2).

So, the deviation from the average will be quite small due to our exponentially shrinking
tail bounds. In other words, AlgorithmIMLP is a quite data efficient learning algorithm
on average. This should surprise you a bit, since it can be as inefficient as you like in the
worst-case. Thus, for many practical problems, like the one exemplified in the last lectures,
analyzing the average-case behavior is of much more practical importance than studying
the worst case complexity.

References

[1] P. ROSSMANITH AND T. ZEUGMANN, Stochastic Finite Learning of the Pattern Lan-
guages,Machine Learning44, No. 1-2, 2001, 67–91.

[2] R. WIEHAGEN, Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Journal of Information Processing and Cybernetics (EIK)12, 1976, 93–99.

61

LECTURE 6: STOCHASTIC FINITE LEARNING AND PAC
LEARNING

6.1. Stochastic Finite Learning

After having analyzed the average-case behavior of AlgorithmIMLP we want to
address our remaining point of concern. As pointed out in Lecture 3, a limit learner is only
supposed to converge in the limit, butnever knowswhether or not it already did so. Such an
uncertainty may be prohibitive in many applications of learning. So, how can we recover?

Of course, we cannot achieve certainty concerning convergence, since otherwise con-
vergence would be decidable. But, as we have already mentioned a couple of times, con-
vergence is undecidable in general. But even if convergence is decidable as in the case of
learning monomials from positive and negative data, it is practically infeasible to decide
whether or not the learner did already converge.

Therefore, we have to replace certainty concerning convergence by a weaker require-
ment. Again, recall that there are always optimistic, pessimistic and probabilistic people
around. So, if we suppose optimistic people to optimistically assume that the learner has
already converged and pessimistic people to pessimistically assume that the learner did not
yet converge, then it remains to explain what probabilistic people can do.

Looking at real life examples, we see that we quite often have a confidence in doing
something which is based on experience. Thus, we introduce a new parameterδ into our
learning model calledconfidence parameter.

Then, in the following we always assume a classD of admissible probability distribu-
tions over the relevant learning domain. Ideally, this class should be parameterized. Further-
more, the data fed to learner are generated randomly with respect to one of the probability
distributions from the classD of underlying probability distributions.

Additionally, the learner takes the confidence parameterδ as input. But in contrast to
learning in the limit, the learneritselfdecides how many examples it wants to read. Then it
computes a hypothesis, outputs it and stops. The hypothesis output is correct for the target
with probability at least1− δ.

The explanation given so far explains how it works, but not why it does. Intuitively,
the stochastic finite learner simulates the limit learner until an upper bound for twice the
expected total number of examples needed until convergence has been met. Assuming this
to be true, by Markov’s inequality the limit learner has now converged with probability
1/2. All what is left, is to decrease the probability of failure. This is done by using the
tail bounds forCON. Applying Theorem 5.6, one easily sees that increasing the sample
complexity by a factor ofO(log 1

δ
) results in a probability of1 − δ for having reached the

stage of convergence. If Theorem 5.6 is not applicable, one can still use Markov’s inequality
but then the sample complexity needed will increase by a factor of1/δ.

It remains to explain how the stochastic finite learner can calculate the upper bound for
E[CON]. This is precisely the point where we need the parameterization of the classD of

62 LECTURE6: STOCHASTIC FINITE LEARNING AND PAC LEARNING

underlying probability distributions. Since in general, it is not known which distribution
fromD has been chosen, one has to assume a bit ofprior knowledgeor domain knowledge
provided by suitable upper and/or lower bounds for the parameters involved. A more se-
rious difficulty is to incorporate the unknown target concept into this estimate. This step
depends on the concrete learning problem on hand, and requires some extra effort. We shall
exemplify it below. Figure 6.2 displays the basic features of stochastic finite learning. You
should compare it to learning in the limit (cf. Figure 2.1 at Page 23).

Depicted when Learning finishes:

h
Out←− M

In←− δ, dt, . . . , d0︸ ︷︷ ︸
drawn w.r.t.s. D∈D

M learns (C,D) stochastically finite def⇔ for all δ ∈ (0, 1), after having read a finite
number of examples,M outputs asingle hypothesish ∈ H, andstops. With probability
at least1− δ (w.r.t.D) h has to be correct, i.e.,L(h) = c. (Note thatt may depend onδ.)

Figure 6.2: Stochastic Finite Learning

Now we are ready to formally define stochastic finite learning.

Definition 14 ([4, 5, 6]). Let D be a set of probability distributions on the learning
domain,C a concept class,H a hypothesis space forC, andδ ∈ (0, 1). (C,D) is said to
bestochastically finitely learnable withδ-confidencewith respect toH iff there is an IIM
M that for everyc ∈ C and everyD ∈ D performs as follows. Given any random data
sequenceθ for c generated according toD, M stops after having seen a finite number of
examples and outputs a single hypothesish ∈ H. With probability at least1 − δ (with
respect to distributionD) h has to be correct, that isc = h.

If stochastic finite learning can be achieved withδ-confidence for everyδ > 0 then we
say that(C,D) can be learned stochastically finitewith high confidence.

Next, we turn our attention to the design of a stochastic finite learner for learning mono-
mials from positive data. We study the case that the positive examples are binomially
distributed with parameterp. But we do not require precise knowledge about the under-
lying distribution. Instead, we reasonably assume thatprior knowledgeis provided by
parametersplow andpup such thatplow ≤ p ≤ pup for the true parameterp. Binomial dis-
tributions fulfilling this requirement are called(plow, pup)–admissible distributions.
LetDn[plow, pup] denote the set of such distributions onXn.

If boundsplow andpup are available, the AlgorithmIMLP can be transformed into a
stochastic finite learner inferring all concepts fromCn with high confidence.

Theorem 6.1 (Reischuk and Zeugmann [4]).Let 0 < plow ≤ pup < 1 and ψ :=

min{ 1
1−plow

, 1
pup
}. Then(Cn,Dn[plow, pup]) is stochastically finitely learnable with high

LEARNING MONOMIALS FROM INFORMANT 63

confidence from text. To achieveδ-confidence no more thanO
(
log2 1/δ · logψ n

)
many

examples are necessary.

Proof.The stochastic finite learner is based on AlgorithmIMLP and a counter for the
number of examples already processed. We set

τmax =

⌈
max

{
plow

1− plow

,
1− plow

plow

,
pup

1− pup

,
1− pup

pup

}⌉
.

If Algorithm IMLP is run forϑ := dlogψ ne + τmax + 2 many examples, Theorem 5.4
implies thatϑ is at least as large as the expected convergence stageE[CON].

In order to achieve the desired confidence, the learner setsγ := dlog 1
δ
e and runs Algo-

rithm IMLP for a total of2 γ · ϑ examples. This is the reason why we need a counter
for the number of examples processed. The algorithm outputs the last hypothesish2 γ·ϑ

produced by AlgorithmIMLP and stops thereafter. The reliability follows from the tail
bounds established in Theorem 5.6.

So far, our results provide evidence that analyzing the average-case behavior of limit
learners with respect to their total learning time may be considered as a promising path
towards a new theory of efficient algorithmic learning. But what happens if we have to
learn monomials from both positive and negative examples? We shall address this question
in the following.

