TCS-TR-B-0501

TCS Technical Report

Course Notes on Theory and Practice of Algorithms —
Part |: Algorithmic Learning

by
THOMAS ZEUGMANN
Division of Computer Science

Report Series B
June 7, 2005

Hokkaido University

Graduate School of
Information Science and Technology

Email: thomas@ist.hokudai.ac.jp Phone: +81-011-706-7684
Fax: +81-011-706-7684

Abstract

This report contains the course notes of Part Th&ory and Practice of Algorithms
Within this part we deal wittalgorithmic learning Some learning algorithms for funda-

mental learning problems are studied. Furthermore, we focus our attention on the complex-
ity theoretical issues involved.

In addition to the usual wort-case analysis, we also deal with the average-case behav-

ior. Therefore, one lecture is devoted to introduce the subject of average-case analysis of
algorithms.

Finally, after having gained a deeper understanding of what algorithmic learning really
is, we exemplify the application of algorithmic learning to the field of data mining.

Contents

LECTUREL: ALGORITHMIC LEARNING 1
1.1. Whatis Learning? e 3
1.2. Examples 4
1.3. Specifying aLearning Model oo 9

LECTURE2: LEARNING MODELS 15
2.1. ModelingalLearningTask, 15

Variant 1: On-line Prediction 16
2.2. LearningintheLimit. 19
2.2.1. Basic Notations and Definitions 20

LECTURE3: MORE ABOUTLEARNING IN THE LIMIT 25
3.1. The Weaknessof Text, 26
3.2. The Pattern Languages o v v i i i vt e e 27

3.2.1. Learning the Pattern Languages via Descriptive Patterns 29 .
3.3. Learning Recursive Functions 32
3.4. Pointsof Concern 34
3.5.C0NSISENCY 35
3.6. Total Learning Time i i it 41

LECTURE4: AVERAGE-CASE COMPLEXITY 45
4.1. Introductory Examples L 45
4.2. Analyzing the Common Algorithm for Finding the Maximum a7

LECTURES: AVERAGE-CASE ANALYSIS Il 53

5.1. Average-Case Analysis for Learning in the Limit from Positive Presentati&@is

ii THOMAS ZEUGMANN

LECTUREG: STOCHASTIC FINITE LEARNING AND PAC LEARNING 61
6.1. Stochastic Finite Learning o 61
6.2. Learning Monomials from Informant 63
6.3. PACLearning e e 65

6.3.1. PAC Learning -the FiniteCase 69

LECTURE7: DECISION TREELEARNING 73
7.1. Decision Tree Representation 74
7.2. The Basic Decision Tree Learning Algorithm 76
7.3. Information, Entropy and InformationGain 81
7.4.ID3's HypothesisSpace e 85
7.5. Inductive Bias in Decision Tree Learning 85

“Everything should be made as simple as possible, but not simpler”
Albert Einstein

LECTURE1: ALGORITHMIC LEARNING

This course is about algorithms. The history of algorithms goes back, approximately, to
the origins of mathematics at all. For thousands of years, in most cases, the solution of a
mathematical problem had been equivalent to the construction of an algorithsothed
it. The ancient development of algorithms culminated in Euclid’s famous “Elements”. Un-
fortunately, after Euclid the design of algorithms faced roughly 2000 years of decline. It got
increasingly popular to prove the existence of mathematical objects by using the technique
of reductio ad absurdum

Modern computation theory starts with the question:
Which problems can be solved algorithmicaly

It was posed due to the fact that despite enormous efforts of numerous mathematicians sev-
eral problems had remained unsolved yet, e.g., the construction of an algorithm deciding
whether a given Diophantine equation has an integral solution (Hilbert’s 10th problem). In
order to answer it, first of all, th@tuitive notion of an algorithm has to be formalized math-
ematically Starting from different points of view, Turing [16], Church [3], andd&I [4]

have given their formalizations (i.e., the Turing machine Xhealculus, the recursive func-
tions). However, all these notions are equivalent, i.e., each computation in formalism-1 can
be simulated in formalism-2 and vice versa. Since then, many other proposals had been
made to fix the notion of an algorithm (e.g., by Post [10] and by Markov [7]). This led to
the well-known “Church Thesis,” i.e. tlie intuitive computable functions are exactly the
Turing machine computable ones

After the theory explaining which problems can and cannot be solved algorithmically
had been well-developed, the attention has turned to the qualitative siddpiueigood” a
problem can be solvedrirst influential papers in this direction were written by Rabin [11]
and [12], as well as by Hartmanis and Stearns [5]; the latter paper gave the field its title:
computational complexity. The central topic studied here was to clarify what does it
mean to say that a functiofiis more difficult to compute than a functigin The distinction
between problems solvable within a time bounded by a polynomial in the length of the
input (that is, problems having a feasible solution) and those not having this property, first
was made by J. von Neumann (1953). Since then, the class of polynomial time-bounded
algorithms has been an object of intensive and continuing research. On the other hand, it is
not known whether many of the problems that are very important for numerous applications
can be solved in polynomial time.

Since this is a very large area, we have to select certain problems we wish to study.
Recently, the field of knowledge discovery has attracted enormous interest. Therefore, we

2 LECTURE1: ALGORITHMIC LEARNING

would like to focus our attention in the first part of this course to several aspects related to
this area. In particular, we shall deal walgorithmic learning But also this area is much

too large to be covered within such a short amount of time. Throughout this course, we
shall have a closer look at the developments within the field of algorithmic learning. We

shall study some learning algorithms for fundamental learning problems. Additionally, we

focus our attention on the complexity theoretical issues involved.

After having gained a deeper understanding of what algorithmic learning really is, we
shall turn our attention to the application of algorithmic learning to the field of data mining.

The second part of this course is efficient data structures for manipulating Boolean
functions This part will be covered in a separate report.

Next, we would like to motivate the subject of algorithmic learning. So, let us ask
Why do we dream about algorithmic learning?

After all, humans are excellent learners. As Bertrand Russell [14] already noted

“How comes it that human beings, whose contacts with the world are brief and
personal and limited, are nevertheless able to know as much as they do know?”

But nowadays, it becomes more and more difficult to know what is already known.
There are many learning tasks that are far too complex for humans, or solving them by
humans is quite expensive, and/or takes a huge amount of time, thus, the knowledge gained
may be out of data before it is even ready. So, it would be better, if computers could learn,
for instance, knowledge bases from examples. It would also be desirable to have computers
that can discover knowledge by their own.

This idea, however, is not as new as it may seem. Shortly after the first computers have
been emerged, pioneering researchers formulated the goal to construct a machine which is
capable to learn. Allan Turing [17] considered the capability to learn as a major part of
intelligence.

Nevertheless, the problem reached a new dimension during the last decade. Nowadays,
across a wide variety of fields, data are being collected and accumulated at a dramatic pace.
For example, within the human genome project there are now billions of data available. But
researchers in this field are not mainly interested in the data themselves. Instead, they want
to find out, for example, which genes may cause a particular kind of cancer. So, there is an
urgent need for a new generation of computational techniques and tools to assist humans in
extracting useful information (knowledge) from the rapidly growing volumes of data.

As Pieter Adriaans and Dolf Zantinge [1] put it:

“We are confronted with the paradox of the growth of data, that more data
means less information. In the future, the ability to read and to interpret alone
will not be enough to sur vive as a professional, a scientist or a commercial
organization. The mechanical production and reproduction of data force us to
adapt our strategies and develop mechanical methods of filtering, selecting, and
interpreting data.”

WHAT IS LEARNING? 3

A similar viewpoint has been expressed by Ricleteal. [13]

“Moreover, nowadays the data collected in in various fields such as biology;, fi-
nance, retail, astronomy, medicine are extremely rapidly growing, but our abil-
ity to discover useful knowledge from such huge data sets is still too limited.

Clearly, powerful learning systems would be an enormous help in automati-
cally extracting new interrelations, knowledge, patterns and the like from those
and othehugecollections of data.”

Within the process of discovering knowledge from data bases, very often algorithmic
learning plays an important role. Therefore, we shortly introduce this subject here. Before
doing this, it is very useful to recall a point made by Donald Knuth [6] in his Turing Award
lecture.

“Science is knowledge that we understand so well that we can teach it to a
computer; and if don’t fully understand something, it is an art to deal with it.
...we should continually be striving to transform every art into science: in the
process, we advance the art.”

Thus it is only natural to ask whether learning isahor ascience
1.1. Whatis Learning?

Since humans are excellent learners, at first glance it should be easy to define what
learning is. So, let us continue by looking at some of the definitions proposed.

Simon [15] gave the following well-known definition;

“Learning denotes changes in the system that ...enable the system to do the
same task or tasks drawn from the same population more efficiently and more
effectively the next time.”

It is not hard to see that this definition also covers phenomena that are usually not con-
sidered as learning. For example, if we run the same program on a faster computer then
execution will be faster. Please think about more examples along this line. On the other
hand, this definition does not cover all aspects of learning. For example you may study
a map before driving to destination unknown to you. Then just by knowing your way
(because you learned it before starting your drive) you behave probably much better than
someone who has not studied the map in advance. But you can do befiestttime and
not only when driving the second time.

So, let us see what else has been proposed.

“Learning is making useful changes in our minds.”

4 LECTURE1: ALGORITHMIC LEARNING

This definition has been given by Marvin Minsky [9]. However, it may be require substan-
tial effort to make it applicable to the construction of a learning computer.

Another famous definition is due to Michalski [8].

“Learning is constructing or modifying representations of what is being expe-
rienced.”

And sometimes we even find (cf. Adriaans and Zantinge [1])
“We will not state what learning is.”

So, we see it is by no means easy to arrive at a useful definition. The state of the art can
be characterized as follows (cf. Richeral. [13]).

Numerous mathematical models of learning have been proposed during the
last three decades. Nevertheless, different models give vastly different results
concerning the learnability and non-learnability of objects one wants to learn.
Hence, finding an appropriate definition of learning which covers most aspects
of learning is also part of the goals aimed at in algorithmic learning theory.

For getting a first understanding of what we have to talk about, let us continue by looking
at some examples.

1.2. Examples

We restrict ourselves here to inductive learning, i.e., to scenarios in which the learner, at
every stage, has access to a finite set of data, though it has possibly to generalize its findings
to an infinite set of data. Our first example is drawn from the area of function learning. A
teacher is providing input-output examples of the target function. So, let us assume that we
have received

f(0)=0 and f(1)=1.

What function could it be? Since there is no need to introduce anything sophisticated at this
point, most people would conjecture that the target function can be expresged as .

But the next example is destroying this conjecture, our teacher just supplied
f(3) =720!,

where thefactorial functionn! is inductively defined a8! = 1 and(n + 1)! = (n + 1)n!
for all n > 0.

At this point we make the following observation.

£(3) = 7200 = (61)! = ((3N)1)! = 31!

EXAMPLES 5

This suggests the following solution.

g(xz,0) = =z
glx,n+1) = g(z,n)!
fz) = g(z,2).

A quick check shows that we are correct, since

f(0) = ¢(0,0)=0

f(1) = ¢g(1,1)=g¢(1,0+1)=¢g(1,0)! =11 =1

f3) = 9(3.3)=9(3,2+1) =9(3,2)! = g(3,1 + 1! = (9(3, 1)})!
= (9(3,0+N= ((g(3,0))HN = ((3HH!

As a matter of fact, for finding this solution we have applied a famous principle from the phi-
losophy of science usually referred to @ecam’s Razor which was formulated around
1320 by William of Occam as follows.

“Entities should not be multiplied unnecessarily.”

The best reformulation of this principle for scientists\8hen you have two competing
theories which make exactly the same predictions, the one that is simpler is the better.

Therefore, if we look at the examples as expressions of the foen f(x) we had to
expresgy in termini of z.

Furthermore, we made a couple of implicit assumptions which we would like to make
explicitly right now. First, we have assumed that we have to learn a function. This target
function is chosen by the teacher from a set of functions. Additionally, we assumed that
the function is defined over the sitof natural numbers. So, thdomainis a class of
computable functions over the natural numbers.

Note that the assumption to have a computable function is essential in this context, since
otherwise we cannot find nite description for the target function. Moreover, we can
interpret our solution asrogramcomputingf. Thus, our learner produced a sequence of
hypotheses and each hypothesis has been chosen from the set of all programs computing
functions ovelN. From now on, we shall refer to set of all allowed hypotheses as to the
hypothesis space

Assuming that we indeed learned the target function, we see that the learning success
occurred only after a certain number of examples. So, in general we always have to define
acriterion of success

Last but not least, since we want to clarify what algorithmic learning is, we have assumed
the learner to be an algorithm. This learner may have searched for the simplest program
explaining the data.

6 LECTURE1: ALGORITHMIC LEARNING

Putting it all together, we can summarize our approach as follows.

domain: class of computable functions
Information source: examples{(z, f(z))

hypothesis space: all programs

Learning method: search

Semantics of hypotheses: program

Success criterion: correct after finitely many examples

Next, we look a problem that may serve as a typical example for many data mining tasks.
So, let us look at the following tiny data set called the weather data. Of course, this data set
is fictitious, but it serves its purpose to explain some typical features. The data concern the
conditions for playing some unspecified game.

| outlook | temperature | humidity | windy | play ||
sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no

Figure 1.1: The Weather Data

In the table displayed above, we have fatiributes i.e.,outlook , temperature
humidity , andwindy . These attributes can take symbolic values rather than numerical
values. The rightmost column shows the recommendation, that is whether or not one should

play.

| outlook | temperature | humidity | windy |[play |
| sunny | cool \ high \ true | 2?2 |

Figure 1.2: The data for tomorrow.

Next, we ask if there are any rules behind this table. This is the typical question asked in
data mining The typical problem is then to make predictions. For example, we are given
the following data for tomorrow (cf. Figurel.2).

EXAMPLES 7

So, what should we do, play or not play? Of course, this prediction should be be con-
sistent with the table given above. Now, the idea is first to learn a decision tree from the
table above. Then, we apply it to the data for tomorrow. A decision tree explaining the data
above could look as follows.

overcast rainy

yes

high normal false true
no yes yes no

Figure 1.3: Decision tree for the weather data.

In order to see that this decision tree explains the table, let us look at the following
example (the first data row of the table shown in Figure 1.1).

| outlook | temperature | humidity | windy |[play |
| sunny | hot \ high | false | no |

Figure 1.4: First entry of the weather data.

Using the decision tree above, we obtain the classification shown in Figure 1.4 by fol-
lowing the path determined by the values given for the attributes (cf. Figure 1.5).

high normal false true

no yes yes no

Figure 1.5: Application of the decision tree to the data in Figure

The rest of the table is verified analogously.

8 LECTURE1: ALGORITHMIC LEARNING

Now, we can apply the decision tree from Figure 1.3 to make the desired prediction.
Sinceoutlook is sunnyandhumidity is high we have to follow the same path as in
Figure 1.5 and obtaino. Thus, we obtain:

| outlook | temperature | humidity | windy | play |
| sunny | cool | high | true | no |

Figure 1.6: The data for tomorrow completed.

Of course, you may wonder why the attribueamperature does not appear in our
decision trees. Answering this question is closely related to the problem of how to construct
decision trees for tables such as the weather data. We shall deal with these questions in
Lecture 7.

Finally, we again summarize the approach undertaken in an analogous way as we did
for the function learning problem. Thus, we obtain the following.

domain: discrete functions

Information source: positive and negative examples
hypothesis space: all decision trees

Learning method: decision tree learner

Semantics of hypotheses: classifier

Success criterion: correct after finitely many examples

Next, we take a look at a slightly different example. We wish to model learning tasks
such as “Learning of Data Structures” from examples. Data structures are used in many
applications. In order to keep the example simple, let us look at something familiar, i.e., a
list of references.

GoLb, M.E. (1967), Language identification in the limiiformation and ControlL0,
447 — 474.

LANGE, S.AND WIEHAGEN, R. (1991), Polynomial-time inference of arbitrary pattern
languagesiNew Generation Computirg) 361 — 370.

Of course, this listis a very short one. Usually, one has large or even huge bibliographies.
These bibliographies may come from different sources and thus one may wish to unify
them. So, one could choose the liked best, learn its underlying data structure and apply the
result to the remaining ones.

Looking at the two examples given, the underlying data structure might have the follow-
ing pattern

AUTHORS, INITIALS. (Year), Title,JournalVolume, number — number.
or more formally:zy, xo.(x3), 4, 526, T7 — T5.

Any pattern is a non-empty string ovdru X, whereA is an alphabetX is a countably
infinite set of variables andl N X = (). Pattern define languages in a natural way. The

SPECIFYING A LEARNING MODEL 9

language generated by a patteris the set of all strings that can be obtained by substituting
all occurrences of variables by (non-empty) strings odewhere the same variables have
to be substituted by the same string. For example, the pattegenerates the language

L = {ww| w € A"}. We shall formally define patterns and pattern languages in Lecture 3.

So, in our example aboved consists of the Latin alphabet, the punctuation symbols,
the digits{0, 1, ..., 9}, and the parenthesés.

Note, however, that the references given above could be already generated by the fol-
lowing pattern
x1, ZEQ.(lgl’g), Ty, X5, L7 — l’87$9 .

Summarizing in an analogous way as above, now we obtain:

domain: pattern languages

Information source: positive examples

hypothesis space: all patterns

Learning method: string algorithms

Semantics of hypotheses: interpretation of patterns

Success criterion: correct after finitely many examples

1.3. Specifying a Learning Model

After having seen three examples, we continue by clarifying the subject of Algorithmic
Learning Theory. We focus our attention in partially answering of whathine learn-
ing is supposed to mean. Answering this question includes dée¢kloping mathematical
modelsof machine learning anderiving results within the modetieveloped. Both parts
deserve special attention. In general, a model should capture at least significant applica-
tions. However, as already mentioned, the state of the art in modeling learning is still much
less satisfactory than in other areas of theoretical computer science.

For example, around 60 years agomputability theoryemerged. Initially, many dif-
ferent models have been introduced, e.g., Turing machines, partial recursive functions,
Markov algorithms, ChurchA-calculus. Nevertheless, later on, all those models have been
proved to be equivalent. Subsequently, researchers focused their attention to obtaining re-
sults within the model.

Another example is the rapidly emerging field of parallel computation. Unlike sequential
algorithms, for which the above standard models exist, there are many contending models
on which parallel algorithms can be based. Different parallel computer models differ from
each other in various ways, e.g., whether or not different instructions on different data can
be performed at one time, with respect to the geometrical arrangement of the processors
and their interconnection, etc. However, there is a huge amount of literature relating these
models to one another, and there is at least a universal interconnection pattern; i.e., the so
calledparallel computation thesi&f., e.g., Zeugmann [18] and the references therein).

10 LECTUREL: ALGORITHMIC LEARNING

The situation in algorithmic learning theory is however, quite different. Numerous math-
ematical models of learning have been proposed during the last three decades. Never-
theless, different models give vastly different results concerning the learnability and non-
learnability of objects one wants to learn. Hence, finding an appropriate definition of learn-
ing which covers most aspects of learning is also part of the goals aimed at in algorithmic
learning theory.

As we have seen above, every learning model has to specify several aspects. In the
following we provide a more detailed explanation of the main aspects to be modeled.