6.2. Learning Monomials from Informant

Next, we ask how the results obtained so far translate to the case of learning from infor-
mant. Since AlgorithmIML does not learn anything from negative examples, one may
expect that it behaves much poorer in this setting. First, we investigate the uniform distri-
bution overXn. Again, we have the trivial cases that the target concept is “FALSE” orm is
a monomial without irrelevant bits. In the first case, no example is needed at all, while in
the latter one, there is only one positive example having probability2−n. Thus the expected
number of examples needed until successful learning is2n = 2#(m).

Theorem 6.2.Let c = L(m) ∈ Cn be a nontrivial concept. If a data sequence forc is
generated from the uniform distribution on the learning domain by independent draws the
expected number of examples needed by AlgorithmIML until convergence is bounded by

E[CON] ≤ 2#(m) (dlog2 k(m)e+ 3) .

Proof.LetCON+ be a random variable for the number of positive examples needed until
convergence. Every positive example is preceded by a possibly empty block of negative
examples. Thus, we can partition the initial segment of any randomly drawn informant read
until convergence intoCON+ many blocksBj containing a certain number of negative
examples followed by precisely one positive example. LetΛj be a random variable for the
length of blockBj. ThenCON = Λ1 + Λ2 + · · ·+ ΛCON+, where theΛj are independently

64 LECTURE6: STOCHASTIC FINITE LEARNING AND PAC LEARNING

identically distributed. In order to compute the distribution ofΛj, it suffices to calculate
the probabilities to draw a negative and a positive example, respectively. Since the overall
number of positive examples forc is 2k with k = k(m), the probability to generate a
positive example is2k−n. Hence, the probability to draw a negative example is1 − 2k−n.
Consequently,

Pr[Λj = µ+ 1] =
(
1− 2k−n

)µ · 2k−n .
Therefore,

E[CON] = E[Λ1 + Λ2 + · · ·+ ΛCON+]

=
∞∑
ζ=0

E[Λ1 + Λ2 + · · ·+ Λζ | CON+ = ζ] · Pr[CON+ = ζ]

=
∞∑
ζ=0

ζ · E[Λ1] · Pr[CON+ = ζ]

= E[CON+] · E[Λ1]

By Markov’s inequality, we haveE[CON+] ≤ dlog2 ke+3, and thus it remains to estimate
E[Λ1]. A simple calculation shows

Lemma 6.3.For every0 < a < 1 holds:

∞∑
µ=0

(µ+ 1) · aµ = (1− a)−2 .

Using this estimation we can conclude

E[Λ1] =
∞∑
µ=0

(µ+ 1) · Pr[Λ1 = µ+ 1]

= 2k−n
∞∑
µ=0

(µ+ 1) ·
(
1− 2k−n

)µ
= 2n−k ,

and thus the theorem follows.

Hence, as long as the length ofm is constant, and thereforek(m) = n − O(1), we still
achieve an expected total learning time of ordern log n. But if #(m) grows linearly the
expected total learning becomes exponential. On the other hand, if there are many relevant
literals then evenh0 may be considered as a not too badapproximationfor c. Consequently,
it is natural at this point to introduce an error parameterε ∈ (0, 1) as in the PAC model (see
below), and to ask whether one can achieve an expected sample complexity for computing
anε-approximation that is bounded by a function depending onlog n and1/ε.

To answer this question, let us formally defineerrorm(hj) = D(L(hj)4L(m)) to be the
error made by hypothesishj with respect to monomialm. HereL(hj)4L(m) stands for the
symmetric difference ofL(hj) andL(m) andD for the underlying probability distribution
with respect to which the examples are drawn. Note that by construction of Algorithm
IML we can concludeerrorm(hj) = D(L(m) \ L(hj)).

PAC LEARNING 65

We callhj anε–approximationfor m if errorm(hj) ≤ ε. Finally, we redefine the stage
of convergence. Letm be any monomial, and letd = (dj)j∈N+ be an informant forL(m),
then

CONε(d) =df the least numberj such thaterrorm(IML (di)) ≤ ε for all i ≥ j .

Note that once the AlgorithmIML has reached anε-approximate hypothesis all further
hypotheses will also be at least that close to the target monomial.

The following theorem gives an affirmative answer to the question posed above.

Theorem 6.4. Let c = L(m) ∈ Cn be a nontrivial concept. Assuming that examples
are drawn at random independently from the uniform distribution, the expected number of
examples needed by AlgorithmIML until converging to anε–approximation forc can be
bounded by

E[CONε] ≤
1

ε
· (dlog2 k(m)e+ 3) .

Proof. It holdserrorm(h0) = 2k(m)−n, sinceh0 misclassifies exactly the positive exam-
ples. Therefore, iferrorm(h0) ≤ ε, we are already done. Now supposeerrorm(h0) > ε.
Consequently,1/ε > 2n−k(m), and thus the bound stated in the theorem is larger than
2n−k(m)(dlog2 k(m)e + 3), which, by Theorem 6.2 is the expected number of examples
needed until convergence to a correct hypothesis.

Thus, additional knowledge concerning the underlying probability distribution pays off
again. Applying Theorem 5.6 and modifying the stochastic finite learner presented above
mutatis mutandis, we get a learner identifyingε-approximations for all concepts inCn
stochastically with high confidence usingO(1

ε
· log 1

δ
· log n) many examples. Comparing

this bound with the sample complexity given in the PAC model, we see that it is reduced
exponentially, i.e., instead of a factorn now we have the factorlog n (cf. Theorem 6.5
below).

So, let us continue with the PAC model. In contrast to our considerations above we do
not assume any prior knowledge concerning the underlying probability distribution.

6.3. PAC Learning

PAC stands forprobably approximately correctand the corresponding learning model
goes back to Valiant [6]. Comprehensive treatises of this topic include Anthony and Biggs
[1], Kearns and Vazirani [2] as well as Natarajan [3]. We use our example, i.e., the set of
all concepts describable by a monomial overLn to explain the basic ideas behind the PAC
approach. The main difference to the models considered so far starts with thesource of in-
formation. We assume an unknown probability distributionD over the learning domainX .
There is asampling oracleEX(), which has no input. WheneverEX() is called, it draws
an elementx ∈ X according to the distributionD and returns the elementx together with an
indication of whether or notx belongs to the target conceptc. Thus, every example returned

66 LECTURE6: STOCHASTIC FINITE LEARNING AND PAC LEARNING

byEX() may be written as(x, c(x)), wherec(x) = 1 if x ∈ c andc(x) = 0 otherwise. If
we makes calls to the exampleEX() then the elementsx1, . . . xs are drawn independently
from one another. Thus, the resulting probability distribution over alls-tuples of elements
fromX is thes-fold product distribution ofD, i.e.,

Pr(x1, . . . , xs) =
s∏
i=1

D(xi).

In the following, we usePr(A) to denote the probability of eventA, whereA is a set of
s-tuples overX , s ≥ 1. The actuals will be always clear from the context.

Thecriterion of success, i.e.,probably approximately correctlearning, is parameterized
with respect to two quantities, theaccuracy parameterε, and the confidence parameterδ,
whereε, δ ∈ (0, 1]. Next, we define a notion of the difference between two setsc, c′ ⊆ X
with respect to the probability distributionD as

d(c, c′) =
∑
x∈c4c′

D(x).

A learning methodA is said toprobably approximately correctly identify a target
conceptc with respect to a hypothesis spaceH, and with sample complexitys = s(ε, δ),
if for all ε, δ ∈ (0, 1) it makess calls to the oracleEX(), and after having received the
answers produced byEX() (with respect to the targetc), it always stops and outputs a
hypothesish ∈ H such that

Pr(d(c, h) ≤ ε) ≥ 1− δ.

A learning methodA is said toprobably approximately correctly identify a target
concept classC with respect to a hypothesis spaceH and with sample complexitys =

s(ε, δ), if it probably approximately correctly identifies every conceptc ∈ C with respect to
H, and with sample complexitys.

Finally, a learning method is said to be efficient with respect to sample complexity, if
there exists a polynomial pol such thats ≤ pol(1/ε, 1/δ).

O.k, this looks fairly complicated, and hence, some explanation is in order. First of all,
the inequality

Pr(d(c, h) ≤ ε) ≥ 1− δ

means that with high probability (quantified byδ) there is not too much difference (quan-
tified by ε) between the conjectured concept (described byh) and the target conceptc.
Formally, letA be any fixed learning method. Lets = s(ε, δ) for any fixedε, δ ∈ (0, 1)

be the actual sample size. Furthermore, letc be any fixed target concept. Now, we have
to consider all possible outcomes ofA when run on every labeleds-sampleS(c, x̄) =

(x1, c(x1), . . . , xs, c(xs)) returned byEX(). Let h(S(c, x̄)) denote the hypothesis pro-
duced byA when processingS(c, x̄). Then we have to consider the setW of all s-tuples
overX such thatd(c, h(S(c, x̄))) ≤ ε. The conditionPr(d(c, h) ≤ ε) ≥ 1 − δ can now

PAC LEARNING 67

be formally rewritten asPr(W) ≥ 1 − δ. Clearly, one has to require thatPr(W) is well
defined. This is obvious as long asX is finite.

In order to exemplify this approach, remember that our set of all concepts describable
by a monomial overLn actually refers to the set of all things. We consider a hypothetical
learner (e.g., a student, a robot) that has to learn the concept of a chair. Imagine that the
learner is told by some teacher whether or not particular things visible by the learner are
instances of a chair. Clearly, what things are visible depends on the environment the learner
is in. The formal description of this dependence is provided by the unknown probability
distribution. For example, the learner might be led to a kitchen, a sitting room, a book shop,
a garage, a beach a.s.o. Clearly, it would be unfair to teach you the concept of a chair in a
book shop, and then testing your learning success in a sitting room. Therefore, the learning
success is measured with respect to the same probability distributionD with respect to
which the sampling oracle has drawn its examples. However, the learner is required to learn
with respect to any probability distribution. That is, independently of whether the learner
is led to a kitchen, a book shop, a sitting room, a garage, a beach a.s.o., it has to learn
with respect to the place it has been led to. The sample complexity refers to the amount of
information needed to ensure successful learning. Clearly, the smaller the required distance
of the hypothesis produced, and the higher the confidence desired, the more examples are
usually needed. However, there might be atypical situations. To have an extreme example,
the kitchen the learner is led to turned out to be empty. Since the learner is required to
learn with respect to a typical kitchen (described by the probability distributionD) it may
well fail under this particular circumstance. Nevertheless, such failure has to be restricted to
atypical situations. This requirement is expressed by demanding the learner to be successful
with confidence1− δ.

This corresponds well to real life situations. For example, a student who has attended a
course in probability theory might well suppose that he/she is examined in probability the-
ory and not in graph theory. However, a good student, say in computer science, has to pass
all examinations successfully, independently of the particular course attended. That is, he
must successfully pass examinations in computability theory, complexity theory, cryptol-
ogy, parallel algorithms, formal languages, recursion theory, learning theory, graph theory,
combinatorial algorithms, logic programming, a.s.o. Hence, he/she has to learn a whole
concept class. The sample complexity refers to the time of interaction performed by the
student and his/her teacher.

Now, we are ready to prove the PAC learnability of our concept class. We use the same
notation as above.

Theorem 6.5.The set of all monomials overLn can be probably approximately correctly
learned with respect to the hypothesis spaceH and with sample complexitys = O(1/ε ·
(n+ ln(1/δ))).

Proof. As a matter of fact, we can again use a suitable modification of algorithmP
presented in Lecture 2.

Algorithm PA: “For all ε, δ ∈ (0, 1), call the oracleEX() s times, wheres = O(1/ε ·

68 LECTURE6: STOCHASTIC FINITE LEARNING AND PAC LEARNING

(n+ ln(1/δ))). Let 〈b1,m(b1), b2,m(b2), . . . , bs,m(bs)〉 be the sequence returned by
EX(). Let bi = b1i b

2
i . . . b

n
i denote theith vectorbi ∈ X returned.

Initialize h = x1x̄1 . . . xnx̄n.

For i = 1, 2, . . . , s do

if m(bi) = 1 then

for j := 1 to n do

if bji = 1 then deletēxj in h else deletexj in h.

Outputh.

end.”

Let D be any probability distribution overX . Furthermore, letm be any target mono-
mial. We have to show that the algorithmPA outputs with confidence at least1 − δ a
hypothesish such thatd(m,h) ≤ ε. We easily observe that

d(m,h) =
∑

b∈m4h

D(b) = D({b ∈ X m(b) 6= h(b)}).

Since the algorithmPA is essentially the same as AlgorithmP we can exploit the proof
of Theorem 2.1. First of all, for every target monomialm, if h is the hypothesis output by
PA thenh(bi) = m(bi) for all i = 1, . . . , s. Recall that such hypotheses are said to be
consistent.

Now, suppose any particular hypothesish ∈ H such thatd(m,h) > ε. Any such
hypothesis will not be consistent withs randomly drawn examples unless all examples are
drawn outside the symmetric difference ofm andh. Let b ∈ X be any randomly chosen
vector. Then we have: the probability thatm(b) = h(b) is bounded by1− ε. Hence, if we
haves randomly and independently drawn vectorsb1, . . . , bs ∈ X , then the probability that
m(bi) = h(bi) for all i = 1, . . . , s is bounded by(1− ε)s. Furthermore,(1− ε)s < e−εs.

Additionally, there arecard(H) many possible choices forh.

Thus, the overall probability thats randomly and independently drawn vectors do not
belong tom 4 h, for anyh ∈ H, is bounded bycard(H)e−εs.

Therefore, ifs > 1/ε · ln card(H)
δ

we get:

card(H)e−εs < card(H)e− ln
card(H)

δ = δ.

Consequently, since all hypothesesh output byPA are consistent, now we know that

Pr(d(m,h) > ε) < δ, and thus

Pr(d(m,h) ≤ ε) ≥ 1− δ.

Finally, by Exercise 1 we know thatcard(H) = 3n + 1, hence the theorem follows.