1. The Learner: Specifying the learner means answering the question “Who” is doing the
learning? The most general answer one may give in algorithmic learning is that the
learner is supposed to be an algorithm, i.e., a computer program. For example, the
subfield of inductive inference generally specifies the learner in this way (cf., e.g., An-
gluin and Smith [2]). However, the learner may be restricted in one way or another.
One may require the learner to be time efficient, i.e., to use an amount of time that is
uniformly bounded by a polynomial in the length of its inputs. The learner may be
also restricted with respect to its available amount of space. Further restrictions are
possible, and we shall discuss them throughout this course.

2. The Domain: “What” is being learned? The answer to this question specifies the objects
the learner has to deal with. For example, we may request the learner to learn an
unknown concept, such as a table, a chair, a sofa. Thetedh@ng goalconsists in
synthesizing a “rule” to separate positive examples from negative ones. That means,
after having finished its learning task, the learner must be able to correctly classify an
object presented to him either as being a chair (a table, a sofa) or as not being a chair
(atable, a sofa). This type of learning is referred to as concept learning, and has been
studied extensively.

However, there are many other objects the learnability of which has been extensively
studied, too. For example, the object to be learned may be an unknown function, an
unknown language, an unknown device, an unknown technique (e.g., how to drive a
car), an unknown environment (e.g., a new building), an unknown family of similar
phenomena (e.g., voice recognition, face recognition, character recognition (hand
written or printed), an unknown graph, and many, many more.

3. The Information Source: This part of the specification deals with the question from
“what” information the learner should perform its task. That means, one has to clarify
how the learner is informed about the target object. There is a huge variety of ways
how this can happen. In the following we provide several examples that focus on
widely studied models.

(i) Examples: In this scenario, the learner is fed with examples of the object to
be learned. For example, when learning the concept of a chair, the learner is
provided particular instances that constitute or do not constitute a chair. When

SPECIFYING A LEARNING MODEL 11

learning an unknown functiorf, the learner is provided input—output exam-
ples, i.e(xo, f(zo)), (z1, f(x1)), (z2, f(x2)), When learning a language,

the learner may be fed arbitrary strings over the underlying alphabet that are
classified with respect to their containment in the target language. Alternatively,
the learner may be also requested to learn fpmsitiveexamples, only. More-
over, examples can be chosen in very different ways. They might be chosen
with respect to some underlying but unknown (or known) probability distribu-
tion. Furthermore, they might be chosen arbitrarily, they can be chosen sys-
tematically, they can be chosen maliciously (this is of special interest if one is
aiming to study the worst-case behavior of a learning algorithm). On the other
hand, the examples can be chosen carefully, too, e.g., by a teacher who wants to
facilitate the learning process.

There is another important aspect that will be described later, i.e., the problem
how todescribethe examples.

(i) Queries: In this scenario, the learner is enabled to ask questions about the
target object to a teacher. For example, when learning the concept of a car,
the learner may ask “Is an Audi an example of a car?” Or, when learning a
language, it may ask “le a word of the target language?” This type of question
is usually referred to asiembership query Alternatively, it may ask “IS5 a
grammar for the target language?” When learning an unknown environment, it
may ask “Is this a correct floor plan of the ground floor?” The latter type of
guestion is referred to axjuivalence queriesince the learner provides a rule
and asks if that rule is correct. There are further types of possible questions,
e.g.,subset queries, superset queriaaddisjointness queriethat have been
studied intensively.

(i) Experimentation: In this scenario, the learner may get information concerning
the object to be learned by actively experimenting with it. For example, the
learner may learn a new environment by walking through it. Again, different
walking strategies are imaginable, e.g., a random walk, a nondeterministic walk,
a systematic walk, a.s.o.

When talking about the information source, another very important aspect has to be
considered. This issue is whether or not the model can harad$y or erroneous
information sources. As an example, consider a learner that aims to recognize zip
codes on letters. The learner is given examples provided by a post office employee.
However, sometimes the employee may misread the handwritten codes. This results
in erroneous information.

4. Hypothesis Space:Generally, a learner is supposed to map evidence (e.g., examples)
on the object to be learned into a hypotheses about it. Therefore, one has to choose a
set of possible descriptions. Clearly, each rule contained in the learning domain has
to possess at least one description in the hypothesis space. However, the hypothesis
space may additionally contain descriptions not describing any object in the learning

12 LECTUREL: ALGORITHMIC LEARNING

domain. Furthermore, the descriptions provided by the hypothesis space may be
slightly different from those ones used in defining the objects to be learned in the
learning domain.

5. Prior Knowledge: Here, one has to specify what does the learner know about the do-
main initially? This generally restricts the learner’s uncertainty and/or biases and
expectations about the objects to be learned. Obviously, specifying the hypothesis
space already provides some prior knowledge. In particular, the learner knows that
the target object is representable in a certain way, e.g., as a graph having at most 1000
nodes, as a language acceptable by a finite automaton, or as function computable by
a program having at most 100 instructions. However, such type of assumptions can
be very unrealistic in practice. Furthermore, prior knowledge my also be provided
by “telling” the learner that “simple” answers are preferable to more “complex” hy-
potheses. Finally, looking at important applications one has to take into account that
prior knowledge may be “incorrect.” Thus, when developing advance learning tech-
niques one has to deal with the problem how to combine or trade-off prior versus new
information.

6. Success Criteria: Finally, one has to specify the criteria for successful learning. This
part of the specification must cover at least some aspects of our intuitive understand-
ing of learning. For example, an automatic camera may record everything around it,
but it is intuitively obvious that it does not learn. On the other hand, if we have an
algorithm which, after having been provided a set of examples for the concept sofa,
can label objects as either being a sofa or not being a sofa, we may agree that it has
learned something, i.e., the concept sofa. In particular, we have to deal with questions
like: “How do we know whether, or how well, the learner has learned?” “How does
the learner demonstrate that it has learned something?”

Each specification of the six items described above leads to a model of learning. The
interested reader is referred to the references listed below for further information. In the
following lecture, we shall continue by exemplifying the general outline given above.

References

[1] P. ADRIAANS AND D. ZANTINGE (1997),Data Mining Addison-Wesley Longman
Publishing Co, Boston, MA.

[2] D. ANGLUIN AND C.H. SMITH (1983), Inductive inference: theory and methods,
Computing Surveys5, 237 - 269.

[3] A. CHURCH (1936), An unresolvable problem of elementary number thefmy, J.
Math. 58, 345 — 365.

[4] K. GODEL (1931), Uber formal unentscheidbareéi®@e der Principia Mathematica
und Verwandter System®onatshefte Mathematik Phys38, 173 — 198.

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

SPECIFYING A LEARNING MODEL 13

J. HARTMANIS AND R.E. STEARNS (1965), On the computational complexity of
algorithms,Trans. Am. Math. Sod.17, 285 — 306.

D.E. KNUTH (1974), Computer Programming as an A@pmmun. ACNMbf 17
No. 12, 667-673.

A.A. MARKOV (1954), Theoria AlgorithmovAkad. Nauk SSSR, Math. Inst. Trudy
42,

R. MICHALSKI (1986), Understanding the nature of learning: issues and research
directions,in (R.S. Michalski, J.G. Carbonell and T.M. Mitchell, eds.), “Machine
Learning: An Artificial Intelligence Approach, Vol. 2,” pp. 3 — 25, Morgan Kaufman,
Los Altos, Calif.

M. MINSKY, The Society of MinlL985), Simon & Schuster Inc., New York.

E. PosT(1943), Formal Reductions of General Combinatorial Decision Problems,
Am. J. Math.65, 197 — 215.

M.O. RABIN (1959), Speed of computation and classification of recursive sets,
Third Convention Sci. Soc., Israel, pp. 1 - 2.

M.O. RABIN (1960), Degrees of difficulty of computing a function and a partial
ordering of recursive sets) Technical Report No. 1, University of Jerusalem.

M.M. RICHTER, C.H. SMITH R. WIEHAGEN AND T. ZEUGMANN (1998), Editors’
Introduction,in (M.M. Richter, C.H. Smith R. Wiehagen and T. Zeugmann, eds.),
Algorithmic Learning Theory, 9th International Conference, ALT '98, Otzenhausen,
Germany, October 1998, Proceedings, Lecture Notes in Atrtificial Intelligence 1501,
pp. 1 — 10, Springer, Berlin.

B. RUSSELL (1948),Human Knowledge: Its Scope and Limi&mon and Shuster,
New York.

H. SIMON (1983), Why should machines learnf®?,(R.S. Michalski, J.G. Carbonell
and T.M. Mitchell, eds.), “Machine Learning: An Artificial Intelligence Approach,”
pp. 25-38, Tioga Publishing, Palo Alto, Calif.

A.M. TURING (1936/1937), On computable numbers with an application to the
EntscheidungsproblerRroc. London Math. Soel2, 230 — 265.

A.M. TURING (1950), Computing Machinery and Intelligence, Misg 433-460.

T. ZEUGMANN (1990), Parallel Algorithmd:ncyclopedia of Computer Science and
Technologyol. 21, Supplement 6, Allen Kent and James G. Williams (eds.), pp. 223
— 244, Marcel Dekker Inc. New York and Basel.

15

LECTUREZ2: LEARNING MODELS

After having seen what one has to specify in order to arrive at a learning model, we aim
at defining some learning models.

2.1. Modeling a Learning Task

Humans are able to distinguish between different “things,” e.g., chair, table, sofa, book,
newspaper, car, airplane, a.s.o. Also, there is no doubt that humans have to learn how to
distinguish “things.” Therefore, we ask whether this particular learning problem allows an
algorithmic solution, too. That is, we specify the learner to balgorithm Furthermore,
we may be tempted to specify the learning domain to be the set of all things. However, since
we aim to model learning, we have to convert “real things” im@athematical descriptions
of things This can be done as follows. We fix some language to expréisstalist of
properties. Afterwards, we decide which of these properties are relevant for the particular
things we want to deal with, and which of them have to be fulfilled or not to be fulfilled,
respectively. For example, the list of properties may be fixed as follows:

- possesses 4 legs, - possesses a rest, - has brown color, - possesses 4 wheels,
- it needs fuel, - possesses a seat,- possesses wings, ..., - has more than 100 pages.

Now, we can answer
“What is achair?” “Whatis atable?”

by deciding which of the properties are relevant for the concept “chair,” and which of
them have to be fulfilled or not to be fulfilled, respectively.

For chair, we obtain: and for table

1. possesses 4 legyes - yes

2. possesses a resyes -no

3. has brown color #relevant - irrelevant
4. possesses 4 wheelse - no

5. it needs fuel no -no

6. possesses a seates -no

7. possesses wingso -no

n. has more than 100 pagese - no

As you can see, there are two rows at which the entries differ, i.e., possesses a rest and
possesses a seat. Thus, by using our properties, we could distisgaisandtable

16 LECTURE2: LEARNING MODELS

Next, we denote the properties by the variables, . .., z,, whererange(z;) C {0,1}
for j = 1,...,n. The semantics is then obviously as follows.= 1 means property is
fulfilled, while z; = 0 refers to property is not fulfilled.

Thenchair: {0,1}" — {0, 1}, where

. 1, fri=a9=0a4=1,, andry=25=27,=...=2, =0
chair(zy,...,z,) =

0, otherwise

Now, settingL,, = {z1,%1,22,%2...,2,,T,} (Set of literals) we can express the con-
cept “chair” by the monomial that contains precisely the relevant literals,cheir =
T1T2T4T5TeT7 . .. T,. NoOte thatrs does not appear in the monomial “chair, ” since it is
irrelevant.

Hence, we may redefine thearning domairnto be the seft’ = {0, 1}". We regard¥
as the instance space consisting of instances described by bit vectors oflefigén the
collection of objects to be learned is the €etf all concepts: X — {0, 1} that arede-
scribable by a monomialver X'. Thus, the conceptsclassify each instandeas negative
(if ¢(b) = 0) or positive (ifc(b) = 1). Hence, we may identify the conceptith the set
of all positive instances for it. That means, we regawb a subset aot’, and identify it
with its characteristic function. There are two constant characteristic function$,ared)
referring to the concept “TRUE” and “FALSE,” respectively. “TRUE” can be represented
by the empty monomial, and “FALSE” can be represented by, ;. There is acon-
ceptional differencdetween the clags of all concepts describable by a monomial and the
set of all monomials itself. Namely, different monomials may describeséimeconcept.
For example, the concept “FALSE” can be represented by, z-7s, ..., t1Z1 . .. T,T,.
However, the concept “FALSE” is the only one allowing different descriptions. Therefore,
in the following we often identify the set of all monomials ouv&y and the concept clags
Note thatn is fixed. Thus(is finite.

Exercise 1.Determinecard(C).

We still have to specify the source of information, the hypothesis space, the prior knowl-
edge, and the criterion of success. There are several ways to do this, and we shall have a
look at some variants. In all variants we are going to considemptioe knowledges that
the target concept is a monomial.

Variant 1: On-line prediction

In this setting, thesource of informations specified as follows. The learner will be
fed successively more and more labeled examples of the monomial to be learned. That
is, the learner is given a sequen@e, m(b;), ba, m(b2), .. .), where theb; € {0,1}", i.e.,
Boolean vectors, angh(b;) € {0,1} denote the value of the target monomial under the
obvious assignment of the values provided;ito its literals. The examples are picked up
arbitrarily, and are noise free.

We do not specify thaaypothesis spacexplicitly. It is left to the learner to choose it.

VARIANT 1: ON-LINE PREDICTION 17

Finally, we have to specify theriterion of successlIn this example, we considen-
line prediction That is, the learner must predict eaetid), after having fech. Then, it
receives the true value ofi(b), and the next Boolean vector. We measure the performs
of the learner by the number of prediction mistakes made. The learner has successfully
learned if it eventually reaches a point beyond which it always correctly predicts.

Obviously, there is a trivial solution. The learner simply keeps track of all examples
and their labels provided. If it is fed a vectbthe label of which it has already seen, it
predicts the correct label. Otherwise, it predicts 0. After having seen all possible examples,
it surely can correctly predict. However, there &rfeBoolean vectors of length. As a
consequence, this trivial algorithm may make many prediction errors.

Exercise 2.Determine the number of prediction errors made by the trivial algorithm in
the worst-case.

This number is terribly large. For any of practical relevance, it may take centuries
before the algorithm has achieved its learning goal. Clearly, this is not acceptable. Hence,
we continue by asking whether we can do it better. The affirmative answer is provided by
the following theorem.

Theorem 2.1.0n-line prediction of monomials ovél, can be done with at most+ 1
prediction errors.

Proof.For alli = 1,2, ... letb; = b}b? ... b" denote theth Boolean vector. First of all,
we describe the prediction algorith

Algorithm P: “On successive input,, m(b;), ba, m(b2), .. .) do the following:
Initialize hy = 1% . . . Tp T

Fori = 1,2,... let h;_; denoteP’s internal prediction hypothesis produced before
receivingb;. After having received; predicth,_,(b;). Then, readn(b;).

If hz—l(bz) = m(bz) thenhi = h;_; else
forj:=1ton do
if b/ = 1 then deleter; in h;_, else delete:; in h;_,.

Denote the result bi;. By convention, if all literals have been removed, ther- (),
andh;(b) = 1forallb € X,

end.

Before analyzing the prediction algorith# we illustrate it at the following example.
Letn = 7, and letm = x,Z,z427 be the target monomial. Suppose the input sequence to
start as follows(1001111, 1, 0110110, 0, 1011101, 1, 1011001, 1, ...).

Then, P initially predicts h,(1001111) = 0. However, the true value is, and thus
P executes the loop described above resultingin= xZ273r4251627. After having
readb, = 0110110, P predictsh,(0110110) = 0 which is true. Henceh, = h; =
T1T2T3x4x5267. Next, P readsl011101, and predictsi,(1011101) = 0 which is wrong.

18 LECTURE2: LEARNING MODELS

Thus, P executes the loop, and computes= x1Z,z4x527. Now, P reads1011001 and
predictsO which is again wrong. Thereforé? executes the loop again, and computes

hy = x1Zox4x7. Since this internal hypothesis equals the target monomahakes no

more prediction errors. Consequently, it does not change its internal hypothesis any further.

We proceed by proving the correctness®iSince’P computes all its internal hypothe-
ses by possibly removing literals frohg, it suffices to show that all the literals in the target
monomial survive and that every prediction error results in removing at least one literal
from P’s actual internal hypothesis. This is done via the following claims.

Claim1. No literal in the target concept: is ever removed frorhg.

Suppose the converse, i.e., there is a literal, Sayn the target monomiat: which
is sometimes removed frofy,. Let /; be the first such literal. Consequently, before this
literal /; is removed, all literals imn are still contained irP’s internal hypothesig. Thus,
every examplé satisfyingP’s internal hypothesis satisfies, too, i.e.,h(b) = 1 implies
m(b) = 1. Thus, the removal must happen on an exantpseich thatm(b) = 1 but
h(b) = 0. However, while processing its lodp removes exclusively those literals for
which Z;(¥) = 0. But for all literals¢,, in m we have/,(b*) = 1, and hence they survive.
This contradiction proves Claim 1.

Claim 2. Prediction errors are exclusively made on positive examples

By construction;P performs all of its predictions by its internal hypotheses which con-
stitute monomials. The value of a monomiallisf and only if all its literals evaluate to
1. Hence, ifm(b) = 0, then at least one of its literals must evaluat®.t@y Claim 1, all
literals contained inn are contained in all oP’s internal hypotheses, too. Thus, at least
one of the literals ifP’s actual internal hypothesis also evaluate8 tmusingP to predict
0. Hence, no prediction error can occur on a negative example.

Claim 3. Each prediction error cause® to remove at least one literal from its actual
internal hypothesis

Suppose the converse, i.e., after some prediction error no literal is removed. Thus, the
example on which the prediction error occurred must satisfy all literg®smactual internal
hypothesis, since otherwise at least one literal is removed. Consequeihs predicted
1, but since we had a prediction error, the true value of the target mustHeerefore, the
prediction error had to occur on a negative example. This contradicts Claim 2.

Finally, we have to prove that at most+ 1 prediction errors occur. InitiallyP’s
internal hypothesis, contains2n literals. However, for each example exactl\iterals
evaluate tal and exactlyn literals evaluate t0. Hence, the first prediction error causes
to remove precisely literals from its actual internal hypothesis= hy. Now, the worst-
case obviously occurs dll literals must be eliminated frorh, i.e., if m is the constant
monomiall (= TRUE). Now, the assertion directly follows by Claim 3. This proves the
theorem. i

Exercise 3.Construct a sequence of examples such that the worst-case bound stated in
Theorem 2.1 happens.

LEARNING IN THE LIMIT 19

You may test your sequence by using our implementation of Algorih(there called
Wholist Algorithm at:
http://www-alg.ist.hokudai.ac.jp/ thomas/BOOLE/menuel.jhtml

As we have seen, when learning the class of all concepts describable by a monomial
over the domair{0, 1}" within the on-line prediction model, then+ 1 prediction errors
may occur in thevorst-case

It is also easy to see that two prediction errors are sufficient ibéisé-case

Moreover, if we run our algorithrfP in practice, we may just observe that usually much
less thamn + 1 prediction errors occur. So, we may ask how many prediction errors do
occur during a “typical” run of algorithrmP. Clearly, dealing with the latter question also
requires to define what is meant by “typical” run. This will directly lead us to the subject
of average-casanalysis.