PAC LEARNING - THE FINITE CASE 69

Next, we considerdisjunctionsoverLn, i.e., all expressionsf = `i1 ∨ . . . ∨ `ik , where
k ≤ n, i1 < . . . < ik, and all`ij ∈ LN for j = 1, . . . , k. Hence, disjunctions are the logical
duals of monomials. Additionally, we includef = x1∨ x̄1∨ . . .∨xn∨ x̄n into the set of all
disjunctions overLn to represent the concept “TRUE.” Furthermore, letb = b1 . . . bn ∈ X ,
thenf(b) = `i1(b

i1) ∨ . . . ∨ `ik(bik), where`ij(b
ij) = 1 iff `ij = xi for somei, andbij = 1

or `ij = x̄i for somei, andbij = 0. Otherwise,̀ ij(b
ij) = 0. Then, iff is a disjunction over

Ln we setL(f) = {b ∈ X f(b) = 1}. Finally, letC be the set of all concepts describable
by a disjunction overLn, and letĤ be the hypothesis space that consists of all disjunctions
as described above.

Exercise 13.Prove or disprove.

(a) The set of all disjunctions overLn can be probably approximately correctly learned
with respect to the hypothesis spaceĤ and with sample complexitys = O(1/ε · (n+

ln(1/δ))).

Next, we continue with a closer at probably approximately correct learning. So far in
our study we have only proved the class of concepts describable by a monomial to be PAC
learnable. Therefore, we are interested in gaining a better understanding of what finite
concept classes are PAC learnable. Furthermore, we aim to derive general bounds on the
sample complexity needed to achieve successful PAC learning provided the concept class
under consideration is PAC identifiable at all.

Moreover, concept classes of infinite cardinality make up a large domain of important
learning problems. Therefore, it is only natural to ask whether or not there are interesting
infinite concepts classes which are PAC learnable, too. The affirmative answer will be
provided in the following lectures. For the sake of presentation, we start with a general
analysis of PAC learnability for finite concept classes. Subsequently, we investigate the
case of infinite concept classes.

6.3.1. PAC Learning - the Finite Case

Let X be any finite learning domain, letD be any probability distribution overX , and
let C ⊆ ℘(X) be a concept class. Furthermore, we useH to denote any hypothesis space
for C. Note that, in general, we do not requireC ⊆ H. To simplify notation, we use|M |
to denote the cardinality of any setM . Let m ∈ N, m ≥ 1; then we useXm to denote
them-fold Cartesian product ofX . Let x̄ ∈ Xm, the we writex̄ = (x1, . . . , xm). Now,
let c ∈ C be any concept. Them-sample ofc generated bȳx is denoted byS(c, x̄) =

〈x1, c(x1), . . . , xm, c(xm)〉. A hypothesish ∈ H is said to beconsistent for anm-sample
S(c, x̄) iff h(xi) = c(xi) for all 1 ≤ i ≤ m.

The sample spaceSc of a conceptc is the set of allm-samples ofc, i.e.,

Sc =
⋃
m≥1

⋃
x̄∈Xm

S(c, x̄).

70 LECTURE6: STOCHASTIC FINITE LEARNING AND PAC LEARNING

The sample spaceS(C) of a concept classC is the union of over allSc, c ∈ C. Then, a
learner is any computable mapping fromS(C) intoH. A learner is said to beconsistent

iff all its outputs are consistent hypotheses.

The formal definition of PAC learning has already been presented above. Moreover,
we showed the class of all monomials to be PAC learnable. The general idea behind the
algorithm given there can be described as follows:

(1) Draw a sufficiently large sample from the oracleEX(), saym examples.

(2) Find someh ∈ H that is consistent with all the examples drawn.

(3) Outputh.

Therefore, it is only natural to ask whether or not this strategy may be successful in the
general finite case, too. Let us assume that we have a consistent learner. Letc ∈ C be
any concept, and leth be any hypothesis output by the learner on anym-sampleS(c, x̄),
wherex̄ has been drawn with respect to the unknown probability distributionD. Assume
h to bebad, i.e.,d(c, h) > ε. Any such hypothesis will not be consistent withm randomly
drawn examples unless all examples are drawn outside the symmetric difference ofc andh.
Hence, the probability that the particular bad hypothesish survivesm examples is at most
(1 − ε)m. Consequently, the probability that some bad hypothesis survivesm examples is
at most|H|(1− ε)m. Furthermore, we wantPr(d(c, h) > ε) < δ. Hence, we must require:

|H|(1− ε)m ≤ δ.

Now, the latter requirement directly allows to lower boundm. Taking the natural logarithm
of both sides, we obtain:

ln |H|+m ln(1− ε) ≤ ln δ.

Therefore, we have:

m >
ln δ − ln |H|

ln(1− ε)
Because of(1− 1

z
)z < e−1 for all z > 0, we additionally obtain:

(1− ε) = ((1− ε)1/ε)ε < e−ε,

and thus
ln(1− ε) < −ε.

Putting it all together, we see that

m >
1

ε

(
ln |H|+ ln

1

δ

)
=

1

ε
ln
|H|
δ
.

We summarize the insight obtained by the following theorem.

Theorem 6.6.LetX be any finite learning domain, letC ⊆ ℘(X) be any concept class,
and letH be any hypothesis space forC. Then every consistent learner PAC identifiesC
with respect toH with sample complexitym = 1

ε
ln |H|

δ
+ 1.

PAC LEARNING - THE FINITE CASE 71

The latter theorem delivers a first upper bound on the sample complexity needed to
achieve efficient PAC learning. However, it does not say anything concerning the problem
to compute consistent hypotheses. Clearly, there is a trivial algorithm to achieve this goal.
We may just enumerate all hypotheses. Then we may simply search for the first consistent
one in the enumeration fixed. Nevertheless, taking into account thatH might be huge, this
method will usually take too much time. Hence, further effort is necessary to arrive at
practical learning algorithms.

The latter observation motivates us to strengthen our requirements concerning the effi-
ciency of PAC learning. It might be not enough to bound the number of examples. Ad-
ditionally, we shall demand the overall running time to be polynomial in the appropriate
parameters.

Definition 15. A concept classC is said to beefficiently PAC learnable with

respect to the hypothesis space H if C is PAC learnable with respect toH, and there
exists a PAC learning algorithmA for C that runs in time polynomial in1/ε, 1/δ, n (the
size of an instance inX), and size(c) for all ε, δ ∈ (0, 1) and all c ∈ C.

Now, we are ready to establish the PAC learnability of a couple of important finite con-
cept classes. Aclauseis a disjunction of literals. Byk-CNF we denote the class of all
conjunctions such that each clause contains at mostk literals. For example,

(x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3)

is a 3-CNF.

The overall number of clauses containing at mostk literals is bounded by

2n+ (2n)2 + . . . (2n)k < O(nk) .

Hence,ln(|k-CNF|) = O(nk). Therefore, we get the following general theorem.

Theorem 6.7.Letk ∈ N+ be arbitrarily fixed. The class of all concepts describable by
a k-CNF formula is efficiently PAC learnable with respect tok-CNF.

Proof.On inputε, δ makem = O
(

1
ε
(nk + ln 1

δ

)
calls to the oracleEX(). LetS(c, b̄) =

〈b1, c(b1), . . . , bm, c(bm)〉 be the sample returned.

Initialize h as the conjunction of all clauses containing at mostk literals.

For i = 1, 2, . . .m do

if c(bi) = 1 then delete all clauses inh that do not contain a literal evaluating to 1 on the
assignment given bybi.

Outputh.

By construction,h is consistent. Hence, by Theorem 6.6 we know that the algorithm de-
scribed above PAC learnsk-CNF with respect tok-CNF. The running time of this algorithm
is obviously polynomially bounded in1/ε, 1/δ, andnk.

72 LECTURE6: STOCHASTIC FINITE LEARNING AND PAC LEARNING

Next, byk-DNF we denote the class of all disjunctions such that each monomial contains
contains at mostk literals.

Exercise 14. Prove the following: Letk ∈ N+ be arbitrarily fixed. The class of all
concepts describable by ak-DNF formula is efficiently PAC learnable with respect tok-
DNF.

References

[1] M. A NTHONY AND N. BIGGS (1992), “Computational Learning Theory,” Cam-
bridge University Press, Cambridge.

[2] M.J. KEARNS AND U.V. VAZIRANI (1994), “An Introduction to Computational
Learning Theory,” MIT-Press.

[3] B.K. NATARAJAN (1991), “Machine Learning,” Morgan Kaufmann Publishers Inc.

[4] R. REISCHUK AND T. ZEUGMANN, A Complete and Tight Average-Case Analysis
of Learning Monomials,in “Proceedings 16th International Symposium on Theoret-
ical Aspects of Computer Science,” (C. Meinel and S. Tison, Eds.), Lecture Notes in
Computer Science, Vol. 1563, pp. 414–423, Springer-Verlag , Berlin 1999.

[5] R. REISCHUK AND T. ZEUGMANN, An average-case optimal one-variable pattern
language learner,Journal of Computer and System Sciences60, No. 2, 2000, 302–
335.

[6] P. ROSSMANITH AND T. ZEUGMANN, Stochastic finite learning of the pattern lan-
guages,Machine Learning44, No. 1-2, 2001, 67–91.

[6] L.G. VALIANT (1984), A theory of the learnable,Communications of the ACM27,
1134 – 1142

73

LECTURE7: DECISION TREE LEARNING

So far, we have mainly studied the learnability of simple Boolean concepts. That is, we
looked at concepts describable by a monomial. However, over the learning domain{0, 1}n
there are only3n+1 many concepts that can be described by a monomial. In contrast, there
are22n

many Boolean functions. Since every Boolean function can be represented by a
decision tree, we shall finish our tour on learning by learning at the learnability of decision
trees. As a matter of fact, decision tree learning is used quite often in practice. So, you
should know at least a bit about it. Also, we shall not restrict ourselves to the Boolean case.

For the sake of presentation, let us have a look at the whether data already used in
Lecture 1. Recall that this data set is fictitious, but it serves its purpose to explain some
typical features. The data concern the conditions for playing some unspecified game.

The Weather Data

outlook temperature humidity windy play

sunny hot high false no
sunny hot high true no

overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no

overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes

overcast mild high true yes
overcast hot normal false yes

rainy mild high true no

In the table displayed above, we have fourattributes, i.e., outlook, temperature, humid-
ity, and windy. These attributes can take symbolic values rather than numerical values. The
rightmost column shows the recommendation, that is whether or not one should play. In
other words, the attributes are observable variables, and the recommendation is assumed
to be a function of the attributes. Let us assume thatoutlook can take the three values
sunny, overcast, rainy, that temperature can take the three valueshot, mild, cool, that
humidity can take the two valueshigh, normaland thatwindy can take the two values
true, false. Then, the complete table should have 36 entries. In contrast, the table given has
only 14 entries. This is quite a typical situation in many applications.

Next, we ask if there are any rules behind this table. This is the typical question asked
in data mining. Here the typical problem is again to make predictions. For example, we are
given the following data for tomorrow.

74 LECTURE7: DECISION TREE LEARNING

outlook temperature humidity windy play

sunny cool high true ?

So, what should we do, play or not play?

Of course, there may be many different ways to express such rules and to find them.
Decision trees are one possibility.

Thus, let us first look at a decision tree for the weather data set given above.

sunny overcast rainy

high normal false true

no yes yes no

yes

outlook

windyhumidity

Figure 7.1: Decision tree for the weather data.

Clearly, we have to ask what this decision tree is representing.

7.1. Decision Tree Representation

Decision trees classify instances by sorting them down the tree from the root to some
leaf. The label in the leaf provides the classification of the instance. Each node in the tree
that is not a leaf specifies atestof someattributeof the instance by which it is labeled. Each
branch descending from that node corresponds to some possible value for this attribute.
Any given instance is the classified by starting at the root, testing the attribute specified
there and then moving down the tree branch which corresponds to the value given. This
process is then recursively repeated for the subtree rooted at the new node. For example,
let (sunny, hot, high, false) from the weather data set be the given instance. First, we test
outlook , which is sunny. Thus, we move down the left branch of the tree shown in
Figure 7.1. Next, we test the attribute humidity which has valuehigh. Thus, the instance
(sunny, hot, high, false) is correctly classified byno .

In general, decision trees represent adisjunctionof conjunctions of constraints on the
attribute values of instances. For example, using the natural interpretation ofyes as1 the
decision tree given in Figure 7.1 corresponds to the disjunction

(outlook = sunny∧ humidity = normal)
∨ (outlook = overcast)

∨ (outlook = rainy∧ windy = false)

Before we turn our attention to the problem of learning decision trees from examples we
would like to give a short characteristic of decision tree learning.

DECISION TREE REPRESENTATION 75

Generally speaking, decision tree learning is a method for approximating discrete-valued
target functions. The function learned is represented by a decision tree. Decision tree
learning is robust to noisy data and thus very popular. In fact, decision tree learning is one
of the most widely used and practical methods for inductive inference. There are several
decision tree learning methods around that differ to a certain extent with respect to their
capabilities and requirements. Nevertheless, all these algorithms also share many features.
In particular, it can be said that decision tree learning is best suited for problems having the
following characteristics.

1. Instances of the problem are represented byattribute-value pairs. The instances can
be described by a fixed set of attributes and their values. For example, in Lecture 7
we presented the weather data set. The attributes in this problem areoutlook ,
temperature , humidity , andwindy . Each attribute could take a small fixed
set values, e.g., foroutlook the set of possible is{sunny, overcast, rainy} and for
temperature the set of values is{hot, mild, cool}. It should be noted, how-
ever, that suitable extensions to the basic algorithms allow handling of real-valued
attributes as well.

2. The target functionhas discrete output values. In our weather data set these output
values have been{yes, no } and in our data set from molecular biology{P, N}.
Of course, decision tree learning methods can also handle more than two possible
discrete output values. There are also decision tree learning algorithms around that
can even handle target functions with real-valued outputs, but applications of decision
trees in such settings are less common.