Note that it is often much more complicated to perform an average-case analysis than to
determine the worst-case and (or) best-case behavior of an algorithm. Therefore, we shall
come back to this point later. But in the meantime, you can perform some experiments with
the on-line prediction algorithms at:
http://www-alg.ist.hokudai.ac.jp/ thomas/BOOLE/menue2.jhtml

As a matter of fact, it is advantageous to introduce another learning model at this point.
2.2. Learning in the Limit

As we have seen, the class of concepts describable by a monomial is learnable in the
on-line prediction model. Of course, the class of concepts describable by a monomial is not
too difficult. Thus, it would be only natural to ask what other concept classes are learnable
within the prediction model. Instead of answering this question right now, we want to
take a broader approach and continue with the fundamental notion of learning in the limit.
The corresponding theory, callaghductive inference may be viewed as roughly as
computational theory is to complexity and analysis of algorithms. Thus, dealing with this
part of algorithmic learning theory will provide us a deeper understanding of what can be
or cannot be expected from algorithmic learning in general.

Note that induction constitutes an important feature of learning. Inductive inference
may be characterized as the study of systems that map evidence on a target concept into
hypotheses about it. Investigating scenarios in which the sequence of hypotheses stabilizes
to an accurate and finite description of the target concept is of particular interest. Precise
definitions of the notions evidence, stabilization, and accuracy go back to Gold [4] who
introduced the model diearning in the limit.

Next, we informally describe this model. The source of information are infinite se-
guences of examples. We distinguish learning from positive data and learning from positive
and negative data, synonymously called learning ftem¥ andinformant, respectively.

A text for a target conceptis an infinite sequence of elementscafuch that every element
from ¢ appears eventually. Alternatively, an informant is an infinite sequence of elements

20 LECTURE2: LEARNING MODELS

exhausting the underlying learning domain that are classified with respect to their contain-
ment in the target concept.

An algorithmic learner, henceforth called inductive inference machine (abbr. 1IM), takes
as input larger and larger initial segments of a text (an informant) and outputs, from time to
time, a hypothesis about the target concept. The set of all admissible hypotheses is called
hypothesis space. The sequence of all hypotheses output is required to converge to a a
hypothesigorrectlydescribing the target concept.

By the definition of convergence, only finitely many data about the target conbept
been observed by an IIM/ at the (unknown) point of convergence. Hence, some form
of learning must take place in order fof to learn the target concept For this reason,
hereafter the termglentify, learn andinfer are used interchangeably.

So far we left it open what kind of convergence we are going to require. We shall distin-
guish betweemyntacticalconvergence, where the sequence of hypotheses has to stabilize.
That is, after some point the [IM always outputs one and the same hypothesis. The resulting
learning model is usually callddarning in the limit

Alternatively, we shall also consideemanticalconvergence, where the sequence of
hypotheses has to behave as follows. After some point, the IIM always outputs hypotheses
that arecorrectfor the target concept, but which are not necessarily equal to one another.
For example, looking again at our class of concepts describable by a monomial, an 1IM
which is supposed to infer the concept “FALSE” may output many different hypotheses for
it, .9.,2171, T122T1, T1X2 - - - T, T1 - - - T Though the resulting learning model also learns
in the limit, one usually refers to it dshaviorally correct learningn order to distinguish
it from the one where syntactical convergence is required.

We continue with a formal introduction of learning in the limit and behaviorally correct
learning.

2.2.1. Basic Notations and Definitions

LetN = {0,1,2,...} be the set of all natural numbers andiet = N\ {0}.

Any recursively enumerable st is called dearning domain By p(X) we denote the
power set oft'. LetC C p(&X') and letc € C. We refer toC andc as to aconcept class
and aconceptrespectively. Sometimes, we will identify a conceptith its characteristic
function, i.e., we write:(z) = 1, if € ¢, andc(z) = 0, otherwise.

Within this course, we mainly study the learnability of indexable concept classes (cf.
Angluin [1]). A class of non-empty concepfsis said to be amdexable concept clas
there are an effective enumeratian),cy of all and only the concepts iti and a recursive
function f such that, for all € Nand allx € X, f(j,z) = ¢;(z) holds. ByZC we denote
the collection of all indexable classes.

Next, we describe some well-known examples of indexable classes. denhote any
fixed finite alphabet of symbols, and IEt be the free monoid over. We setXt =
¥*\ {e}, wheres denotes the empty string. Thén = X* serves as the learning domain.

BAasiC NOTATIONS AND DEFINITIONS 21

As usual, we refer to subsefsC Y* as to languages (instead of concepts). Then, the set
of all context sensitive languages, context free languages, regular languages, respectively,
form indexable classes.

Next, let X;,, = {0,1}" be the set of all-bit Boolean vectors. We considéf =
U,.>1 X as learning domain. Then, the set of all concepts expressible as a monomial, a
k-CNF, ak-DNF, and ak-decision list form indexable classes.

Angluin [1] started the systematic study of learning indexable concept classes. This
setting attracted a lot of attention, since many natural concept classes are indexable (see
above). For an overview we refer the interested reader to Zeugmann and Lange [6].

Let ¢ C X be any concept, and leét= s, sq, s2,... be any infinite sequence such
thatrange(t) = {sx| k¥ € N} = ¢. Thent is said to be aext for ¢, or synonymously,
a positive presentation. By (c) we denote the set of all positive presentationg:.of
Furthermore, for every indexable classve settext(C) = [, (¢)-

Furthermore, let = (so, ¢(s0)), (s1,¢(s1)), (s2, ¢(s2)), . . . be any infinite sequence such
thatrange(i) = {sx| £ € N} = X; then we refer ta as aninformant, or synonymously
as topositive and negative data. By info(c) we denote the set of all informants of
Furthermore, for every indexable classve setinfo(C) = .. info(c).

Moreover, lett, i be a text and an informant, respectively, anddet N. Thent,, i,
denote the initial segment ofand ofi of lengthz + 1, respectively. Furthermore, we use
t+ to denote the range af, andi; andi, to denote the set of all positive and negative
instances in,, respectively.

Furthermore, the learner is an algorithmic device which works as follows: It takes as its
input larger and larger initial segments of a texan informant) and it either requests the
next input string (labeled input string), or first outputs a hypothesis, i.e., a number encoding
a certain computer program, and then it requests the next input string (the next labeled
example). Note that an [IM, when learning a target ctags required to produce an output
on every initial segment of all texts izt (C).

It is common to refer to the learner as to @ductive inference machine (abbr.
[IM) in this setting. The hypotheses output by an IIM are interpreted with respect to a
suitably chosen hypothesis spade= (h;);en. When an [IMM outputs some number
we interpret it to mean that/ hypothesizes;.

When dealing with indexable concept classes, we usually require the hypothesis space
‘H to be an indexing of some possibly larger indexable concept class. Hence, in this case,
membership is uniformly decidable #, too. In general, however, we allow any mapping
h: X — {0, 1} such that the partial characteristic function of itis computable as hypothesis
and assume furthermore the set of all hypotheses to be recursively enumerable. So, as a
most general hypothesis space one could choose any fizddl Gumberingy (sometimes
also calledacceptable programming systewf the recursively enumerable sets over the
underlying learning domain.

Furthermore, we shall distinguish the following types of hypothesis space< het
any concept class. A hypothesis spagds said to beclass preservindor C iff each

22 LECTURE2: LEARNING MODELS

conceptc € C possesses a descriptianin the hypothesis space, and each description
available in the hypothesis space corresponds to a concept in the target concept class. More
formally, we can express the requirement for a hypothesis space to be class preserving by
range(C) = range(H). Next, we weaken this requirementitange(C) C range(H), i.e.,

we allow the hypothesis space to contain descriptions of sets not necessarily corresponding
to target concepts. We refer to such hypothesis spacesdast® comprisindiypothesis
spaces. At first glance, it might seem useless to enlarge the hypothesis space, since any
hypothesis not describing a target concept is definitely wrong. However, as we shall see
later, sometimes it is unavoidable to all@ass comprisindiypothesis spaces in order to
achieve superior learners.

Next, we specify theriterion of successLet o be a text or informant, respectively, and
z € N. Then we usé/ (o,) to denote the last hypothesis producedibyvhen successively
fed o,. The sequencéM (o,)).cn IS Said toconverge in the limit to the numbey if
and only if either(M (o,)).cn is infinite and all but finitely many terms of it are equaljto
or (M(o,)).en is non-empty and finite, and its last termjisNow we are ready to define
learning in the limit.

Definition 1 (Gold [4]). LetC be a concept class, lebe a concept, and 18{ = (h;)jen
be a hypothesis spacdn IIM M CLimTxt— [CLimInf|-identifies c from text
[informant| with respect to H iff for every textt [informant: | for ¢, there exists a
j € N such that the sequenc@/ (t,)).en [(M(iz))zen) cOnverges in the limit tg and
c = h;.

Furthermore, MCLim Tzt— [CLimInf]|—identifiesC with respect tdH iff, for eachc € C,
M CLimTxt— [CLimInf]-identifies c with respect tH.

Finally, let CLimTxzt [CLimInf] denote the collection of all concept classésor
which there are an IIMV/ and a hypothesis spad¢ such that MCLim Tzt— [CLimInf]—
identifiesC with respect tdH.

In the above definitionLim stands for limit and th&’ preceding it points to the fact
that we allow class comprising hypothesis spaces. If we just wite7zt then we ad-
ditionally require’H to be a class preserving hypothesis space. Moreover, we sometimes
write CLimTxty to denote the fact that learning has to be performed with respect to the
hypothesis spacé/. We use these conventions for all learning types defined within this
course, unless otherwise stated.

Note that, in general, it is not decidable whether or not an Mivhas already inferred a
target concept. Hence, when dealing with learning in the limit, we have a limiting effective
criterion of learning instead of an effective one. However, this scenario also reflects some
typical aspects of human learning. For example, when humans are learning their mother
tongue, usually they are gradually improving their ability to speak and to understand it.
These intermediate stages may be viewed as the generation of a sequence of hypotheses
that eventually converges to a grammar that is (sufficiently) correct.

Figure 2.1 displays the basic features of the learning in the limit model.

BAasiC NOTATIONS AND DEFINITIONS 23

Description at time:
Out In
he <= Bl < d,,....dy

M learns successfully in this modelff there is a pointI” such thaths is correct
forcandhr = hyy1 = hryo = hryiz =

Figure 2.1: Learning in the Limit

The following exercise is intended to help you gaining a first understanding of learning
in the limit.

Exercise 4.Prove or disprove.

(a) Letn € N be arbitrarily fixed. The se&t, of all monomials over,, can beCLimInf—
identified with respect to the set of all monomials as hypothesis space. Does your
answer remain valid fo€'Lim Tzt?

(b) Let X = U,cn10,1}7, letC = U,y Cn be the set of all monomials ovey, .\ L...
ThenC is CLimInf-identifiable with respect t6. Does your answer remain valid
for CLimTxt?

(c) Let X be any learning domain, |€&x be any concept class ovat, and letH be any
hypothesis space fal such that each € H is recursive. Then,

(o) C € CLimlInf implies thatC is on-line predictable.
(6) If Cis on-line predictable thes € CLimlInf.

Next, we formally definedbehaviorally correct learning For the sake of presentation,
this is only done for learning from positive data.

Definition 2 (Barzdins [2], Case and Lynes [3]) LetC be a concept class, letbe a
concept, and leH = (h;);en be a hypothesis space. An [IM B¢ Txt—identifies C
with respect toK iff for every textt € (c) and for all but finitely many € N, hy,) = c.

Furthermore,M CBcTzt—identifiesC with respect taH iff M CBcTzt—identifies each
¢ € C with respect tdH.

Finally, let CBcTxzt denote the collection of all concept clasge®r which there are an
IIM M and a hypothesis spa@¢ such that\/ CBcTzt—identifiesC with respect tdH.

If you compare Definitions 1 and 2 then you see that the only difference is the kind of
convergence required. That is, Definition 1 requires syntactical concergence while Defini-
tion 2 weakens this requirementsemanticatonvergence.

Exercise 5.Formally define behaviorally correct learning from informant.

24

LECTUREZ2: LEARNING MODELS

Finally, we refer the interested reader to Osherson, Stob and Weinstein [5] for a com-
prehensive treatment of learning recursively enumerable languages in the limit. The learn-
ability of language classes with uniformly decidable membership is surveyed in Zeugmann
and Lange [6].

References

[1]

[2]

[3]

[4]

[5]

[6]

D. ANGLUIN (1980), Inductive inference of formal languages from positive data,
Information and Contro#5, No. 2, 117-135.

J. BARZDINS (1974), Two theorems on the limiting synthesis of functionsT he-
ory of Algorithms and Programs Vol, pages 82—-88, Latvian State University, (in
Russian).

J. CAsSE AND C. LYNES (1982), Machine inductive inference and language identi-
fication, in Automata, Languages and Programming, 9th Colloquium, Proceedings,
volume 140 ofLecture Notes in Computer Scienpages 107-115. Springer-Verlag.

E.M. GoLD (1967), Language identification in the limigformation and Control
10, 447 — 474.

D. OSHERSON M. STOB, AND S. WEINSTEIN (1986),Systems that Learn, An Intro-
duction to Learning Theory for Cognitive and Computer Scientigte MIT-Press,
Cambridge, MA.

T. ZEUGMANN AND S. LANGE (1995), A guided tour across the boundaries of learn-
ing recursive languages) “Algorithmic Learning for Knowledge-Based Systems”
(K.P. Jantke and S. Lange, eds.), Lecture Notes in Artificial Intelligence 961, pp. 190
— 258, Springer-Verlag, Berlin.

25

LECTURE3: MORE ABOUTLEARNING IN THE LIMIT

We finished the last lecture by introducing learning in the limit. As far as learning of
indexed families from informant is concerned, a very general result can be obtained which
we present here.

Theorem 3.1 (Gold [5]) C € Liminf for all C € ZC.

Proof. Let X be the underlying learning domain. Since= ZC, there are an indexing
(¢;);en Of alland only the concepts ifi and a recursive functiofisuch thatf (j, z) = ¢;(x)
forall j € Nand allz € X. Now, letc € C be any concept and lét= ((si, c(sk)))ken €
info(c) be any informant for.

The desired IIMM learns by the so-callddentification by enumeratigorinciple which
is formally defined as follows.

Lety € N. On inputi, we set:
M(i,) = “Search the least € N such tha((s;, c(s;)) = f(k,s;) forall j =0,...,y”

Sincec € C and(c;) e is an indexing folC with the above properties fgf, we see that
the test(s;, c(s;)) = f(k,s;) is recursive for alk € N and allj € N. Furthermore, let*
be the least € N such that: = ¢;,. Consequentlys;, c(s;)) = f(k*, s;) forall j € Nand
hence, the search performed bi will always terminate. That is, all hypothese®utput
by M satisfyk < k*. Moreover,c, # c for all ¢ < k*. Therefore, for every < k* there
must be ay, such that(s,,, c(s,,)) # f(¢, sy,). Hence, fory > max{y,| ¢ < k*} the lIM
M cannot output any < k*. Thus, for ally > max{y,| ¢ < k*} it outputsk* and thus
converges t&*. Sincec = ¢, M learnsc as required.

Consequently)M LimInf—identifiesC with respect td¢;),;en and we are done. i

The learning method used by the IIM defined in the proof of Theorem 3.1, i.e., identi-
fication by enumeration, has some interesting and important properties which we want to
discuss shortly.

First, it is consistent. Here byonsistency we mean that} C ¢, andi, N¢, =
wheneverk is output byM. We shall discuss the consistency phenomenon in some detail
below.

Second, anynind changeerformed by is justified by a “provable misclassification”
of its previous guess. Here, by mind change we meanfth@y) # M (i,.1). Therefore,
M will never reject a guess that is correct for the concept to be learned. H&nhae,
semantical finite

Third, M is set-driventoo, i.e., its output exclusively depends on the range of its input
(cf. Definition 5 below).

Finally, identification by enumeration is the most efficient learning method with respect
to learning time, i.e., the first time such thet outputs a correct guess that will be repeated

26 LECTURE3: MORE ABOUTLEARNING IN THE LIMIT

in every subsequent learning step (cf. Gold 5). More precisely, Gold 5 proved that there
is no IIM M inferring £ which is uniformly fasterthan the 1IM)/ described above with
respect to learning time. Hence, in the setting of learning indexed families identification by
enumeration is particularly tailored for learning from informant.

3.1. The Weakness of Text

First, we present a very simple example for a concept class that is hawifit.

Example 1 The following language class cannot be learned in the limit from positive
data with respect to the hypothesis spdce

We define the language clagsby the following enumeration of languages over the
alphabet{a}. Let £ = (L;)jeny WhereL, = {a}* andL; = {a™| 1 < m < j} for
all j € N*. We show thatZ is not learnable in the limit from positive data. Suppose the
converse, i.e., there is an I which witnesse& € CLimTxt with respect taZ. Then,
M in particular has to identify the language on its uniquely defined text Hence, there
exists anz € N such thatM (¢,) = 1. Obviously, it is possible to extend in order to
obtain a text for the infinite language,. Namely, we may choose the text- ¢ wheret is
the lexicographically ordered text &f. Thatis,t = a, aa, aaa, aaaa, SinceM has to
infer L, from this text, too,M is forced to change its mind to the hypothesisherefore,
there is ay € N* such thatV/ (¢, - £,) = 0. But now we may conclude that- ¢, is an initial
segment of a text for the finite languagé.,. Consequently)/ has to perform one more
mind change when successively fedy iterating this idea one may effectively construct
a text for the infinite languagé, on which A/ has to change its mind infinitely often, a
contradiction. Henc& ¢ CLimTxt with respect toC. i

Exercise 6.Prove or disprove: The language cla8s= range(L), whereL is defined
as above, cannot be learned in the limit with respect to every hypothesisHpfaceét.

This negative result is mainly caused by the problem that both finite and infinite lan-
guages have to be simultaneously handled.

We continue with Gold’s [5] famous result.

Theorem 3.2 (Gold [5]).Let £ be any class of languages containing all finite languages
and at least one infinite languade Thenl ¢ CLimTxt.

Proof. Assume any hypothesis spaggefor £, and suppose there is an IIM learning
L in the limit with respect td<. We are going to construct a textor the infinite language
L on which M does not converge in the limit. First, consider any text sq, sq, sa, ...
for L. Since we havél/ supposed to learf, there must be am such thatj, = M(t,)
fulfils L = L(h,,). Sett, = t,. Clearly,t, is finite, and thug, is an initial segment of
the finite languagd., = . SinceM has to learn the finite languads, too, the initial
segment, can be extended by, s so, ... resulting in a text for L;. Thus, there must
be ay such thatj, = M (t,,,) satisfiesL; = L(h;,). Note thatt,,, is an initial segment
extendingt, such tha@w C L. Thus, we may continue the definition bby setting
tyoyy =tz So,. .., So-
N——

y times

THE PATTERN LANGUAGES 27

Now, we continue by extending.., by . Again, there must be > z + y such that
M, when fedt, ., - t, outputs a hypothesig such thatl = L(hj,). Thus, we continue
the definition oft as follows:t,.,.. = ¢, o, ..., sqt.. Noting thatt}, . . is again a finite

N——

y times

language, it is obvious how to iterate this procedure. The requirement + y ensures
thatt will be indeed a text for., and by construction)/ changes its hypotheses infinitely
often when successively féda contradiction. i

The latter theorem allows the following corollary.

Corollary 3.3. Neither the class of all regular languages nor any superset thereof can
be learned in the limit from positive data.

Taking the latter corollary into account, many researchers thought that there is no in-
teresting class of languages at all that can be learned from positive data. As a result, the
study of learning from positive data faced more than a decade of decline after Gold’s [5]
pioneering paper. In order to gain a better understanding why this has been the case, you
should solve the following exercise.