3. Disjunctive descriptionsmay be required. As we shall see below, every function
described by a decision tree allows also a representation as disjunction.

4. The training data may contain errors. As already mentioned, decision tree learning
methods are robust to errors. The type of errors decision tree learning methods can
handle comprises errors in the classification (e.g., some of the protein sequences in
our example from the last lecture may have erroneously been classified as positive by
the domain experts) as well as errors in the attribute values describing these examples
(e.g.,normal instead ofhigh may have appeared erroneously in our weather data set
as value for humidity).

5. The training data may contain missing attribute values. For example, some attributes
in a true weather data set may be missing, since at some particular day it was impos-
sible to measure the temperature because of a technical problem.

Since many practical problems have been found that fit the characteristics given above,
decision tree learning is often used. Examples comprise the classification of medical pa-
tients by their diseases, loan applicants by their likelihood of defaulting on payment and
many more.

Now, we are ready to deal with the problem how to learn decision trees.

76 LECTURE7: DECISION TREE LEARNING

7.2. The Basic Decision Tree Learning Algorithm

The material we are going to represent here is based on Quinlan’s (1986) ID3 algorithm
and its successor C4.5 (cf. Quinlan(1993)). These algorithms employ a top-down, greedy
search through the set of possible decision trees. Our exposition here roughly corresponds
to the ID3 algorithm. Intuitively, this algorithm first answers the question “which attribute
should be tested at the root of a decision tree?”

For seeing how to answer this question, let us try the different attributes from the weather
data set first. Figure 7.2 shows the four possible choices for the root and the resulting tree
stumps for the weather data.

no

overcast rainy

yes

hot mild coolsunny

no no
no

no
no

no

no

no
no

no

high normal false true

yes
yes
no

no

yes
yes
yes
yes

yes
yes
yes
no
no

yes
yes
yes
no
no

yes
no
no

yes
yes
yes
no

yes
yes
yes
yes
yes
yes

yes
yes
yes

yes
yes
yes

yes
yes
yes
yes
yes
yes

yes

outlook temperature

windyhumidity

Figure 7.2: Decision tree stumps for the weather data.

So, how did we obtain these decision tree stumps? First, we have selected the attribute
to be put into the root, e.g.,outlook , or temperature . There are five entries in the
weather data set having the valuesunnyfor outlook . Two of them classifyyes and
three classifyno . Moreover, there are four entries having the valueovercastfor outlook

and all of them classifyyes . Finally, there are five entries having the valuerainy for
outlook and three of them classifyyes while two classifyno . Thus, we get the tree

THE BASIC DECISION TREE LEARNING ALGORITHM 77

stump as drawn in Figure 7.2 when takingoutlook as root. The remaining three stumps
are obtained analogously.

Our goal is to arrive at small decision trees. Any leaf with only one class –yes or no

– will not have to be split further. This should happen as early as possible. But clearly, if a
leaf has more than one class, we have to repeat the process recursively. Of course, we can
thus generate all possible decision trees and then choose the smallest one from the set of
all decision trees obtained. But intuitively it is clear, that this approach is computationally
infeasible, since the number of all trees to be generated will be exponential in the number
of attributes. So, how can we recover? The idea is to decide which of the decision tree
stumps is the best for further processing. Once we have made a choice, all other decision
tree stumps are abandoned and we recursively repeat the process only for the stump chosen.

Suppose we have a measure of purity for each node. Then we could choose the attribute
that produces the purest daughter nodes. The measure of purity we are going to use is called
informationand measured in bits. But unlike usual bits, our bits here can also be less than
one. We shall look at details of how to compute these bits later. These bits are then used to
compute another measure that will be actually used to decide which of the stumps is best.
This measure Quinlan (1986) has used and it is calledinformation gain. The information
gain is a statistical property measuring how well a given attribute separates the training
examples according to their target classification. Thus, ID3 computes the information gain
for each of the tree stumps obtained and chooses one having the highest information gain.

So, let us assume that we can compute the bits mentioned above. Bits are computed for
the number ofyes andno classes at the leaf nodes. For the decision tree stump having
outlook in its root, there are three leaf nodes, i.e.,[2, 3], [4, 0], and[3, 2]. The information
values of these nodes are

info([2, 3]) = 0.971bits

info([4, 0]) = 0.0bits

info([3, 2]) = 0.971bits .

Next, the average information value of these informations is calculated. Here we take the
number of instances into account that go down each branch, i.e., five down the first, four
down the second and five down the third one. This gives a total of 14 instances, and thus
we obtain

info([2, 3], [4, 0], [3, 2]) =
5

14
· 0.971 +

4

14
· 0.0 +

5

14
· 0.971

= 0.693bits .

This calculation is also applied to the training examples corresponding just to the root.
There are 14 examples, nine of which are classifiedyes and five of which are classified
no . Using the still unknown formula we get

info([9, 5]) = 0.940bits .

78 LECTURE7: DECISION TREE LEARNING

The information gainis then just the difference, i.e.,

gain(outlook) = info([9, 5])− info([2, 3], [4, 0], [3, 2]) = 0.247bits .

Analogously, we can compute

gain(temperature) = 0.029bits

gain(humidity) = 0.152bits

gain(windy) = 0.048bits .

So,outlook has the highest information gain and is thus chosen.

Next, we continue recursively. Clearly, a further split onoutlook will produce nothing
new, thus only the remaining three attributes are considered. Looking again at the weather
data set, we see that there are the following five examples having the valuesunny.

outlook temperature humidity windy play

sunny hot high false no
sunny hot high true no
sunny mild high false no
sunny cool normal false yes
sunny mild normal true yes

So, we look at the possible rootstemperature , humidity andwindy for the sub-
tree starting at thesunnybranch (cf. Figure 7.3).

Then one gets the following values for the information gain

gain(temperature) = 0.571bits

gain(humidity) = 0.971bits

gain(windy) = 0.020bits .

Thus, at this pointhumidity is selected as splitting attribute. Then, we see that all re-
maining classes contain eitheryes or no . Thus, there is no need to split these nodes further
and the process terminates for this branch. Continued application of this idea finally leads
to the decision tree shown in Figure 7.1.

Ideally, the process finishes when all leaf nodes contain only one classification. But it
might be impossible to reach this situation if the training data contain two sets of attributes
with identical values but different classes. Thus, one stops when no further split is possible.

This explains the basic idea of the ID3 algorithm. We still have to provide the remaining
details. So, we continue by revealing the secret of how to compute the information gain.

For defining information gain precisely, we start from recalling the definition of a mea-
sure commonly used ininformation theoryto measure in a precise way the amount of infor-
mation in a source. This measure is calledentropy. Since this measure is very important

THE BASIC DECISION TREE LEARNING ALGORITHM 79

hot mild cool

yes yes

overcast rainysunny

high normal

overcast rainysunny

false true

no
no

no
no
no

no

overcast rainysunny

no
no no

yes

yes
yes

yes

outlook outlook

humidity

outlook

temperature

windy

Figure 7.3: Expanded decision tree stumps for the weather data.

in our context of decision tree learning and in other parts of data mining we shall describe
it here in some more detail.