Exercise 7. Prove or disprove: Lefl be any class of languages containing all finite
languages and at least one infinite langudgeThenl ¢ CBcTxt.

But the situation considerably changed when Angluin [1] showed that the pattern lan-
guages are learnable in the limit from text. Therefore, we continue with the pattern lan-
guages which we have already met in Lecture 1.

3.2. The Pattern Languages

Patterns are a very natural way to define formal languages. Suppose you are interested
in the language of all strings over the alphaldet= {0, 1} starting with11, ending with
010, and containing the substriig011 somewhere, but may be otherwise arbitrary. Thus,
all strings in your language follow the patterq = 112,010112,010, provided you are
willing to allow the variablesry, x; to be substituted by any string ové®, 1} including
the empty one. As for another example, consider the set of all strings having even length
2n such that the prefix of lengthis identical to the suffix starting at positier+ 1. In that
case, the wanted language follows the pattere= zqxg.

Though patterns have already been considered since the beginning of this century (cf.,
e.g., Thue [15], and Beaet al. [3]), the formal introduction of patterns and pattern lan-
guages goes back to Angluin [1]. Since then, pattern languages and variations thereof have
been widely investigated (cf., e.g., Salomaa [12, 13], and Shinohara and Arikawa [14] for
an overview).

Following Angluin [1] we define patterns and pattern languages as follows.4Let
{0,1,...} be any non-empty finite alphabet containing at least two elements4*‘Bye
denote the free monoid ovet (cf. Hopcroft and Ullman [6]). The set of all finite non-null
strings of symbols fromA is denoted byA*, i.e., AT = A*\ {¢}, wheree denotes the
empty string. By|.A| we denote the cardinality ofl. Furthermore, leX' = {z;| i € N}

28 LECTURE3: MORE ABOUTLEARNING IN THE LIMIT

be an infinite set of variables such th&th X = (). Patternsare non-empty strings from
AU X, e.q.,01, 0xglll, lzoxo0x,2, are patterns. The length of a stringand of a
patternr is denoted byw| and|r|, respectively. A patterm is in canonical formprovided
that if £ is the number of different variables in then the variables occurring in are
preciselyzy, ..., xx_1. Moreover, for every with 0 < j < k — 1, the leftmost occurrence
of z; in 7 is left to the leftmost occurrence af., in 7. The examples given above are
patterns in canonical form. In the sequel we assume, without loss of generality, that all
patterns are in canonical form. But we denote the set of all patterns in canonical form.
Let 7 € Pat, 1 < i < |r|; we user(i) to denote the-th symbol in7. If 7(i) € A,
then we refer tar(i) as to a constant; otherwisdi) € X, and we refer tar(i) as to a
variable. By#var(m) we denote the number of different variables occurring imnd by
#.,(m) we denote the number of occurrences of variablen 7. If #var(r) = k, then
we refer tor as ak-variable pattern Let £ € N, by Pat;, we denote the set of akl-
variable patterns Furthermore, letr € Pat, and letuq, ..., u,_; € A*; then we denote
by w[zo : wo,...,zk-1 : ug_1] the stringw € A* obtained by substituting, for each
occurrence ofz;, j = 0,...,k — 1, in the patternt. The tuple(uo, ..., u;_1) is called
substitution Furthermore, ifug| = -+ = |up_1| = 1, then we refer tduy, ..., ux_1) @s
to ashortest substitutianNow, letw € Pat, and letS = {(ug, ..., up—1)| u; € A", j =
0,...,k — 1} be any finite set of substitutions. Then we Sét) = {7[xy : ug, ..., Tx_1 :
uk—1]| (uo,...,ur_1) € S}, i.e.,S(m) is the set of all strings obtained from patterrby
applying all the substitutions frorfi to it. For everyr € Pat, we define thdanguage
generated by pattern by L(7) = {x[zo : uo, ..., Tx_1 : ur_1]| wo,...,up_1 € A"}

By PAT, we denote the set of all-variable pattern languages Finally, PAT =
Uen PAT. denotes the set of all pattern languages oveNote that for everyl. € PAT
there is precisely one pattefnc Pat such that, = L(x) (cf. Angluin [1]).

If we take a look back to the patterns considered in Lecture 1, we that they have a pecu-
liarity, i.e., each variable occurs at most once. Such pattern are eeljedar patterns.
the following exercise sheds some more light on this naming.

Exercise 8.Prove or disprove:

(1) If = € Pat is regular, thenL(r) is a regular language.

(2) If 7 is not regular, then.(7) is necessarily a non-regular language.

The pattern languages constitute an indexable class. Clearly, one can recursively enu-
merate all canonical patterns, sayhy =1, 7, Moreover, given any patternand a
string s it suffices to check all substitutions having a length not excee@ingntil either
s is generated byr or all substitutions have been tested. Thus(z,));en is indeed an
indexable class.

Angluin [1] showed thaPAT is learnable from text with respect to the hypothesis space
Pat. The key idea of her proof was to observe that it suffices to find descriptive patterns
which we define next.

Definition 3. Let.4 be any finite alphabet.

LEARNING THE PATTERN LANGUAGES VIA DESCRIPTIVEPATTERNS 29

(1) Afinite set{s, s1, ...,s.} C A" of strings is called asample.
(2) A patternr is consistent with a sampleS if S C L(r).

(3) A patternr is said to bedescriptive for S if it is consistent and there is no other
consistent patterm such that.(7) C L(n).

The following structural property of indexable classes is important with respect to their
learnability from text. This property has been first observed for the class of all pattern
languages, but its importance justifies the following definition.

Definition 4. Let X be any learning domain and I€tbe any indexable class€. is said
to havefinite thickness provided for eachs C X the set{c| S C ¢ and ¢ € C} is of
finite cardinality.

Now, let us check whether or né¥4 7' indeed has finite thickness.
Lemma 3.4.PAT has finite thickness.

Proof. Let S C A* be any set, and len = min{|s|| s € S}. Since we restricted
ourselves to nonempty substitutions, we can immediately conclude that for every pattern
m € Pat, |v| > m impliesS ¢ L(w). But{w| © € Pat, |n| < m} is finite, and thus,

{r| = € Pat, S C L(x)} must be finite, too. i

Corollary 3.5. For every setS C A* there is always at least one descriptive pattern.

Proof. For every set5 we haveS C L(z). Thus, the set of all consistent patterns.$or
is always nonempty. Sind@AT has finite thickness, the set of all consistent patterns'ier
finite, too. Consequently, there must be a minimal element (with respect to set-containment)
in the set of all consistent patterns f&r i

Next, we establish the learnability of the set of all pattern languages from text.
3.2.1. Learning the Pattern Languages via Descriptive Patterns

We continue with the following important theorem.

Theorem 3.6. Assume any recursive subproceddies computing descriptive patterns
for every setS C A*. Then,PAT € CLimTxt.

Proof.Let L € PAT, lett = (s;)jen € text(L), andz € N. We define the wanted IIM
as follows:

M(t,) = “If x =0 computer =des({so}), and output it.
If 2 >0,letr = M(t,—1). If t C L(7), outputr.

Otherwise, compute =des(t;"), and output it.”

30 LECTURE3: MORE ABOUTLEARNING IN THE LIMIT

Since the subprocedues is recursive,M is indeed an IIM. It remains to show thaf
infers L. Letw € Pat be the unique pattern satisfyidg= L(x). Clearly,r is consistent
with ¢} for everyxz € N. Now, consider any output by M. If 7 = 7 we are done, since

7 will be then output ort,,,. for everyr > 0. Supposey # w. Sincer is descriptive,

we already know thak(w) ¢ L(7). Hence,L(w) \ L(r) # (. But that means, there must
be at least one stringe L(x) \ L(7) which has to appear sometimestjrsay at position

xo. Thus,M(t,,) # 7. Now, taking into account that there are only finitely many patterns
that are consistent witky, we see that every mind change does shrink the set of descriptive
patterns by at least one element. Since every descriptive patternhagtto be abandoned

as shown abové\/ has to converge to. i

Thus, for establishing the learnability of all pattern languages from text, we finally have
to prove that there is a procedudes computing descriptive patterns. This is done next.
The main problem we have to handle is how to figure out whether of ot C L(r) for
any two patterng andr that are consistent with some given samgleFor that purpose,
we need the following definitions and notations.

Let Hom be the set of all non-erasing homomorphism with respect to concatenation
of Pat to itself. An element ofHom that is the identity when restricted td is called
substitution. Next, we define a binary relatiof overPatby = < 7 iff 7 = f(r) for
some substitutiorf. The intuitive meaning ok may be taken to be “is less general than.”

Example. Let. A = {0, 1}, and letr = x(,0x¢01 and7 = zz12¢. Thenr < 7.

For seeing this, we define a substitutipty f(z¢) = 1 and f(z1) = z,0 (remember,
f(0)=0aswellasf(1) =1). Thusf(7) = zc02,01 = 7.

Exercise 9.Prove that for allr, 7 € Pat,

(1) <is transitive,
(2) 7 < timpliesL(w) C L(7),
(3) L(m) = L(r) iff r < 7andt <,

(4) < is computable.

Now, we are ready to establish the following theorem.

Theorem 3.7. There is a recursive proceduides which, for every samplé given as
input, outputs a descriptive patternfor S.

Proof. The proceduredes is defined as follows. Leb be any sample, and lét =
min{|s|| s € S}. Enumerate the finitely many canonical patternsatisfying|r| < ¢.
For every pattern enumerated check whether orshatf L(w). Let C be the set of all
enumerated patterns successfully passing this testmlet max{|x|| = € C}, and let
C = {r| = € C, |x| = m}. Find and output any elementin C that is minimal with
respect to<.

LEARNING THE PATTERN LANGUAGES VIA DESCRIPTIVEPATTERNS 31

We have to show that is descriptive forS. Let 7 be any consistent pattern f6t Then
|7| < ¢, and if|7| < ||, thenL(7) ¢ L(m), too. Now, assumér| = |r|. Consequently,
7 € C. By construction, either = 7 orr £ «. If 7 = 7, we are done. The proofis finished
by showing the following claim actually stating that the second case cannot happen.

Claim. Letr, 7 € Pat such thatr| = |7|. ThenL(7) C L(n) impliesT < .

Let0, 1 € A be distinct. Consider the substitutiofigz;) = 0, and f,(z;) = 1 for all
i € N as well as the substitutions defined for alli , j € N as follows:

[0, if i=j,
9;(x:) = { 1, otherwise.
Let S() consist of the set of all stringSfo(7), fi(7), go(7), g1(7), go(m), ...}, and de-
fine S(7) analogously. If#var(w) = 0, thenS(w) = L(w) = {=n}, and we are already
done. If#var(r) = 1, thenS(w) = {fo(7), fi(7)}, and in the general case, i.e., if
#var(m) = k > 2, then|S(7)| = k + 2.

Furthermore, by construction we obtain: Forialk m, n < |x|:

(1) if 7(m) = c € A, thens(m) = ¢, for all s € S(7), and the same holds far,

(2) if 7(m), m(n) € X such thatr(m) # w(n), then there is a string € S(7) such that
s(m) # s(n), and again, the same holds far

Now, taking into account that(r) C L(x), for everys € S(7) there exists a substitution
h such thats = h(w). But|s| = |7] =
a string of length one. Let < m, n < \7r|. If 7(m) = ¢ € A, thens = h(m) must
fulfill s(m) = ¢, and since this holds for al € S(7), we already knowr(m) = c. If
w(m) = n(n) = z; € X, thens = h(w) must satisfys(m) = s(n) € A, and since this
holds for alls € S(r), we concluder(m) = 7(n). Thus, the set of positions aof are all
occupied by the same symbol, sgy;), in 7. Hence, we may extenglto be a substitution
such that- = ¢(r), and thereforer < . i

Now the principal learnability of all pattern languages in the limit from positive data has
been established.

Note that Angluin’s [1] learneM as described above has two additional properties.
First, it is consistent. Here consistency means that for all textsf pattern languages,
andz € N we have, ifr = M(t,), thent} C L(w). Moreover, it isset-driven, where
set-drivenness is formally defined as follows:

Definition 5. Let £ be any indexable class. An IIM is said to bet-driven with
respect tac iff its output depends only on the range of its input; that is)fft,) = M (%)
forall z,y € Nand all textst, ¢ € |J, ., Text(L) providedt; = f;.

Note that in general one cannot expect to learn set-drivenly. For more information con-
cerning this subject the reader is referred to Lange and Zeugmann [8].

32 LECTURE3: MORE ABOUTLEARNING IN THE LIMIT

Actually, our proof for the learnability of the pattern languages from text was a bit more
complicated than necessary. The solution to the following exercise will establish an easier
proof.

Exercise 10.LetC € ZC such thatC has finite thickness. Th&he CLimTxt.

Of course, the next issue one should study is the complexity of learning the pattern
languages. Unfortunately, due to the lack of time, we have to skip this issue. Instead, we
take a short look at another branch of learning in the limit, i.e., function learning.

3.3. Learning Recursive Functions

Next, we want to adapt our model tonction learning Here, the objects to be learned
are classe$#/ of recursive functions. Following a general convention in recursion theory,
by recursive functionsve usually mean the total recursive functions synonymously called
general recursive functions

The source of information are then growing sequences of the graph of the target function,
ie.,
<(£I§'0, f(wO))a (xla f(xl))> (‘7:27 f(l’g)), . >

where we requirdz,, | n € N} = N.

As hypothesis space we can choose all programs in a universal programming language
(e.g. JAVA), or more formally natural numbers which are then interpreteshesdingsof
such programs (recall a universal Turing machine, a universal RAM, ...). Alternatively, we
can also use any restricted programming language as long as we can we can write at least
one program for every function to be learned. Below, we shall formalize this idea by the
notion ofnumbering

The sequence of all computed hypotheses has theoreergeto acorrectprogram for
the target functiory.

Figure 3.1 displays the basic features of the function learning in the limit model.

Description at time:

hy —— (g, f(24), -+ - (0, f(0)))

M learns successfully in this modeiff there is a pointl” such that. is correct for
f anth = }LT+1 = hT+2 = hT+3 =

Figure 3.1: Function Learning in the Limit

In order to arrive at a formal definition, some more notations are needed. We denote
the set of all finite sequences of natural number&ibyThe classes of all partial recursive

LEARNING RECURSIVEFUNCTIONS 33

and recursive functions of one, and two arguments dvare denoted b, P2, R, and

R?, respectively.R, ; denotes the set of all — 1 valued recursive functions. Sometimes

it will be suitable to identify a recursive function with the sequence of its values, e.g., let
a = (ag,...,ar) € N*, j € N, and p € Ry ; then we writeajp to denote the functiorf

for which f(z) = a,,if x <k, f(k+1)=j,andf(z) =plx — k —2),if 2 > k+ 2.

Any functionty € P? is called a numbering. Moreover, leét c P?, then we writey);
instead of\z¢(i, x) and setP,, = {¢,;| i € N} as well asR,, = P, N'R. Consequently,
if f € Py, then there is a numbérsuch thatf = ;. If f € P andi € N are such
thaty; = f, theni is called ay)—program forf. A numberingy € P? is called a Gdel
numbering (cf. Rogers [11]) ifP, = P, and for any numbering € P?, thereisa € R
such that); = ¢, for all 7 € N. God denotes the set of all@lel numberings.

Using a fixed encoding. ..) of N* onto N we write f" instead of((f(0),..., f(n))),
foranyn € N, f € R. Furthermore, the set of all permutationsMofs denoted byI(N).
Any elementX < II(N) can be represented by a unique sequénge, -y that contains
each natural number precisely ones. Ket TI(N), f € P andn € N. Then we writef X"
instead of((xo, f(zo),- .., %, f(x,))) provided f(x;) is defined for allk < n. Finally, a
sequencej,) ey Of natural numbers is said inverge to the numbey iff all but finitely
many numbers of it are equal jo

Now we are ready to define learning in the limit for functions.

Definition 6 (Gold [5]). LetU C R and letyy € P2 The classU is said to be
learnable in the limit with respect tay iff there is an IIMM € P such that for each
functionf € U and everyX € II(N)

(1) forall n € N, M(f*") is defined,

(2) thereis aj € N such that); = f and the sequend@/ (f*")),cn CONverges tg.

If U islearnable in the limit with respect to by an IIM M, we writeU &€ LIMJ}”"”(M). Let
LIMJ™® = {U] U is learnable in the limit w.r.t. ¢}, and letLIM " = |J ;e p» LIMS"™.

Some remarks are mandatory here. Let us start with the semantics of the hypotheses
produced by an IIMV. If M is defined on inpuf*™, then we always interpret the number
M(f%") as ap)—number. This convention is adopted to all the definitions below.

Furthermore, note thai]Mg’”” = LIM®" for every Gdel numberingp. In the above
definition LIM stands for “limit.” Moreover, in accordance with the definition of conver-
gence, only finitely many data of the graph of a functfowere available to the IIMV/ up
to the unknown point of convergence. Therefore, some form of learning must have taken
place. Thus, the use of the term “learn” in the above definition is indeed justified.

Moreover, thearb in LIM*® points to the requirement to learn from arbitrary input.
That is, within Definition 6 we make no assumptions concerningptder in which input
data should be presented.

For the sake of illustration, let us look at the following example. Consider the Class
all polynomials of one variable with coefficients fros For constructing an appropriate

34 LECTURE3: MORE ABOUTLEARNING IN THE LIMIT

hypothesis spacé we can proceed by canonically enumerating doe= 0,1,2,... the
finite number of(d + 1) tuples of natural numbers in the ran@ed| and using them as the
coefficients ofl, =, 22, ..., z¢. One such enumeration begins

0,1+, 2, 0,1
2+ 2z + 222, 24 2x + 22, ...

Then, one could learn the clagsof all polynomials of one variable with coefficients
from N by using again thédentification by enumeration principleBut there is another
method which is much more efficient (though not universally faster).

On input
<<I07 f(‘r()))v (‘rlv f(xl))u sy (mh f(xt)»
one simply outputs the canonical index of the Lagrangian interpolation polynomial, i.e.,

t

ple) =3 fa) [=+

k=
ki

The fundamental theorem of algebra implies convergence.

Note that in the literature you will quite often find the following definition for learning
in the limit for functions.

Definition 7 (Gold [5]). LetU C R and lety € P?. The classU is said to be
learnable in the limait with respect tay) iff there is an IIMM € P such that for each
functionf € U,

(1) foralln € N, M(f™) is defined,

(2) thereis aj € N such that); = f and the sequendg/(f")),en CONverges tg.

If U is learnable in the limit with respect to by an IIM M, we writeU € LIM,(M). Let
LIMy = {U| U is learnable in the limit w.r.t. ¢}, and 1etLIM = (J,ep. LIMy.

The difference between Definitions 6 and 7 is that Definition 7 assumes the graph of the
function to be presented in natural order while Definition 6 does not make any assumption
concerning the order in which the graph is presented. However, it is quite easy to show that
LIM = LIM®" (cf., e.g., Jantke and Beick [7]).

3.4. Points of Concern

Next, we address some fundamental remarks concerning the definition of learning in the
limit. These remarks apply to both learning languages and functions.

Our learning model is not satisfactory with respect to the following points of concern.

— The limit learner has access to the whole initial segment of the data sequence pro-
vided.

CONSISTENCY 35

— The limit learner is only supposed to converge but neeer knowsvhether or not it
already did so.

— We have not incorporated any complexity requirement. So, what is the right measure
of complexity to be used here?

We shall address all these points in this and later lectures. Let us start with the problem
to define an appropriate measure of complexity for learning in the limit.