For the sake of motivation, let us first assume that a contest is taking place. We have a
black box that emits source symbols from a sourceS with a source alphabetS = {s1, s2}.
The probability to sees1 is p1 = 99

100
and the probability to sees2 is p2 = 1

100
. The winner

of the contest is the first one who can name both symbols inS. Thus, the winner is the first
who has full information about the setS. Of course, we assume that neither contestant has
seen the source symbols beforehand. Now, suppose that in the first round the first contestant
gets source symbols1 while the second one getss2. So, at this point, who is more likely to
win the contest?

Since the first contestant still has to receives2 whose probability of occurrence is1
100

while the second one has to wait seeings1 whose probability of occurrence is99
100

, it is
intuitively clear that the second contestant is more likely to win than the first.

Thus, in some sense, the second contestant has received moreinformationaboutS from
the source symbols2 than did the first contestant. Therefore, it should be clear that, inde-
pendently of how we define precisely the information obtained from a source symbol,the

80 LECTURE7: DECISION TREE LEARNING

less likely a source symbol is to occur, the more information we obtain from an occurrence
of that symbol, and conversely. Consequently, the information obtained from a source sym-
bol cannot be a function of the symbol itself, but rather of the symbol’s probabilityp of
occurrence. Thus, we shall useI(p) to denote the information obtained from a source sym-
bol with probabilityp of occurrence. We shall make the following reasonable assumptions
about the functionI(p), defined for all0 < p ≤ 1.

Assumption 0. I(p) is not the constant0 function.

Assumption 1. I(p) ≥ 0 for all p.

Assumption 2. I(p) is continuous.

Moreover, we usually assume that the events of seeingsi andsj on different transmis-
sions are independent. Thus, the information obtained from knowing that bothsi andsj
have occurred should be the sumI(pi) + I(pj). Since the probability of both events occur-
ring ispipj we shall make

Assumption 3. I(pipj) = I(pi) + I(pj).

Now, the remarkable fact about these four assumptions is that essentially one function
satisfies them. This is expressed by the following theorem.

Theorem 7.1.A functionI(p) is satisfying Assumptions 0 through 3 made above if and
only if it has the form

I(p) = c log
1

p
,

wherec > 0 is a constant andlog is the logarithm to the base2.

Proof.That thelog function is satisfying Assumptions 1 through 3 is a well-known fact
from calculus. For the converse direction, we start from Assumption 3, and obtain

I(p2) = I(pp) = I(p) + I(p) = 2I(p) .

Now, it is easy to show by induction that

I(pn) = nI(p) for all n ∈ N+ . (7.1)

Taking into account that(7.1) holds for allp ∈ (0, 1] directly yields

I(p) = I(p
1
n
·n) = I((p

1
n)n) = nI(p

1
n)

Consequently, we can conclude

I(p
1
n) =

1

n
I(p) . (7.2)

Since(7.1) and(7.2) are valid for alln ∈ N+ we additionally have

I(p
n
m) =

n

m
I(p) for all n, m ∈ N+ .

But this means that

I(pr) = rI(p) for all positive rational numbersq . (7.3)

INFORMATION, ENTROPY AND INFORMATION GAIN 81

Now, recalling that for every positive real numberr there is a sequence(rn)n∈N of positive
rational numbersrn such thatlimn→∞ rn = r we get by the continuity of the power function
limn→∞ prn = pr. Hence, the continuity of functionI (cf. Assumption 2) and(7.3) imply
that

I(pr) = I(lim
n→∞

prn) = lim
n→∞

I(prn) = I(p) lim
n→∞

rn = rI(p)

for all positive real numbersr.

Now, let us fix anyq with 0 < q ≤ 1. Since anyp satisfying0 < p ≤ 1 can be written
asp = qlogq p and sinceI(p) ≥ 0 (cf. Assumption 1) as well asI(p) not constant0 (cf.
Assumption 0), we have

I(p) = I(qlogq p) = I(q) logq p = c log
1

p

for some constantc > 0.

As the proof of Theorem 7.1 shows, we additionally haveI(1) = 0 nicely matching our
intuition. Moreover, the arbitrary multiplicative constantc can be absorbed in the units of
measurement of information.

7.3. Information, Entropy and Information Gain

First, we define information. Using the facts presented above, we naturally arrive at the
following definition.

Definition 16. Theinformation I(p) obtained from a source symbols with probabil-
ity p > 0 of occurrence is given by

I(p) = log
1

p
.

The unit of measurement of information is the bit, as already said above. The connection
to the binary unit (also called bit) comes from the following observation. If the source isS
and has alphabetS = {0, 1} and both symbols are equally likely, i.e.,p0 = p1 = 1/2, then
the information given by either source symbol isI(1/2) = log 2 = 1. Thus, if the source
randomly emits one binary digit (bit), then the information obtained by a single emission is
one binary unit (bit).

Example. A PC monitor is capable of displaying pictures made up of pixels at a res-
olution of 1024 columns by 768 rows (or higher). Hence, if each pixel can be in any one
of 256 colors, there are a total of28·1024·768 different pictures. If each of these pictures is
considered to be equally likely, the probability of a given picture is2−6291456. Thus, the
information obtained from a single picture is

I = log 26291456 = 6291456 bits .

Next, consider a random speech of 1000 words from a 10 000 word vocabulary (what
would be amazing for a politician). Then the probability of speaking any sequence of 1000

82 LECTURE7: DECISION TREE LEARNING

words from such a vocabulary is10000−1000. Consequently, the amount of information
obtained from such a speech is

I = log 100001000 = 1000 log 10000 < 14000 bits .

This clearly shows that a picture is worth more than a thousand words.

Now, we are ready for defining the concept of entropy.

Definition 17. LetS = (S, P) be a source with source alphabetS = {s1, . . . , sq} and
probability distributionP = {p1, . . . , pq}. The average information obtained from a single
sample fromS is

H(S) =

q∑
i=1

piI(pi) =

q∑
i=1

pi log
1

pi
= −

q∑
i=1

pi log pi .

The quantityH(S) is calledentropy of the source. For the sake of convenience, we
define in all calculations involving entropy0 log 0 to be0.

Now, given a collectionS, containing positive and negative examples of some target
concept, the entropy ofS relative to this boolean classification is

Entropy(S) = −p⊕ log p⊕ − p	 log p	 , (7.4)

wherep⊕ is the proportion of positive examples inS andp	 is the proportion of negative
examples inS.

Now, letS be a sample, letA be any attribute and let Values(A) be the set of all possible
values for attributeA. Furthermore, letSv = {s s ∈ S andA(s) = v}. Then we formally
define the information gain as follows.

Definition 18.

gain(S,A) = Entropy(S) −
∑

v∈Values(A)

|Sv|
|S|
· Entropy(Sv) .

Here Entropy(S) is the original entropy of the sample and the second term is theexpected
entropy afterS has been partitioned using attributeA.

We continue by a having a closer look at Formula(7.4). First, let us assume that there
are no positive examples, i.e.,p⊕ = 0. Consequently, all examples are negative and hence
p	 = 1. Then, recalling that we have defined0 log 0 = 0, we get

Entropy(S) = −p⊕ log p⊕ − p	 log p	

= 0 log 0− 1 log 1 = 0 .