The first complexity measure we will consider is theind change complexity. A
mind change occurs if

M(d;) # M(d;+1), whered is a text or an informant
M(f™) # M(f"), wheref is a recursive function

Clearly, this measure is closely related to the number of prediction errors. Both complexity
measures say little about the total amount of data and time needed until a concept is guessed
correctly.

Therefore, one has also proposed to studyupéate-time. By update-time we mean
the time needed by a learner to computenigsv hypothesis from the actual input. We
measure this time as a function of the length of the input. But this measure also has a serious
drawback. That is, one can always achieve linear update-time if no extra requirements are
made to the hypotheses. We leave it as an exercise to prove this statement formally.

3.5. Consistency

In order to deal with this problem, the actual hypotheses are often required to be consis-
tent. Intuitively speaking, a hypothesis is consistent if and only if all information obtained
so far about the unknown object is completely and correctly encoded in this hypothesis.
Otherwise, a hypothesis is said to ineonsistent Consistency seems to be a very natural
requirement. If we look at function learning then the functiocomputed by an inconsis-
tent hypothesis produced on inpff-" has the following property. There must be &an
i < n such thaty(z;) # f(z;). Note that there are two possible reasonsgdo differ
from f on argument;; namely,g(z;) may be not defined, or the valyér;) is defined and
does not equaf(z;). Hence, if a hypothesis is inconsistent then it is not only wrong but it
is wrong on an argument for which the 1IM does already know the correct value. At first
glance we are tempted to totally exclude IIMs producing inconsistent hypotheses from our
considerations. It might seem thainsistent lIMsi.e., IIMs that produce always consistent
hypotheses, are the only reasonable learning devices.

Surprisingly enough this is a misleading impression. As it turns out, in a sense learning
seems to béhe art of knowing what to overlooince this phenomenon is of fundamental
importance, we shall deal with it in some more detail here. Interestingly enough, there are
also different ways to define consistency and these different definitions will also provide
some surprises. We start our investigations of consistent learning within the setting of
function learning.

36 LECTURE3: MORE ABOUTLEARNING IN THE LIMIT

Next we formally define different models of consistent learning.

Definition 8 (Barzdin [2]). LetU C R and lety) € P2. The clasd/ is called consis-
tently learnable in the limit with respect ta iff there is an IIMM € P such that

(1) U € LIMy(M),

(2) Ygmy(z) = f(x)forall f € U,n € Nandz < n.

CONSy (M), CONS, and CONS are defined analogously as above.

Intuitively, a consistent IIM does correctly reflect all the data it has already seen. If an
[IM does not always work consistently, we call it inconsistent.

Next, we add a requirement to the definition of the learning tgfs&Vvs, that is of-
ten implicitly assumed in applications, namely, that the strategy is defined on every input,
cf. Michalskiet al.[9,10].

Definition 9 (Jantke and Beick [7]). LetU C R and lety) € P2. The clasd/ is called
R —consistently learnable in the limit with respect ta iff there is an IIMM € R such
thatU € CONS,(M).

R-CONSy, (M), R-CONS,;, andR-CONS are defined analogously as above.

The latter definition has a peculiarity that should be mentioned. Although the strategy is
required to be recursive, consistency is only demanded for inputs that correspond to some
function f from the class to be learned. With the next definition we model the scenario
in which consistency is required on all inputs. In order to distinguish the resulting learn-
ing type from the latter defined one, we use the pré&fix Informally, 7' points tototal
consistency.

Definition 10 (Wiehagen and Liepe [16).Let U C R and lety) € P?. The class
U is calledT —consistently learnable in the limit with respect tap iff there is an [IM
M € R such that

(1) U € CONS,(M),

(2) Vs (x) = f(z) forall f € R,n € Nandz < n.

T-CONSy(S), T-CONS, andT-CONS are defined in the same way as above.

Finally, looking at potential applications it is often highly desirable to make no assump-
tions concerning therderin which input data should be presented. Therefore, we sharpen
Definitions 8 through 10 by additionally demanding an 1IM to behave consistently indepen-
dently of the order of the input.

Definition 11 (Blum and Blum [4]). LetU C R and lety) € P2 U € T-C’ONS;;"”
iff there is an IIMS € R such that

(1) for all f € U and everyX < II(N), there is aj € N such thaty, = f, and
(M (f*™))nen converges tg,

CONSISTENCY 37

(2) Yrupxmy(xm) = f(zm) for every permutationy < II(N), f € R, n € N, and
m < n.

T-CONSJ™ (M) as well asT-CONS " are defined in analogy to the above.

Furthermore, appropriately incorporating the requirement to learn from arbitrary in-
put directly yields the learning type§ONS*?®, and R-CONS®®. Therefore, the for-
mal definition of these learning models is omitted here. Note that for all learning types
LT € {T-CONS, T-CONS** R-CONS, R-CONS** CONS, CONS**} we have
LT, = LT for every Gdel numberingp.

In the following we aim to compare the learning power of the different models of con-
sistent learning to one another as well as to learning in the limit. Note that in the following
C denotes subset ard denotegproper subset. Finally, incomparability of sets is denoted
by #.

As already mentioned, in machine learning it is often assumed that learning algorithms
are defined on all inputs. On the one hand, this requirement is partially justified by a
result of Gold [5]. He proved that learning in the limit is insensitive with respect to the
requirement to learn exclusively with recursive IIMs, i.e.life LIM (M), then there is
an IIM M e R such that/ € LIM(M). One the other hand, consistency is a common
requirement in machine learning. Therefore, it is natural to ask whether or not the power
of consistent learning algorithms further decreases if one restricts itself to recursive IIMs.
The answer to this question is provided by our next theorem.

Theorem 3.8. T-CONS C R-CONS c CONS.

Proof. By definition,7-CONS C R-CONS C CONS. In order to showR-CONS \
T-CONS # 0, letU = {f| f € R, vs0) = [} wherep € God. Obviously,U €
R-CONS,(M) by the IIM M (f™) = f(0) foralln € N.

Now assume that/ € T-CONS,(M) for some [IM M. Hence, by Definition 10,

M € Randyy) (z) = f(x) forevery f € R, n € Nandz < n. By an implicit use of
the Recursion Theorem, I¢t= ¢, be the following function.

f0) =4

0, if M(f"0)# M(f")
fln+1) = { 1, if M(f"0) = M(f*)andM(f"1) # M(f™).

Clearly, f € U (note that one of the two cases in the definitionfomust happen
for all n > 1). On the other hand) (f") # M(f™*!) for all n € N, contradicting
U € T-CONS,(M). HenceU ¢ T-CONS. This completes the proof af-CONS C
R-CONS.

The proof of CONS \ R-CONS # () can be done by using a class similar to the class
above, namely

U={f| feR, eitherpro) = fores =f}.
Next, we show that/ € CONS. The wanted IIMM is defined as follows. Lef € R and
n € N.

38 LECTURE3: MORE ABOUTLEARNING IN THE LIMIT

M(f™) = “Compute in parallelps) () andy;q)(z) for all z < n until (A) or (B) hap-
pens.
(A) ro)(z) = f(z)forallz < n.
(B) ¢ray(z) = f(z) forall z < n.

If (A) happens first, then outpyt(0). If (B) happens first, then outpyt1). If neither
(A) nor (B) happens, thei/ (/") is not defined.”

By the definition ofU, it is obvious thatV/ (/™) is defined for allf € U and alln € N.
Moreover,M is clearly consistent. Hence, it suffices to prove et /")),y converges
forall f € U. Butthisis also an immediate consequence of the definitidn since either
vy 7 [oresqy # f. HenceM cannot oscillate infinitely often betwegft0) and f(1).
Consequentlyl/ € CONS,(M).

Now, it is intuitively clear thaty ¢ R-CONS. The formal proof is done by using
Smullyan’s Recursion Theorem. We refer the interested reader to Wiehagen and Zeug-
mann [18].

Next, consider

U = {feR|ps=fandf(z) > 0forallz},

U = {f€R|ps0 =/} and
U = {feR]| f(x)=0foralmostallz} .

Then, it is not hard to verify thdt’;, U,, Uy € LIM. Moreover, using similar ideas as
above one can easily show the following exercise.

Exercise 11.U; U U, € LIM \ CONS.
Moreover, again using similar ideas it is not hard to see that the following theorem holds.
Theorem 3.9 (Barzdin [2]). Uy U Uy ¢ LIM.

The latter theorem directly implies th&t ¢ LM . Therefore, the property of a function
classU to be learnable isot trivial. Furthermore, Theorem 3.9 also shows that it is not
always possible to combine two learners into a more powerful one. So, it is only natural to
ask whether or not the different consistent learning tyfg€sare closed under union. Here,
by closure under union we mean that for all cladse$” € L7 we also havé/ UV € LT.

The answer is provided by the following theorem.
Theorem 3.10.
(1) CONS, CONS®® R-CONS andR-CONS*?® are not closed under finite union.

(2) T-CONS andT-CONS** are closed under recursively enumerable union.

CONSISTENCY 39

Proof.For showing Assertion (1) we can use the claggesndlU; defined above. After a
bit of reflection, one easily sees thiaf, U, € R-CONS®®. Hence, we also havg,, U, €
R-CONS as well asl/y, U, € CONS** andU,, U, € CONS. But by Theorem 3.9 we
already knowl/y U Uy ¢ LIM.

In order to prove (2), we restate this assertion more formally(L&}y be a recursive
enumeration of —consistent IIMs. Then there exists an 1IM such that/-CONS(M) =
Uien T-CONS(M;).

Without loss of generality, we may assume that all the lIMsoutput as hypotheses
programs in some fixed @&lel numberingp. Let f € R. Then two cases are possible.
Either there is an IIMM; that learnsf or all IIMs fail to learn it. However, in the latter
case each of the 1IM8/; has to change its mind infinitely often. On the other hand,ig
learned by soma@/; then at least one IIM stabilizes its output. The wanted NVsearches
for an enumerated machine that might ledras follows.

The IIM M dovetails the computation of more and more outputs of the enumerated
[IMs. For each IIM M; that is already included in its dovetailed computations, it counts
the number of equal outputs. This number is called weight. As long as an IIM repeats its
actual guess on the next input, the weight increments. If an [IM performs a mind change,
its weight reduces to zero. After having read the initial segnférdf the functionf the
[IM M favors from the firsk + 1 1IMs M, ..., M, that one which actually has the greatest
weight. In case there are two 1IMg; and/; taking the greatest weight the lIW chooses
that one having the smallest index.

We formally define)M as follows. Letf € R, and letk € N.

M(f*) = “Compute in parallel

M0<f0)7) MU(fk)’

Mi(f9), .. Ma(f),

Mk(fo)a SRR Mk(fk)’
and assign to each 1IM/;, i < k, its weight, i.e., the greatest number< k& — i
satisfying the condition that/;(f*==™) = M,(fk~m) = ... = M;(f*%). Note

that we calculate the weights in a triangular fashion. This is necessary in order to
achieve convergence éf. Choosew(k) to be the smallest < & such that the IIM
M; has the greatest weight.

In case all considered IIMs have weight zero, outpgtprogram off (0) - - - f(k)0>°.

If w(k) = w(k — 1), then outputM,,«,(f*). Otherwise, output —program of
f(0) - f(k)0* that is different from) (f*=1).”

40 LECTURE3: MORE ABOUTLEARNING IN THE LIMIT

It remains to show thaf-CONS,(M) = |J,oy T-CONS,(M;). Obviously,M is con-
sistent on any initial segment it is fed, since all of the IIW5, ¢ € N, do so. Now, let
f € R and suppose thatis learned by some IIM/;. Consequently, there exists numbers
J, no such thatM;(f™) = j for all n > ny, andy; = f. Hence, for any IIM that learns
f its weight increases after some point in each step/tsf computation. Therefore, for all
but finitely manyk the 1IM M must favor exactly one of the 1IM3/; that learnsf and,
after some point)M outputs always\/;(f*). Note that the computation of weights in a
triangular fashion really ensures the desired convergence, since any new IIM included in
M’s computation initially gets weight zero.

On the other hand, if none of the IIM¥;, i € N, learnsf, then each IIM)M; has to
perform infinitely many mind changes. This is ensured by our assumption thaf\€ash
T—consistent. Hence, the casék) # w(k—1) occurs infinitely often. But each occurrence
of this case force3/ to perform a mind change. Consequently,cannot converge. |

So far we have seen that the requirement to learn consistently may have serious conse-
guences including the loss of learnability at all. Next, we outline that the requirement to
learn consistently may also seriously affect the complexity of learning. For doing this, we
look again at the pattern languages. But this time we investigate their consistent learnability
from informant.

Definition 12. PAT is called consistently learnable in the limit from infor-
mant with respect taPat (abbr. PAT € CONS-INF) iff there is an IIMM such that

(1) PAT € LimInf w.rt. Pat by M,
(2) forall L € PAT,i € info(L) andn € N, i C L(M(i")) andi,; N L(M (™)) = 0.
We addPoly if the time to computeM (i") < pol(length(i™)), wherepol is a fixed

polynomial.

Then, one can prove the following (cf. Wiehagen and Zeugmann [17]). NotePthat
stands here for the set of all languages acceptable in deterministic polynomial time and
NP denotes the set of all languages acceptable in nondeterministic polynomial time.

Theorem 3.11.
(1) PAT € CONS-INF.
(2) PAT ¢ Poly-CONS-INF, providedP # NP.
(3) PAT € Poly-LimlInf.
Summarizing, we may conclude the following interpretation.

If it comes to “reasonable” ideas, it is not a good a idea to trust the common sense.

Now, let us return to the problem of defining an appropriate measure of complexity for
learning in the limit.

TOTAL LEARNING TIME 41

3.6. Total Learning Time

So, as we have seen, it is not a good idea to introduce “natural” requirements such as
consistency. Instead, we shall study the total amount of data and time needed by a learner
until convergence.

The Total Learning Time
2 7 éé V////A displays the
7 7 7 Z?é total learning ti
7 7 © o © Zé%
.
i
0 6 %1070

w
=
&
]
]
e
=
I
]
=
2
IS
~
(05}
<]
=
e
&

The learners’s behavior on input sequence 1

Z
?

0 8 512087

N
N
e
&)
[«
Ny

stage of convergence

The learner’s behavior on input sequence 2

Figure 3.2: The total learning time

We define the total learning time as follows. L&t be any IIM that learns a concept
classC in the limit. Then, forc € C and a text or informant for ¢, let

Conv(M, d) =4 the least number ¢ € N* such that for all j >4, M(d;) = M(d;)

denote thestage of convergence of M ond. Moreover, byT),(d;) we denote the
number of steps to compufe (d;). We measure this quantity as a function of the length of
the input and refer to it as thgdate timeFinally, thetotal learning time taken by the
[IM M on a sequencéis defined as

Conv(M,d)
TT(M,d) =4 Y Tuld).

Jj=1

42 LECTURE3: MORE ABOUTLEARNING IN THE LIMIT

Given a probability distributiorD on the data sequencéswe like to evaluate thexpecta-
tion of T'T'(M, d) with respect taD, the average total learning time.

Figure 3.11 displays the total learning time on different input sequences as the measure
under the curve until the stage of convergence happened. Looking at Figure 3.11 we see the
following. On different input sequences the amount of data needed until convergence may
considerably vary.

Still, there is a problem. What one usually likes to have is a learner that has a polynomial
total learning time. This could be easily said, however, we have to specify what is really
meant, i.e., polynomial in what? Thus, the crucial point is the right definition of the problem
size. If one takes the sum of the length of all elements seen until convergence (and possibly
the length of target concept as additional parameter) then a learner could simply delay
convergence until sufficiently long examples have been appeared. On the other hand, if we
take the length of the shortest hypothesis describing the target concept as problem size then
the total learning time is usually unbounded inth&rst-case This is caused by the fact that
the learner has to learn from all data sequences. Thus, taking a data sequence containing
as many repetitions as necessary of elements that do not suffice to learn the target, every
bound can be exceeded. See for example the learner’s behavior on input sequence 2 below.

On the other hand, such worst-case data sequences may be rare in practice if they occur
at all. Consequently, in order to arrive at a complexity measure that has much more practical
value than a worst-case analysis, one has to study the average-case behavior of a learner.

So, in the next lecture, we shall explain what an average-case analysis is by using a much
simpler example than learning in the limit.

References

[1] D. ANGLUIN (1980), Finding patterns common to a set of strinlggjrnal of Com-
puter and System Scienc&k 46 — 62.

[2] J. BARzDIN (1974a), Inductive inference of automata, functions and programs,
“Proceedings International Congress of Math.,” Vancouver, pp. 455 — 460.

[3] D.R. BEAN, A. EHRENFEUCHT, AND G.F. MCNULTY (1979), Avoidable patterns
in strings of symbolsPacific J. of Mathematic85, Vol. 2, 261 — 294.

[4] L. BLum AND M. BLUM (1975), Toward a mathematical theory of inductive infer-
ence,Information and ControR8, 122 — 155.

[5] E.M. GoLD (1965), Limiting recursionJournal of Symbolic Logi80, 28 — 48.

[6] J.E. HOPCROFT ANDJ.D. ULLMAN (1969),Formal Languages and their Relation
to Automata Addison-Wesley, Reading, Massachusetts.

[7] K.P. ANTKE AND H.R. BEICK (1981), Combining postulates of naturalness in in-
ductive inferenceJournal of Information Processing and Cybernetics (E89, 465
— 484,

TOTAL LEARNING TIME 43

[8] S. LANGE AND T. ZEUGMANN (1996), Set-driven and rearrangement-independent
learning of recursive languagddathematical Systems Thed$9, No. 6, 599 — 634.

[9] R.S. MICHALSKI, J.G. CARBONELL, AND T.M. MITCHELL (1984), “Machine
Learning, An Atrtificial Intelligence Approach,” Vol. 1, Springer-Verlag, Berlin.

[10] R.S. MICHALSKI, J.G. CARBONELL, AND T.M. MITCHELL (1986), “Machine
Learning, An Artificial Intelligence Approach,” Vol. 2, Morgan Kaufmann Publishers
Inc., San Mateo.

[11] H.JR. ROGERS(1967), “Theory of Recursive Functions and Effective Computabil-
ity,” McGraw—Hill, New York.

[12] A. SALOMAA (1994), Patterns, (The Formal Language Theory Column). EATCS
Bulletin 54, 46 — 62.

[13] A. SALOMAA (1994), Return to patterns (The Formal Language Theory Column),
EATCS Bulletin55, 144 — 157.

[14] T. SHINOHARA AND S. ARIKAWA (1995), Pattern inferenci “Algorithmic Learn-
ing for Knowledge-Based Systems” (K.P. Jantke and S. Lange, eds.), Lecture Notes
in Artificial Intelligence 961, pp. 259 — 291, Springer-Verlag, Berlin.

[15] A. THUE (1906), Uber unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat.
Nat. Kl., Christiana No. 7, 1 — 22.

[16] R. WIEHAGEN AND W. LIEPE (1976), Charakteristische Eigenschaften von erkenn-
baren Klassen rekursiver Funktiondournal of Information Processing and Cyber-
netics (EIK)12, 421 — 438.

[17] R. WIEHAGEN AND T. ZEUGMANN (1994), Ignoring data may be the only way to
learn efficiently,Journal of Theoretical and Experimental Artificial Intelligen6e
131 - 144.

[18] R. WIEHAGEN AND T. ZEUGMANN (1995), Learning and Consistenady, “Algo-
rithmic Learning for Knowledge-Based Systems” (K.P. Jantke and S. Lange, eds.),
Lecture Notes in Artificial Intelligence 961, pp. 1 — 24, Springer-Verlag, Berlin.

45

LECTURE4: AVERAGE-CASE COMPLEXITY

Within this lecture we exemplify the task to perform an average-case analysis of the
complexity of a particular algorithm. When dealing with data mining, usually huge data
sets have to be analyzed. Thus, an excellent average-case behavior is often more important
than a good worst-case time complexity. However, performing an average-case analysis
of the complexity of a given algorithm is often much more complicated than analyzing its
worst-case complexity. Due to the lack of time, therefore we shall often omit such average-
case studies throughout this course.

Before we can perform any average-case analysis, we have to understand what average-
case analysis is all about. For reaching this goal, we use this lecture to provide some easy
examples.

4.1. Introductory Examples

We start with a very simple question. Let us assume all five digit numbers are equally
likely including 00000 (that is we also allow leading zeros). Now, we want to add 1 to such
a number. The question is

How many digits will be changed?

In the best-case, the last digit is not 9, and we have to change just one digit, i.e., the last
one.

In the worst-case, the number is 99999 and we have to change 6 digits, since

99999 + 1 = 100000

Now, we are interested in thexpected numbeof digits that will be changed. Saying
that all five digit numbers are equally likely is equivalent to the following. We choose
each digit independently of the other digits and the probability to choose a digit from
{0,1,2,3,4,5,6,7,8,9} is 1/10.

So, with probabilityd /10 we donotchoose 9 to be the last digit. That is, with probability
9/10 we only have to change the last digit.

What can be said about the probability that we have to change exactly two digits? This
event will happen if and only if the last digit $sand the second digit (from the right)net
9. Furthermore, the probability for the last digit to $és 1/10 and the probability for the
second digit to be nctis 9/10. Thus, the probability to change exactly two digits is

1 9 9
10 10 100 °

For seeing the general pattern, we also calculate the probability that we have to change
exactly 3 digits. This event will happen if and only if the last digifjghe second digit is
9 and the third digit i;iot9. Thus, the probability to change exactly three digits is

1 1 9 9

46 LECTURE4: AVERAGE-CASE COMPLEXITY

Analogously, the probability to change exactlyigits is9/10* and the probability to
change exactly digits is9/10°. Additionally, we need the probability to change exactly
digits. As shown above, this event will happen if the numbe@pi¥®)9, i.e., with probability
1/10°.

For completing our analysis, |&t denote the random variable telling us how many digits
we have to change. ThuB,can take the valuels 2, 3, 4, 5, 6. The formula for computing
the expection is

6
= Zx -Pr(R =
r=1

Thus, the expected number of digits to be changed is

=1,11111.

Next, we look at the more general case of havingradigit number, where: € N,
n > 1. Now, we denote the random variable By and obviously the range @i, is the set
{1,...,n,n + 1}. Clearly, then we get

9 n+1
E[R] = L 4.1

r=1

How can we calculate the sum on the right hand side? Let us start from something we
know, i.e., the finite geometrical series. That is, we take into account that

n+1

n 1_
:qu:—q , forallg#1.
=0 1_q

Now, taking derivatives on both sides yields

This allows us to rewrite the expectation in (4.1) as follows.

- 1\" n+1

E[R] = 9~Z_;x. (E) + =
o (1/10) = (n+ D(1/10)"™! +n(1/10)"* n+1
(1—(1/10))2 10"

ANALYZING THE COMMON ALGORITHM FORFINDING THE MAXIMUM 47

Thus, as: tends to infinity, the expected number of digits to be changed if youl add
ann digit number in decimal notation chosen uniformly at randor0ig. So, this is very
close to the best-case (just one digit) and far from the worst case-df digits.

Exercise 12.Compute the expected number of bits to be changed if you éalénn
bit number chosen uniformly at random.

4.2. Analyzing the Common Algorithm for Finding the Maximum

Let us consider the following well-known algorithm for finding the maximum in a list
of elements.

Algorithm Max

Input: n elementsX[1], X[2], ..., X|[n] of a totally ordered set.
Output: Numbersn and;j such thatn = X[j] = max{X|[k]| 1 < k < n}.
Method:

Al. (Initialize) j := n, k :=n, m := X|[n]
A2. (All tested ?) Test whether = 0.
If itis, outputj, m, and stop.
Otherwise, execute A3.
A3. (Compare) IfX [k] < m, goto A5.
Otherwise, execute A4.
A4. (Changen) j := k, m := X|[k]
A5. (Decreasé) k := k — 1, goto A2.
Algorithm Max requires a fixed amount of storage. So, we shall analyze the time

required to perform it. For doing this, we count the number of times each step is executed.
This is done Figure 4.1 below.

| Instructon | Number of executions ||
Al 1
A2 n
A3 n—1
A4 A
A5 n—1

Figure 4.1: Counting the number of executions of Al through A5

Everything is clear except the quantityy Therefore, we study the quantity, only.
Before looking at the expectation df, we look at the minimum and maximum of it.

48 LECTURE4: AVERAGE-CASE COMPLEXITY

(1) The minimum value ofd is zero; this happens iff [n] = max{X[k]| 1 < k < n}.
(2) The maximum value oft isn — 1; this happens iffX[1] > X[2] > --- > X[n].

Thus, the best-case and worst-case behavidlgbrithm Maax are clear and trivially
to obtain. But what can be said about the average?

To answer this question, we need to define what we mean by average. For doing that, we
must make some assumptions aboutdkpectedcharacteristics of the input data. These
assumptions are:

(1) All X[k] are pairwise distinct.

(2) Without loss of generality we can assume that2, ..., n} is the the range of the
input data.

(3) We assume all possibte permutations of the input dafd, 2, ...,n} to be equally
likely.

In particular, we made Assumption (3), since we do not have any reason here to assign
different probabilities to the different possible permutations. When dealing with particular
input data sets, things may change, however. In such cases one has to figure out the un-
derlying probability distribution of the inputs. But for our goal and in many applications
Assumption (3) is reasonable.

Next, we introduce some notations. By. we denote the probability that has value.
Using the classical definition of probability, we can thus write

number of permutations dfl, 2, ...,n} for which A = k
n! '

Pnk =

Then, theaverage(mean) value is defined by

ElAl=A, =) kpu -
k

Moreover, thevarianceV,, is defined as

Vo= BI(A= A" =) (k= A)’pur = > Kp — A2 .
k k

Furthermore, thetandard deviatiom,, is defined to bg/V,,. Thus, all we have to do is to
computeA,,, V,, ando,,. But how can we do this?

Approach 1. Determinep,,.

. 1 n—1 .
Clam 1. pa = — p-ne-u + * Pn—1)k, Wherepy, = dop, @andp,, = 0 if
k < 0.
Proof. If z; = n, then the value of4 is one higher than the value of obtained
on {xs,...,z,}. Moreover, ifz; # n, then the value ofA is the sameas its value on

{zg,..., 2.} i

ANALYZING THE COMMON ALGORITHM FORFINDING THE MAXIMUM 49

But how can we proceed? There is a very powerful tool, cajiederating functions
which seems appropriate to be used here. Therefore, we shortly recall the definition of
generating functions and an important theorem from calculus.

Let (a,,)nen be any sequence of real (or complex) numbers. Then

g(z) = Z anz"
n=0

is calledgenerating function of (a,),en. The following theorem is often applied to
generating functions.

Theorem 4.1. Let (a,).en and (b,),eny be any sequences such that their generating
functions have a radius > 0 of convergence. Then

oo o0
E a2 = E b, 2"
n=0 n=0

iff a,, = b,, forall n € N.

Moreover, recall that power series can be differentiated by differentiating their sum-
mands. Thus, we also know that

g (z) = Zn cap2" Tt
n=0

For more information about generating functions the interested reader is referred to Gra-
ham, Knuth, and Patashnik [1]. Furthermore, you should consulAdujtional Notes on
Counting and Probabilityvhich are available at

http://lwww-alg.ist.nokudai.ac.jp/ thomas/TCSTRB/td3% 2/tcstr 05.2.ps.gz
So, let us try to apply generating functions for computingzthe We consider
Gn(z) = ankzk .
k>0

In fact, G,, is even a polynomial but due to the convention made in Claim 1, we can write
it as a power series, which is technically more convenient for our purposes. Also, note that
G1(z) = 1. Then, we obtain

1 n—1
Gn(’z) = ankzk = Z (ﬁ *Pln—1)(k—1) T " 'p(n—l)k) -2

k>0 k>0
_ % p—1, N —1 k
= Zp(n—l)(k—l)z + - Zp(n—nkz
k>0 k>0
z n—1 z+n-—1
= ~Gualz) + Gno1(2) = ————Gu(2) .

50 LECTURE4: AVERAGE-CASE COMPLEXITY

Hence, we arrive at

n—1

Gn(z) = %Hz%—n—z (;H(z—i—n—z)

!
z+n)nl -4

1 | z+n 1 z+n
= —_— e N! =
(z+n)n! n z+n\ n

Thus, we have found a closed formula €&);. Using Stirling numbers of the first kirig
we get

n n—1 n
H(z—l—n—z’) = H(z—l—z):Z[Z}zk,
=0 =0 k=1
and hence, we can conclude
n—1 n n
q(z—i-n—i) = %11(24—71—2’)—% [Z}zk
= 1= k=1
_ — 7 k-1 _ n k
= [IJ =T < {k:+ J

Consequently, we can apply Theorem 4.1 and get

1
n n,Hz—i—n—z Z(n' [kil})zk,

k>0

_1 n
pnk_n! kE+1]°

However, it is not easy to computk, by using the formula just obtained. You are strongly
advised to try it as an exercise. We shall provide here an easier and even more general
method. Consider

2) =Y @,

k>0

and therefore

where they, are probabilities. Then
Z =1,

and moreover

‘(1) = kg, = E[G]

k>0

Analogously, one easily verifies

V(G)=G"(1)+G'(1) = (G'(1)* .

*We use here the notation from [1] to denote Stirling numbers of the first kind.

ANALYZING THE COMMON ALGORITHM FORFINDING THE MAXIMUM 51

Thus, A,, = G/,(1) which can be computed as follows. Using the identity

z+n-—1

Gn(z) = TGn_l(z)
derived above, we directly obtain
, 1 z+n—-1_,
Gul2) = —Gua(2) + ——— G (2).
Consequently,
! 1 /
Gn(]') = E + Gn—l(l)
1 1
= = "(1) .
n n—1 * +&Q

Therefore, we can rewrit6”,(1) = >_;_, + and recalling that theth Harmonic number is
defined ad7,, = >_;_, + we finally get

A, =H,—1.

Furthermore, taking into account that

s

1 X

=lnn—Inl=Ilnn

itis easy toseethdhn < H, <Inn + 1.

Now, IettingH,(f) => kig and putting it all together, we finally get
V(A,) =H, - H® .
Thus, the complete picture concernidgcan be written as
A= (min . 0, average:H, — 1, max: n — 1,dev:\/ H, — HY) .

Hopefully, this easy example has provided you a basic idea of what average-case analysis
is all about and what basic techniques one might apply.

References

[1] R.L. GRAHAM, D.E. KNUTH AND O. PATASHNIK (1989),Concrete Mathematics
(Addison-Wesley, Reading, Massachusetts).

53

LECTURES: AVERAGE-CASE ANALYSIS ||

Within this lecture, we want to perform an average-case analysis for a small variation of
Algorithm P, synonymously called Wholist Algorithm, introduced in Lecture 2.

Recall that our concept claés is the set of all conceptsC &,, = {0, 1}" describable
by a monomial. For the concept clagsthe hypothesis spadé,, will be chosen as the set
of all monomials ovel’,, for the learners considered below.

This is a good place to address the issue of our points of concerns that a limit learner
has always access to the whole initial segment of the data sequence provided. In contrast to
that we next definéterative IIMs.

An iterative 1IM is only allowed to use its last guess and the next element in the data
presentation of the target concept for computing its actual guess. Conceptionally, an itera-
tive IIM M defines a sequencé/,,),..n Of machines each of which takes as its input the
output of its predecessor. We ugeta(c) to denote the set of all data sequencescfain
order to avoid misunderstandings it should be recalled that data sequences are either texts
or informants. Furthermore, if = (d;),en € data(c) is any data sequence, then we use
hered; to denote thgth entry of it.

Definition 13 (Wiehagen [2]) LetC be a concept class, letbe a concept, and let
H = (hj);en be a hypothesis spacdn IIM M IT-infers c from data sequence
d with respect to H iff for everyd = (d;);en € data(c) the following conditions are
satisfied:

(1) for all n € N, M,(d) is defined, where\ly(d) =44 M(dy) and for alln > 0:
Mn+1 (d> —df M(Mn(d>7 dn+1)a
)

(2) the sequencéM,(d)),en converges to a numbgrsuch that: = h;.

Finally, M IT-infers C with respect tdH iff, for eachc € C, M IT-infers ¢ from data
sequence with respect 9.

In the latter definition/,,(d) denotes thén + 1)th hypothesis output by/ when suc-
cessively fed the data sequente

When the data sequence are informants and texts, then we also say thabfers C
from informant and text, respectively, with respect to the hypothesis Spgammsidered.

For the sake of better understandability we first modify Algoritihinto an iterative
learner (cf. AlgorithnZM L). Again, we identify the target concepand the monomiakh
describing it. The iterative learner is defined in stages, where 8tageeptually describes
M,.

Algorithm ZML: “Let ¢ € C,, leti = (by, m(by)), (b1, m(b1)), ... be any informant
for c. Go to Stage 0.

54 LECTURES: AVERAGE-CASE ANALYSIS Il

Stage0. ZM L receives as inputy, m(by)).

Initialize ho = 1Z1 . .. TpThp.

If m(by) =0then hy remains unchanged ;else
for j:=1to ndo

if b)=1then delete z, in hy else delete z; in hy.

Denote the result by ho, output ho and go to Stage 1.
Stagel, ¢ > 1. ZML receives as input,_; and the(¢ + 1)th element(b,, m(by))
of .

If m(b,) =0 then set h,=hy,_q; else
for j:=1to ndo

if) =1then delete z; in hy, else delete x; in h, .

Denote the result by he, output h, and go to Stage /+1.
By convention, if all literals have been removed, ttien=), andh,(b) = 1 for all
be X,.

end.”

Now, we can directly state the following theorem.

Theorem 5.1. For everyn > 1 we have: ZML IT-learnsC, from informant with
respect to the hypothesis spakg.

Proof. Using the same arguments as in the proof of Theorem 2.1 one easily sees that
Algorithm ZM L I1T-learnsC,, from informant with respect to the hypothesis spé&te
We omit the details. 1

Moreover, AlgorithmZ ML can be easily adapted to learn from positive data only.
We have just to omit the tests whether or nafh,) = 0. We call the resulting algorithm
IMLP. Now, the following corollary is obvious.

Corollary 5.2. For everyn > 1 we haveZM LP IT-learnsC,, from positive data only
with respect to the hypothesis spdde.

Also, it should be noted that Algorith@MLP is a true limit learner, since its con-
vergence is undecidable. You should prove this as an exercise. On the other hand, for
Algorithm ZM L convergence igecidable This is due to the fact thd0, 1} is finite for
all n € N. However, deciding whether or not AlgorithtwWM L has already converged is
practically infeasiblefor all n of practical relevance, sing€0, 1}"| = 2".

Let us first take a quick look at the best and worst case complexity with respect to the
number of prediction errors (mind changes) made. AlgorifAhoes not make any predic-
tion errors and AlgorithnZ M L does not make any mind change iff the initial hypothesis
ho equals the target monomial, i.e., if the concept to be learned is “FALSE.” We call this
conceptminimal. The remaining concepts are said torhen-minimal.

AVERAGE-CASE ANALYSIS FORLEARNING IN THE LIMIT FROM POSITIVE PRESENTATIONS 55

To study the general case, let us call the literals appearing in a non-minimal monomial
relevant. All the other literals inC,, will be calledirrelevant for m. There ar&n — #(m)
irrelevant literals, where#(m) denotes the number of literals in monomial One can also
consider#(m) to be the length of monomiad.

We call biti relevant for m if x; or z; is relevant form and use
k=g k(m) =4 n — #(m)

throughout the rest of the lecture to denote the number of irrelevant bits.

Now we can expresses the best-case and worst-case number of prediction errors and
mind changes made by Algorith#® and AlgorithmZ ML as follows:

Theorem 5.3. If ¢ is a non-minimal concept of,, AlgorithmP (AlgorithmZ ML)
makes< prediction errors(mind changeksin the best-case antd+ k(m) prediction errors
(mind changesin the worst-case.

Note that Theorem 5.3 remains valid for AlgorittboM LP. So, the gap between the
best-case and the worst-case can become quite large. But still, we have no idea about the
average. The situation changes even more, if we consider the total learning time. Since the
hypotheses internally computed by Algoritt#or output by AlgorithmZAM L can be cal-
culated in linear time, it is easy to see that the best-case requires a total learnigy tilne
However, the worst case total learning timeirgooundegdsince every positive presentation
and every informant may contain as many repetitions of data that do not possess enough
information to achieve the learning goal.

Hence, as far as learning in the limit and the complexity meastaélearning timeare
concerned, there is a huge gap between the best-case and the worst-case behavior. There-
fore, we continue by studying the average-case behavior of the limit leZik¢C. We
start by restricting ourselves to learning from positive presentations only.

This restriction is also quite natural, since AlgoritiftM L does not learn anything
from negative examples and so does Algoritin

Note that one can also study further questions such as estimating the accuracy of a
hypothesis after the Algorithr@M L has seerd many positive (o many positive and
negative) examples. You are encouraged to think about this question.

5.1. Average-Case Analysis for Learning in the Limit from Positive Presen-
tations

For the following average case analysis we assume that the data sequences are gener-
ated at random with respect to some probability distribufibteken from some class of
admissible distribution®, which will be specified later.

We are interested in theeverage numbeof positive examples necessary to achieve con-
vergence. Letl be a positive presentation of the concep be learned that is generated at
random according t®.

56 LECTURES: AVERAGE-CASE ANALYSIS Il

If the concept to be learned is “FALSE” no examples are needed (and none exist). Oth-
erwise, if the target concept contains preciseliterals then one positive example suffices
(note that this one is unique). Thus, for these two cases everything is clear and the proba-
bility distributions D on the set of positive examples foare trivial.

Thus it remains to analyze the nontrivial cases. det L(m) € C, be a concept with
monomialm = /\ji(’ln) l;,. Letk := k(m) = n—#(m) > 0. Note that there arg* positive
examples for.

We shall consider the class binomial distributions, where in a random positive
example all entries corresponding to irrelevant bits are selected independently to one an-
other. With some probability this will be a1, and with probabilityy =4 1 — p a0. We
consider only nontrivial distributions whefe< p < 1. Note that otherwise the data se-
guence does not contain all positive examples. The resulting data sequences are referred to
as to binomially distributed with parameter

We would like to compute the expected number of examples takebf/LP until
convergence.

The first example received forc&M LP to delete precisely of the 2n literals inhy.
Thus, this example always playspecialrole.

Note that the resulting hypothesis depends orb,, but the numbek of literals that
remain to be deleted fror, until convergence ismdependenof b,. It is therefore conve-
nient to compute the expectation by conside@i1 LP’s behavior after having read the
first example.

For the following analysis, we will denote BON a random variable that counts the
number of examples till the algorithm has converged to a correct hypothesis.