Analogously, if all examples are positive, i.e.,p⊕ = 1 andp	 = 0, we also obtain

Entropy(S) = −p⊕ log p⊕ − p	 log p	

= −1 log 1− 0 log 0 = 0 .

INFORMATION, ENTROPY AND INFORMATION GAIN 83

Next, suppose that the sample contains an equal number of positive and negative exam-
ples, i.e.,p⊕ = p	 = 1/2. Then,

Entropy(S) = −p⊕ log p⊕ − p	 log p	

= −1

2
log

1

2
− 1

2
log

1

2

=
1

2
+

1

2
= 1 .

Note that we always havep⊕ + p	 = 1. Thus, we have to study the function

f(x) = −x log x− (1− x) log(1− x)

for x ∈ (0, 1). Recalling a bit calculus, it is easy to see that

f ′(x) = − log x+ log(1− x) ,

and thatf ′(x) = 0 if and only ifx = 1/2. Sincef ′(x) > 0 for all x < 1/2, we see thatf(x)

is monotonically increasing for allx ∈ (0, 1/2). Furthermore,f ′(x) < 0 for all x > 1/2,
and thusf(x) is monotonically decreasing for allx ∈ (1/2, 1). Finally,

f ′′(x) = − 1

ln 2

(
1

x(1− x)

)
< 0

for all x ∈ (0, 1), and thereforef(x) is concave. Putting it all together, we get the graph of
the entropy function displayed in Figure 7.4.

E
nt

ro
py

(S
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

p⊕

Figure 7.4: Entropy function in dependence ofp⊕.

84 LECTURE7: DECISION TREE LEARNING

Next, we illustrate the use of the entropy function and information gain as given in
Definition 18 by looking again at our weather data setS. We have a total of 14 examples
and 9 of them are positive and 5 of them are negative. Consequently,p⊕ = 9/14 and
p	 = 5/14. So, we can compute Entropy(S) and obtain

Entropy(S) = − 9

14
· log

9

14
− 5

14
· log

5

14

=
1

14
[14 log 14− 9 log 9− 5 log 5] = 0.940bits ,

i.e., the value we have already provided at Page 77. Note that is computationally advanta-
geous to perform the calculation as described above, i.e., without working out the fractions
and taking the logarithm of them.

Next, we compute the information gain for the attributesoutlook , temperature ,
humidity and windy by using the formula provided in Definition 18. The attribute
outlook can take the three valuessunny, overcastandrainy. Looking at the weather data
set, we directly get|Ssunny | = 5, |Sovercast | = 4 and|Srainy | = 5. Furthermore,

Entropy(Ssunny) = −2

5
log

2

5
− 3

5
log

3

5
= 0.971bits

Entropy(Sovercast) = 0bits

Entropy(Srainy) = −3

5
log

3

5
− 2

5
log

2

5
= 0.971bits

Putting it all together, we thus obtain

gain(S,outlook) = 0.940− 5

14
· 0.971− 4

14
· 0− 5

14
· 0.971 = 0.246bits

and analogously

gain(S, temperature) = 0.029bits

gain(S,humidity) = 0.152bits

gain(S,windy) = 0.048bits ,

i.e., again the values we already have provided at Page 77.

So far we have discussed entropy of a sample for the special case where the target clas-
sification is boolean. More generally, if the target attribute can take onc different values,
then the entropy relative to thisc-wise classification is defined as

Entropy(S) = −
c∑
i=1

pi log pi ,

wherepi is the proportion of the sampleS belonging to classi. Note that logarithm is still
to the base2, because entropy is measured in bits. Also note that maximum is nowlog c.

This completes the description of the ID3 algorithm. So, what else can be said about the
ID3 algorithm? For answering this question, let us look at the hypothesis space used by the
ID3 algorithm.

ID3’ S HYPOTHESISSPACE 85

7.4. ID3’s Hypothesis Space

ID3’s hypothesis space is the set of all decision trees. Thus, it is acompletespace
of finite discrete-valued functions, relative to the available attributes. Since every finite
discrete-valued function can be represented by some decision tree, ID3 avoids one of the
major risks of methods that search incomplete hypotheses spaces: That the hypothesis space
might not contain a correct description of the target function.

Conceptually, we may think of ID3 as a learning algorithm that searches the hypothesis
space of all decision trees for one that correctly describes the training data. The search is
guided by using the information gain measure.

ID3 maintains only a single current hypothesis as it searches through the space of deci-
sion trees. This contrast, for example, our pattern language learner presented in Lecture 6
which conceptually maintains the set of all patterns that are consistent with the text seen so
far in every learning step. From this set, it then chooses a descriptive pattern and outputs
it. Thus, ID3 does not have the ability to determine which alternative consistent hypotheses
are still available.

Moreover, ID3 in the form presented does not perform any backtracking in its search.
Once an attribute has been selected as root in the relevant subtree, this choice is never
reconsidered. While this improves the efficiency of the decision tree learner, it does not
necessarily guarantee that the learned decision tree is the smallest possible. In other words,
ID3 always selects thelocally optimal solutionand may thus converge to a locally optimal
solution. However, this locally optimal solution may be less desirable than theglobally
optimal solutionthat would have been encountered along a different branch of the search.

ID3 uses all training examples at each step in the search to make a statistically based
decision (i.e., by using the information gain) regarding how to refine its current hypothesis.
The advantage of this approach is that the resulting search is much less sensitive to errors
in individual training data than other methods using individual training data for making
decisions.

Next, we turn our attention to another very important problem, i.e., theinductive bias
used by the ID3 algorithm.

7.5. Inductive Bias in Decision Tree Learning

Roughly speaking theinductive bias is the set of assumptions that, together with
the training data, deductively justify the classification assigned by the learner to future
examples. For example, the weather data set contains 14 examples. However, there are 36
possible examples, and of course, besides explaining the training data, one is also interested
in decision trees that classify the still unseen data correctly. Since there may be many
possible decision trees that correctly explain the training data, every learner has to make
a choice. The explicitely or implicitly made assumptions determining this choice are the
inductive bias of the learner.

86 LECTURE7: DECISION TREE LEARNING

The ID3 algorithm chooses the first acceptable tree it encounters in its search through
the hypothesis space. Roughly speaking, the ID3 algorithm selects in favor of shorter trees
over longer ones, and selects the tree that places the attributes with highest information gain
closest to the root. So, there is a subtle interplay between the attribute selection heuristics
used by ID3 and the particular training examples it encounters .hus, it is difficult to charac-
terize precisely the inductive bias used by ID3. Nevertheless, as a first approximation we
may say:

Shorter trees are preferred over larger trees. Trees that place high information gain
close to the root are preferred over those that do not.

Of course, one has also to answer the question whether or not this is a good or not so good
inductive bias. But it is beyond the scope of the introductory nature of our course to provide
a thorough study of this problem.

References

[1] J.R. QUINLAN (1986), Induction of decision trees,Machine Learning1, No.1, 81 –
106.

[2] J.R. QUINLAN (1993),C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Mateo, CA.