Theorem 5.4. Letc = L(m) be a non-minimal concept i6,, and let the positive
examples for: be binomially distributed with parameter Definey:= min{ﬁ, %} and
T = max{%, % . Then the expected number of positive examples needed by algorithm

ZMLP until convergence can be bounded by

E[CON] < Tlog, k(m)] +71+2.

Proof. Let & := k(m). The first positive example containgtimes al andk — v many
0 with probability (l’f)p”q’“*” at the positions not corresponding to a literal in the target
monomialm. Now, assuming any such vector, we easily see thatontainsy positive
irrelevant literals and: — v negative literals. Therefore, in order to achieve convergence,
the algorithmZ M LP now needs positive examples that contain at least(ofoe each
positive irrelevant literal and at least omdor each negative irrelevant literal. Thus, the
probability that at least one irrelevant literal survivesubsequent positive examples is
bounded by p* + (k — v)g*. Therefore,

k
Pr(CON -1 > pu) < Z (i)puqku C(wp 4 (k=)¢
v=0

AVERAGE-CASE ANALYSIS FORLEARNING IN THE LIMIT FROM POSITIVE PRESENTATIONS 57

Next, we derive a closed formula for the sum given above.

k k
Claim 1. Z <]Z)p"qk_y -v=kp and Z (i)p”qk_” (k—v)=kq
v=0 v=0

The first equality can be shown as follows.
k k
k v _k—v _ k v _k—v
> (V)p o= Y (V)p ¢ v

v=0 v
k—
k —1-v
- ()pyﬂq’“ v+ 1)

—~ v+1
k—1
E—1\ , (v
—]{3(,)p+1qk (v+1)
v=0
k—1
k—1 v —1)—v
- kp-Z(y)pq(k Y
v=0

= kp-(p+q*" = kp.

The other equality can be proved analogously, which yields Claim 1.

Now, proceeding as above, we obtain

IA
>~
I.

NE
Mw
7 N

p=A v=0 pu=\ v=0
=)\ “ v k—v © v k—v (1.
DD N (ITEES W W IEERe
H=A v=0 L B=A r=0 P
=kp I;;Claim 1 =kq b‘;Claim 1
=A =\ q p
H H
< Atk <p'¢_x+g,¢_x)
q p
< Ak (147) .
Finally, choosing\ = [log,, k| gives the statement of the theorem. i

As a corollary we get

58 LECTURES: AVERAGE-CASE ANALYSIS Il

Corollary 5.5. For every binomially distributed positive presentation with parameter
0 < p < 1 the average total learning time of algorithBiM LP for concepts irC,, is at
mostO(n logn). More precisely, a concept= L(m) requires timeD(nlog(n—#(m)+2))
on the average.

The expectation alone does not provide complete information about the average case be-
havior of an algorithm. It is helpful to know larger moments, too, in particular the variance.
Then one can deduce bounds how often the algorithm exceeds the average considerably by
applying, for example, Chebyshev’s inequality. If the variance is not available, Markov’'s
inequality provides us with worse tail bounds:

If X is any random variable taking only positive real values then
1
Pr(X >t- F[X]) < ;forallk >1.

Markov’s inequality is quite general but produces only weak bounds.

However, AlgorithmZ M L P possesses two favorable properties that simplify the anal-
ysis considerably, it isset-driven and conservative. They allow to establish good
bounds for the tail probabilities.

Set-driven means that the output depends only onathgeof the input sequence. More
formally, forallc € C, all ¢, © € text(c) and alli, j € N* the equalityt;} = i of the range
of the two prefixes implie€MLP(t;) = TMLP(t;).

It is easy to see that Algorithd M L 7P fulfills this property.

Furthermore, a learner is said to benservativaf every mind change is caused by an
inconsistency with the data seen so far. Algorithw L P satisfies this condition, too, i.e.,
forall c € C,, all t € text(c) and alli, j € N* it holds: if ZMLP(t;) # TMLP(t+;)
thent,; Z LZMLP(t;)).

Now, we can apply the following theorem to obtain exponentially shrinking tail bounds
for the expected number of examples needed in order to achieve convergence.

Theorem 5.6 (Rossmanith and Zeugmann [1])Let CON be the sample complexity of
a conservative and set-driven learning algorithm. Then for arbitragyN it holds

Pr(CON > 2¢- E[CON]) < 2.

Since Theorem 5.6 is of central importance, we also provide a proof. First, recall the
definition ofmedian If X is a random variable themX is a median ofX iff

Pr(X > pX)>1/2and Pr(X < pX) > 1/2.

A nonempty set of medians exists for each random variable and consists either of a single
real number or of a closed real interval. We will denote the smallest medianhyf 1..X,
since this choice gives the best upper bounds. Now, we can show the following theorem.

AVERAGE-CASE ANALYSIS FORLEARNING IN THE LIMIT FROM POSITIVE PRESENTATIONS 59

Theorem 5.7 (Rossmanith and Zeugmann [1]) Let X be the sample complexity of
a conservative and set-driven learning algorithm. ThafX > ¢ - uX) < 27 for all
teN.

Proof. We divide the data sequendg d., . . . into blocks of length..X. The probability
that the algorithm converges after reading any of the blocks is then atl|gasBince the
algorithm is set-driven the order of the blocks does not matter and since the algorithm is
conservative it does not change its hypothesis after computing once the right hypolhesis.

Theorem 5.6 now follows by taking into account that < 2FE[X] for every positive
random variableX in accordance with the Markov inequality. Therefore,

Pr(X >2t- E[X]) <27" foreveryt e N.

A simple calculation shows that in case of exponentially shrinking tail bounds the vari-
ance is bounded by (E[CON]?).

So, the deviation from the average will be quite small due to our exponentially shrinking
tail bounds. In other words, AlgorithdM LP is a quite data efficient learning algorithm
on average. This should surprise you a bit, since it can be as inefficient as you like in the
worst-case. Thus, for many practical problems, like the one exemplified in the last lectures,
analyzing the average-case behavior is of much more practical importance than studying
the worst case complexity.

References

[1] P. ROSSMANITH AND T. ZEUGMANN, Stochastic Finite Learning of the Pattern Lan-
guagesMachine Learningi4, No. 1-2, 2001, 67-91.

[2] R. WIEHAGEN, Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Journal of Information Processing and Cybernetics (E1R) 1976, 93-99.

61

LECTURE 6: STOCHASTIC FINITE LEARNING AND PAC
LEARNING

6.1. Stochastic Finite Learning

After having analyzed the average-case behavior of Algorifwt LP we want to
address our remaining point of concern. As pointed out in Lecture 3, a limit learner is only
supposed to converge in the limit, méver knowsvhether or not it already did so. Such an
uncertainty may be prohibitive in many applications of learning. So, how can we recover?

Of course, we cannot achieve certainty concerning convergence, since otherwise con-
vergence would be decidable. But, as we have already mentioned a couple of times, con-
vergence is undecidable in general. But even if convergence is decidable as in the case of
learning monomials from positive and negative data, it is practically infeasible to decide
whether or not the learner did already converge.

Therefore, we have to replace certainty concerning convergence by a weaker require-
ment. Again, recall that there are always optimistic, pessimistic and probabilistic people
around. So, if we suppose optimistic people to optimistically assume that the learner has
already converged and pessimistic people to pessimistically assume that the learner did not
yet converge, then it remains to explain what probabilistic people can do.

Looking at real life examples, we see that we quite often have a confidence in doing
something which is based on experience. Thus, we introduce a new paranrateour
learning model calle@¢onfidence parameter.

Then, in the following we always assume a cl@assf admissible probability distribu-
tions over the relevant learning domain. Ideally, this class should be parameterized. Further-
more, the data fed to learner are generated randomly with respect to one of the probability
distributions from the clasP of underlying probability distributions.

Additionally, the learner takes the confidence paramét&s input. But in contrast to
learning in the limit, the learnetself decides how many examples it wants to read. Then it
computes a hypothesis, outputs it and stops. The hypothesis output is correct for the target
with probability at least — 6.

The explanation given so far explains how it works, but not why it does. Intuitively,
the stochastic finite learner simulates the limit learner until an upper bound for twice the
expected total number of examples needed until convergence has been met. Assuming this
to be true, by Markov’s inequality the limit learner has now converged with probability
1/2. All what is left, is to decrease the probability of failure. This is done by using the
tail bounds forCON. Applying Theorem 5.6, one easily sees that increasing the sample
complexity by a factor o) (log %) results in a probability of — ¢ for having reached the
stage of convergence. If Theorem 5.6 is not applicable, one can still use Markov’s inequality
but then the sample complexity needed will increase by a factof of

It remains to explain how the stochastic finite learner can calculate the upper bound for
E[CON]. This is precisely the point where we need the parameterization of thelzlaks

62 LECTUREG: STOCHASTIC FINITE LEARNING AND PAC LEARNING

underlying probability distributions. Since in general, it is not known which distribution
from D has been chosen, one has to assume a bitiof knowledgeor domain knowledge
provided by suitable upper and/or lower bounds for the parameters involved. A more se-
rious difficulty is to incorporate the unknown target concept into this estimate. This step
depends on the concrete learning problem on hand, and requires some extra effort. We shall
exemplify it below. Figure 6.2 displays the basic features of stochastic finite learning. You
should compare it to learning in the limit (cf. Figure 2.1 at Page 23).

Depicted when Learning finishes:

h &iédagtw“adg

~
drawn w.r.t.s. DED

M learns (C, D) stochastically finite “foralls e (0, 1), after having read a finite
number of examplesy outputs asingle hypothesish € H, andstops. With probability
atleastl — § (w.r.t. D) h has to be correct, i.eL,(h) = ¢. (Note thatt may depend on.)

Figure 6.2: Stochastic Finite Learning

Now we are ready to formally define stochastic finite learning.

Definition 14 ([4, 5, 6]). Let D be a set of probability distributions on the learning
domain,C a concept classH a hypothesis space fal, andé € (0,1). (C,D) is said to
be stochastically finitely learnable withrconfidencewith respect tgH iff there is an [IM
M that for everyc € C and everyD € D performs as follows. Given any random data
sequencd for ¢ generated according t®, M stops after having seen a finite number of
examples and outputs a single hypothésis H. With probability at leastt — § (with
respect to distributiorD) h has to be correct, that is = h.

If stochastic finite learning can be achieved witgonfidence for every > 0 then we
say that(C, D) can be learned stochastically finigth high confidence

Next, we turn our attention to the design of a stochastic finite learner for learning mono-
mials from positive data. We study the case that the positive examples are binomially
distributed with parameter. But we do not require precise knowledge about the under-
lying distribution. Instead, we reasonably assume grair knowledgeis provided by
parameterg,,,, andp,, such thap,, < p < p,, for the true parameter. Binomial dis-
tributions fulfilling this requirement are call&gh; ., Pup) —admissible distributions.

Let D, [Piow, Pup) denote the set of such distributions af.

If boundsp,,,, andp,,, are available, the Algorithi M LP can be transformed into a
stochastic finite learner inferring all concepts frémwith high confidence.

Theorem 6.1 (Reischuk and Zeugmann [4]).Let0 < pj < pyp < 1 andy =
min{— L1, Then(C,, D.[piow, Pup)) is stochastically finitely learnable with high

1-piow’ Pup

LEARNING MONOMIALS FROM INFORMANT 63

confidence from text. To achieveconfidence no more thaft (log, 1/6 - log, n) many
examples are necessary.

Proof. The stochastic finite learner is based on Algorithw L P and a counter for the
number of examples already processed. We set

o ’V { Piow 1 - Piow Pup 1- Dup }—‘
Tmax = |1Nax))) .
1— Plow DPiow 1- DPup Dup

If Algorithm ZMLP is run fory := [log, n| + Tmax + 2 Many examples, Theorem 5.4
implies thaty is at least as large as the expected convergence BiageN].

In order to achieve the desired confidence, the learnersets|log %1 and runs Algo-
rithm ZM LP for a total of2 ~ -) examples. This is the reason why we need a counter
for the number of examples processed. The algorithm outputs the last hypdthesis
produced by Algorithn M LP and stops thereafter. The reliability follows from the tail
bounds established in Theorem 5.6. i

So far, our results provide evidence that analyzing the average-case behavior of limit
learners with respect to their total learning time may be considered as a promising path
towards a new theory of efficient algorithmic learning. But what happens if we have to
learn monomials from both positive and negative examples? We shall address this question
in the following.

6.2. Learning Monomials from Informant

Next, we ask how the results obtained so far translate to the case of learning from infor-
mant. Since AlgorithnZ M L does not learn anything from negative examples, one may
expect that it behaves much poorer in this setting. First, we investigate the uniform distri-
bution overX,,. Again, we have the trivial cases that the target concept is “FALSkE? &

a monomial without irrelevant bits. In the first case, no example is needed at all, while in
the latter one, there is only one positive example having probabitity Thus the expected
number of examples needed until successful learniag is 2#™),

Theorem 6.2.Letc = L(m) € C, be a nontrivial concept. If a data sequence ¢ds
generated from the uniform distribution on the learning domain by independent draws the
expected number of examples needed by Algodiwt L until convergence is bounded by

E[CON] < 2#™ ([log, k(m)] + 3) .

Proof.Let CON+ be a random variable for the number of positive examples needed until
convergence. Every positive example is preceded by a possibly empty block of negative
examples. Thus, we can partition the initial segment of any randomly drawn informant read
until convergence int& ON+ many blocksB; containing a certain number of negative
examples followed by precisely one positive example. Lebe a random variable for the
length of blockB;. ThenCON = Ay + As + - - - + Acony, Where the\; are independently

64 LECTUREG: STOCHASTIC FINITE LEARNING AND PAC LEARNING

identically distributed. In order to compute the distribution/of it suffices to calculate
the probabilities to draw a negative and a positive example, respectively. Since the overall
number of positive examples faris 2¢ with & = k(m), the probability to generate a
positive example i€*~". Hence, the probability to draw a negative examplé is 2",
Consequently,

PriAj=p+1] = (1—-2Fm)". 2k,

Therefore,
E[CON] = E[A+ A+ -+ Acony]

= Y E[A+Ay+ -+ Ac | CON+ = (] - Pr[CON+ = (]
¢=0

= Y (- E[A] - Pr[CON+ = (]
¢=0
= E[CON+] - E[A4]
By Markov's inequality, we havé&/[CON+| < [log, k| + 3, and thus it remains to estimate
E[A4]. A simple calculation shows
Lemma 6.3.For every0 < a < 1 holds:
> (u+1)-a" = (1—a)2.
pn=0

Using this estimation we can conclude

o0

ElA] =) (n+1) - Pr[Ay = p+1]

n=0
s I
pn=0
and thus the theorem follows. |

Hence, as long as the lengthsefis constant, and therefokgm) = n — O(1), we still
achieve an expected total learning time of ordésg n. But if #(m) grows linearly the
expected total learning becomes exponential. On the other hand, if there are many relevant
literals then everh, may be considered as a not too lzgabroximatiorfor c. Consequently,
it is natural at this point to introduce an error parameter(0, 1) as in the PAC model (see
below), and to ask whether one can achieve an expected sample complexity for computing
ane-approximation that is bounded by a function dependingpgm and1 /e.

To answer this question, let us formally defineor,,(h;) = D(L(h;) AL(m)) to be the
error made by hypothesis with respect to monomiak. HereL(h;) A L(m) stands for the
symmetric difference of.(h;) andL(m) and D for the underlying probability distribution
with respect to which the examples are drawn. Note that by construction of Algorithm
ZIML we can concluderror,,(h;) = D(L(m) \ L(h;)).

PAC LEARNING 65

We call h; ane—approximationfor m if error,,(h;) < ¢. Finally, we redefine the stage
of convergence. Let: be any monomial, and let = (d;),cn+ be an informant fot(m),
then

CONc(d) =4 theleast numbef such thatrror,,(ZML (d;)) <e foralli > j.

Note that once the Algorithi @M L has reached asrapproximate hypothesis all further
hypotheses will also be at least that close to the target monomial.

The following theorem gives an affirmative answer to the question posed above.

Theorem 6.4. Letc = L(m) € C, be a nontrivial concept. Assuming that examples
are drawn at random independently from the uniform distribution, the expected number of
examples needed by AlgoritifoM £ until converging to ar—approximation fox can be
bounded by

E[CON.] < = - (log, k(m)] +3) .

™ | =

Proof. It holds error,, (hy) = 28™)~", sinceh, misclassifies exactly the positive exam-
ples. Therefore, ikrror,,(hy) < ¢, we are already done. Now suppaseor,,(hy) > ¢.
Consequentlyl /s > 2" 50" and thus the bound stated in the theorem is larger than
2n=k(m) (Tog, k(m)] + 3), which, by Theorem 6.2 is the expected number of examples
needed until convergence to a correct hypothesis. i

Thus, additional knowledge concerning the underlying probability distribution pays off
again. Applying Theorem 5.6 and modifying the stochastic finite learner presented above
mutatis mutandiswe get a learner identifying-approximations for all concepts i@,
stochastically with high confidence usiny* - log ; - logn) many examples. Comparing
this bound with the sample complexity given in the PAC model, we see that it is reduced
exponentially, i.e., instead of a factarnow we have the factoiogn (cf. Theorem 6.5
below).

So, let us continue with the PAC model. In contrast to our considerations above we do
not assume any prior knowledge concerning the underlying probability distribution.

6.3. PAC Learning

PAC stands foprobably approximately correand the corresponding learning model
goes back to Valiant [6]. Comprehensive treatises of this topic include Anthony and Biggs
[1], Kearns and Vazirani [2] as well as Natarajan [3]. We use our example, i.e., the set of
all concepts describable by a monomial oxgrto explain the basic ideas behind the PAC
approach. The main difference to the models considered so far starts wibufoe of in-
formation We assume an unknown probability distributibrover the learning domaif’.

There is asampling oracleF X (), which has no input. WhenevérX () is called, it draws
an element € X according to the distributio and returns the elementogether with an
indication of whether or nat belongs to the target conceptThus, every example returned

66 LECTUREG: STOCHASTIC FINITE LEARNING AND PAC LEARNING

by EX () may be written agz, ¢(z)), wherec(z) = 1if x € cande(x) = 0 otherwise. If
we makes calls to the exampl& X () then the elements,, . . . x, are drawn independently
from one another. Thus, the resulting probability distribution oves-#ailiples of elements
from X is thes-fold product distribution ofD, i.e.,

S

Pr(zq,...,zs) = H D(z;).

i=1

In the following, we useP’r(A) to denote the probability of event, where A is a set of
s-tuples overt’, s > 1. The actuak will be always clear from the context.

Thecriterion of success.e., probably approximately corredearning, is parameterized
with respect to two quantities, treecuracy parameter, and the confidence parameter
wheree, ¢ € (0,1]. Next, we define a notion of the difference between two sefsC X
with respect to the probability distributiab as

d(c,d)= > D(x).

rEcNC!

A learning method4 is said toprobably approximately correctlyidentify a target
conceptc with respect to a hypothesis spakg and with sample complexity = s(¢, d),
if for all £,0 € (0,1) it makess calls to the oracle£ X (), and after having received the
answers produced by X () (with respect to the target), it always stops and outputs a
hypothesis: € H such that
Pr(d(c,h) <e)>1-46.

A learning method4 is said toprobably approximately correctlyidentify a target
concept clas€ with respect to a hypothesis spatéand with sample complexity =
s(e, §), if it probably approximately correctly identifies every conceptC with respect to
'H, and with sample complexity

Finally, a learning method is said to be efficient with respect to sample complexity, if
there exists a polynomial pol such tha& pol(1/¢,1/6).

0.k, this looks fairly complicated, and hence, some explanation is in order. First of all,
the inequality
Pr(d(c,h) <e)>1-96

means that with high probability (quantified bythere is not too much difference (quan-
tified by) between the conjectured concept (describedhpynd the target concept
Formally, let.A be any fixed learning method. Let= s(e,§) for any fixede,d € (0,1)
be the actual sample size. Furthermorecleke any fixed target concept. Now, we have
to consider all possible outcomes & when run on every labelegtsampleS(c,z) =
(x1,c(x1), ..., x5, ¢(xs)) returned byEX (). Let h(S(c,z)) denote the hypothesis pro-
duced by.4 when processing(c, z). Then we have to consider the $&tof all s-tuples
over X’ such thatd(c, h(S(c,z))) < e. The conditionPr(d(c,h) < ¢) > 1 — § can now

PAC LEARNING 67

be formally rewritten a®r(WW) > 1 — §. Clearly, one has to require thBi (1) is well
defined. This is obvious as long asis finite.

In order to exemplify this approach, remember that our set of all concepts describable
by a monomial ovelZ,, actually refers to the set of all things. We consider a hypothetical
learner (e.g., a student, a robot) that has to learn the concept of a chair. Imagine that the
learner is told by some teacher whether or not particular things visible by the learner are
instances of a chair. Clearly, what things are visible depends on the environment the learner
is in. The formal description of this dependence is provided by the unknown probability
distribution. For example, the learner might be led to a kitchen, a sitting room, a book shop,
a garage, a beach a.s.o. Clearly, it would be unfair to teach you the concept of a chair in a
book shop, and then testing your learning success in a sitting room. Therefore, the learning
success is measured with respect to the same probability distribOtiatith respect to
which the sampling oracle has drawn its examples. However, the learner is required to learn
with respect to any probability distribution. That is, independently of whether the learner
is led to a kitchen, a book shop, a sitting room, a garage, a beach a.s.o., it has to learn
with respect to the place it has been led to. The sample complexity refers to the amount of
information needed to ensure successful learning. Clearly, the smaller the required distance
of the hypothesis produced, and the higher the confidence desired, the more examples are
usually needed. However, there might be atypical situations. To have an extreme example,
the kitchen the learner is led to turned out to be empty. Since the learner is required to
learn with respect to a typical kitchen (described by the probability distribuiipit may
well fail under this particular circumstance. Nevertheless, such failure has to be restricted to
atypical situations. This requirement is expressed by demanding the learner to be successful
with confidencel — é.

This corresponds well to real life situations. For example, a student who has attended a
course in probability theory might well suppose that he/she is examined in probability the-
ory and not in graph theory. However, a good student, say in computer science, has to pass
all examinations successfully, independently of the particular course attended. That is, he
must successfully pass examinations in computability theory, complexity theory, cryptol-
ogy, parallel algorithms, formal languages, recursion theory, learning theory, graph theory,
combinatorial algorithms, logic programming, a.s.0. Hence, he/she has to learn a whole
concept class. The sample complexity refers to the time of interaction performed by the
student and his/her teacher.

Now, we are ready to prove the PAC learnability of our concept class. We use the same
notation as above.

Theorem 6.5.The set of all monomials ovér, can be probably approximately correctly
learned with respect to the hypothesis sp&t@and with sample complexity = O(1/¢ -
(n+1n(1/9))).

Proof. As a matter of fact, we can again use a suitable modification of algorffhm
presented in Lecture 2.

Algorithm PA: “Foralle,§ € (0,1), call the oracleE X () s times, wheres = O(1/e -

68 LECTUREG: STOCHASTIC FINITE LEARNING AND PAC LEARNING

(n+1n(1/9))). Let(by,m(by), b, m(b2), ..., bs, m(bs)) be the sequence returned by
EX(). Letbh; = bb?...b" denote theth vectorbz € X returned.

Initialize h = 217 . .. 2, T
Fori=1,2,...,sdo

if m(b;) = 1then

forj:=1ton do

if b/ = 1 then deletex; in 1 else delete; in h.
Outputh.

end.”

Let D be any probability distribution ovet’. Furthermore, letn be any target mono-
mial. We have to show that the algoritif4 outputs with confidence at least— § a
hypothesig: such thati(m, h) < . We easily observe that

d(m,h)= 3 D(b) = D({b € X| m(b) # h(D)}).

bemAh

Since the algorithmP.A is essentially the same as Algoritiiwe can exploit the proof
of Theorem 2.1. First of all, for every target monomia| if 7 is the hypothesis output by
PA thenh(b;) = m(b;) forall: = 1,...,s. Recall that such hypotheses are said to be
consistent

Now, suppose any particular hypothesisc ‘H such thatd(m,h) > . Any such
hypothesis will not be consistent withrandomly drawn examples unless all examples are
drawn outside the symmetric differencerafandh. Letb € X be any randomly chosen
vector. Then we have: the probability thatb) = h(b) is bounded byl — ¢. Hence, if we
haves randomly and independently drawn vectéys. . ., b, € X, then the probability that
m(b;) = h(b;) foralli =1,...,sis bounded by1 — ¢)*. Furthermore(l —¢)® < e™=*.

Additionally, there areard(H) many possible choices far.

Thus, the overall probability that randomly and independently drawn vectors do not
belong tom A h, for anyh € H, is bounded byard(H)e=*

card card(H)

Therefore, ifs > 1/¢ - In we get:

1 card(H)

card(H)e ®* < card(H)e™ ™" 5 =4.
Consequently, since all hypothesesutput byP.A are consistent, now we know that
Pr(d(m,h) > ¢) < 0, and thus

Pr(d(m,h) <e) >1-4.

Finally, by Exercise 1 we know thaard(H) = 3" + 1, hence the theorem follows. I

PAC LEARNING - THE FINITE CASE 69

Next, we considedisjunctionsover £,,, i.e., all expressiong = ¢;, vV ...V ¢, , where
k<mn,ip<... <igandalll;, € Ly forj=1,... k. Hence, disjunctions are the logical
duals of monomials. Additionally, we inclugé= =, vVz, V...V, V Z, into the set of all
disjunctions ovelZ,, to represent the concept “TRUE.” Furthermorelet b ...b" € X,
thenf(b) = ¢;, (b") V...V £, (b"), wherel; (b)) = 1iff {;, = z; for somei, andb’s = 1
or{;, = x; for somei, andb’ = 0. Otherwisefi].(bi-f) = 0. Then, if f is a disjunction over
L, we setL(f) ={be X| f(b) = 1}. Finally, letC be the set of all concepts describable
by a disjunction over,,, and letH be the hypothesis space that consists of all disjunctions
as described above.

Exercise 13.Prove or disprove.

(a) The set of all disjunctions ovet,, can be probably approximately correctly learned
with respect to the hypothesis spagend with sample complexity = O(1 /¢ - (n +

In(1/4))).

Next, we continue with a closer at probably approximately correct learning. So far in
our study we have only proved the class of concepts describable by a monomial to be PAC
learnable. Therefore, we are interested in gaining a better understanding of what finite
concept classes are PAC learnable. Furthermore, we aim to derive general bounds on the
sample complexity needed to achieve successful PAC learning provided the concept class
under consideration is PAC identifiable at all.

Moreover, concept classes of infinite cardinality make up a large domain of important
learning problems. Therefore, it is only natural to ask whether or not there are interesting
infinite concepts classes which are PAC learnable, too. The affirmative answer will be
provided in the following lectures. For the sake of presentation, we start with a general
analysis of PAC learnability for finite concept classes. Subsequently, we investigate the
case of infinite concept classes.

6.3.1. PAC Learning - the Finite Case

Let X be any finite learning domain, lé2 be any probability distribution ovet’, and
letC C p(X') be a concept class. Furthermore, we tis& denote any hypothesis space
for C. Note that, in general, we do not requeC H. To simplify notation, we usé\/|
to denote the cardinality of any séf. Letm € N, m > 1; then we useY™ to denote
the m-fold Cartesian product ot’. Letz € A™, the we writez = (z1,...,z,,). Now,
let c € C be any concept. The:-sample ofc generated byt is denoted byS(c, z) =
(1, c(x1), ..., Tm, c(x,)). A hypothesish € H is said to beconsistent for anm-sample
S(c,z) iff h(xz;) = c(z;) forall 1 <i < m.

The sample spacg. of a concept: is the set of alin-samples of;, i.e.,

Se=UJ U S2).

m>1zeXm

70 LECTUREG: STOCHASTIC FINITE LEARNING AND PAC LEARNING

The sample spac&(C) of a concept clas§ is the union of over allS., ¢ € C. Then, a
learner is any computable mapping fraitC) into H. A learner is said to beonsistent
iff all its outputs are consistent hypotheses.

The formal definition of PAC learning has already been presented above. Moreover,
we showed the class of all monomials to be PAC learnable. The general idea behind the
algorithm given there can be described as follows:

(1) Draw a sufficiently large sample from the oradl& (), saym examples.
(2) Find someh € H that is consistent with all the examples drawn.

(3) Outputh.

Therefore, it is only natural to ask whether or not this strategy may be successful in the

general finite case, too. Let us assume that we have a consistent learnerc Letbe

any concept, and let be any hypothesis output by the learner on amgampleS(c, z),
wherez has been drawn with respect to the unknown probability distribuflorAssume

h to bebad i.e.,d(c, h) > €. Any such hypothesis will not be consistent withrandomly
drawn examples unless all examples are drawn outside the symmetric differeransdaf.
Hence, the probability that the particular bad hypothéssirvivesm examples is at most

(1 — &)™, Consequently, the probability that some bad hypothesis surxvivesamples is

at most|’H|(1 — ¢)™. Furthermore, we warfr(d(c, h) > €) < §. Hence, we must require:

|H|(1—e)" <4

Now, the latter requirement directly allows to lower boundTaking the natural logarithm
of both sides, we obtain:
In|H| +mlIn(l —¢) < Ino.

Therefore, we have:
Ind —In|H|

~ In(l —¢)
Because of1 — 1)* < ¢! forall z > 0, we additionally obtain:
(1-e)=(1-g)¥)<er,
and thus
In(l—¢) < —e.

Putting it all together, we see that

1 1\ 1. |H]|

We summarize the insight obtained by the following theorem.

Theorem 6.6.Let X' be any finite learning domain, 1€t C o(X') be any concept class,
and let’H be any hypothesis space f6r Then every consistent learner PAC identifies
with respect td+ with sample complexity: = éln % + 1.

PAC LEARNING - THE FINITE CASE 71

The latter theorem delivers a first upper bound on the sample complexity needed to
achieve efficient PAC learning. However, it does not say anything concerning the problem
to compute consistent hypotheses. Clearly, there is a trivial algorithm to achieve this goal.
We may just enumerate all hypotheses. Then we may simply search for the first consistent
one in the enumeration fixed. Nevertheless, taking into accountthmaight be huge, this
method will usually take too much time. Hence, further effort is necessary to arrive at
practical learning algorithms.

The latter observation motivates us to strengthen our requirements concerning the effi-
ciency of PAC learning. It might be not enough to bound the number of examples. Ad-
ditionally, we shall demand the overall running time to be polynomial in the appropriate
parameters.

Definition 15. A concept clas€ is said to beefficiently PAC learnable with
respect to the hypothesis space H if C is PAC learnable with respect t, and there
exists a PAC learning algorithm for C that runs in time polynomial in /e, 1/, n (the
size of an instance ir’), and sizéc) forall ,6 € (0,1) and allc € C.

Now, we are ready to establish the PAC learnability of a couple of important finite con-
cept classes. Alauseis a disjunction of literals. By:-CNF we denote the class of all
conjunctions such that each clause contains at mbtgrals. For example,

($1 V To \/ng) N (fi'l V o \/373)

is a 3-CNF.

The overall number of clauses containing at mokterals is bounded by
2n 4+ (2n)? + ... (2n)F < O(nF) .

Hencen(|k-CNF|) = O(n*). Therefore, we get the following general theorem.

Theorem 6.7.Letk € N* be arbitrarily fixed. The class of all concepts describable by
a k-CNF formula is efficiently PAC learnable with respectt@€NF.

Proof.On inpute, § makem = O (1(n* + In }) calls to the oraclé X (). LetS(c,b) =
(b1,¢(b1), ..., bm,c(by)) be the sample returned.

Initialize h as the conjunction of all clauses containing at niokterals.

Fori=1,2,...mdo

if ¢(b;) = 1 then delete all clauses inthat do not contain a literal evaluating to 1 on the
assignment given by;.

Outputh.

By constructionf is consistent. Hence, by Theorem 6.6 we know that the algorithm de-
scribed above PAC learimsCNF with respect t&-CNF. The running time of this algorithm
is obviously polynomially bounded b/, 1/6, andn*. i

72

LECTUREG: STOCHASTIC FINITE LEARNING AND PAC LEARNING

Next, byk-DNF we denote the class of all disjunctions such that each monomial contains
contains at most literals.

Exercise 14. Prove the following: Let: € Nt be arbitrarily fixed. The class of all
concepts describable by /aDNF formula is efficiently PAC learnable with respectito

DNF.

References

[1]

[2]

[3]
[4]

[5]

[6]

[6]

M. ANTHONY AND N. BIGGS (1992), “Computational Learning Theory,” Cam-
bridge University Press, Cambridge.

M.J. KEARNS AND U.V. VAZIRANI (1994), “An Introduction to Computational
Learning Theory,” MIT-Press.

B.K. NATARAJAN (1991), “Machine Learning,” Morgan Kaufmann Publishers Inc.

R. REISCHUK AND T. ZEUGMANN, A Complete and Tight Average-Case Analysis
of Learning Monomialsin “Proceedings 16th International Symposium on Theoret-
ical Aspects of Computer Science,” (C. Meinel and S. Tison, Eds.), Lecture Notes in
Computer Science, Vol. 1563, pp. 414-423, Springer-Verlag , Berlin 1999.

R. REISCHUK AND T. ZEUGMANN, An average-case optimal one-variable pattern
language learnedournal of Computer and System Scien68sNo. 2, 2000, 302—
335.

P. ROSSMANITH AND T. ZEUGMANN, Stochastic finite learning of the pattern lan-
guagesMachine Learningi4, No. 1-2, 2001, 67-91.

L.G. VALIANT (1984), A theory of the learnabl€ommunications of the ACKI7,
1134 -1142

73

LECTURE7: DECISION TREE LEARNING

So far, we have mainly studied the learnability of simple Boolean concepts. That is, we
looked at concepts describable by a monomial. However, over the learning dfima}f
there are only™ + 1 many concepts that can be described by a monomial. In contrast, there
are 22" many Boolean functions. Since every Boolean function can be represented by a
decision tree, we shall finish our tour on learning by learning at the learnability of decision
trees. As a matter of fact, decision tree learning is used quite often in practice. So, you
should know at least a bit about it. Also, we shall not restrict ourselves to the Boolean case.

For the sake of presentation, let us have a look at the whether data already used in
Lecture 1. Recall that this data set is fictitious, but it serves its purpose to explain some
typical features. The data concern the conditions for playing some unspecified game.

The Weather Data

| outlook | temperature | humidity | windy | play |
sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no

In the table displayed above, we have fattributes i.e., outlook, temperature, humid-
ity, and windy. These attributes can take symbolic values rather than numerical values. The
rightmost column shows the recommendation, that is whether or not one should play. In
other words, the attributes are observable variables, and the recommendation is assumed
to be a function of the attributes. Let us assume thalook can take the three values
sunny, overcast, rainythattemperature can take the three valuést, mild, coo) that
humidity can take the two valudsgh, normaland thatwindy can take the two values
true, false Then, the complete table should have 36 entries. In contrast, the table given has
only 14 entries. This is quite a typical situation in many applications.

Next, we ask if there are any rules behind this table. This is the typical question asked
in data mining Here the typical problem is again to make predictions. For example, we are
given the following data for tomorrow.

74 LECTURE7: DECISION TREELEARNING

| outlook | temperature | humidity | windy | play |
| sunny | cool \ high \ true | ? |

So, what should we do, play or not play?

Of course, there may be many different ways to express such rules and to find them.
Decision trees are one possibility.

Thus, let us first look at a decision tree for the weather data set given above.

Figure 7.1: Decision tree for the weather data.

Clearly, we have to ask what this decision tree is representing.
7.1. Decision Tree Representation

Decision trees classify instances by sorting them down the tree from the root to some
leaf. The label in the leaf provides the classification of the instance. Each node in the tree
that is not a leaf specifiesastof someattributeof the instance by which it is labeled. Each
branch descending from that node corresponds to some possible value for this attribute.
Any given instance is the classified by starting at the root, testing the attribute specified
there and then moving down the tree branch which corresponds to the value given. This
process is then recursively repeated for the subtree rooted at the new node. For example,
let (sunny, hot, high, falgefrom the weather data set be the given instance. First, we test
outlook , which issunny Thus, we move down the left branch of the tree shown in
Figure 7.1. Next, we test the attribute humidity which has vdlige. Thus, the instance
(sunny, hot, high, falgas correctly classified byo.

In general, decision trees represemtigjunctionof conjunctions of constraints on the
attribute values of instances. For example, using the natural interpretatyes cds1 the
decision tree given in Figure 7.1 corresponds to the disjunction

(outlook = sunnyA humidity = normal)
V (outlook = overcasf
V (outlook = rainy A windy = false

Before we turn our attention to the problem of learning decision trees from examples we
would like to give a short characteristic of decision tree learning.

DECISION TREE REPRESENTATION 75

Generally speaking, decision tree learning is a method for approximating discrete-valued
target functions. The function learned is represented by a decision tree. Decision tree
learning is robust to noisy data and thus very popular. In fact, decision tree learning is one
of the most widely used and practical methods for inductive inference. There are several
decision tree learning methods around that differ to a certain extent with respect to their
capabilities and requirements. Nevertheless, all these algorithms also share many features.
In particular, it can be said that decision tree learning is best suited for problems having the
following characteristics.

1. Instances of the problem are representeaitbybute-value pairs The instances can
be described by a fixed set of attributes and their values. For example, in Lecture 7
we presented the weather data set. The attributes in this probleoutoek |,
temperature , humidity , andwindy . Each attribute could take a small fixed
set values, e.g., favutlook the set of possible i§sunny, overcast, raifyand for
temperature the set of values ighot, mild, coo}. It should be noted, how-
ever, that suitable extensions to the basic algorithms allow handling of real-valued
attributes as well.

2. Thetarget functionhas discrete output values. In our weather data set these output
values have beefyes, no } and in our data set from molecular biolog, N }.
Of course, decision tree learning methods can also handle more than two possible
discrete output values. There are also decision tree learning algorithms around that
can even handle target functions with real-valued outputs, but applications of decision
trees in such settings are less common.

3. Disjunctive descriptionsnay be required. As we shall see below, every function
described by a decision tree allows also a representation as disjunction.

4. The training data may contain errorAs already mentioned, decision tree learning
methods are robust to errors. The type of errors decision tree learning methods can
handle comprises errors in the classification (e.g., some of the protein sequences in
our example from the last lecture may have erroneously been classified as positive by
the domain experts) as well as errors in the attribute values describing these examples
(e.g.,normalinstead othigh may have appeared erroneously in our weather data set
as value for humidity).

5. The training data may contain missing attribute valuésr example, some attributes
in a true weather data set may be missing, since at some particular day it was impos-
sible to measure the temperature because of a technical problem.

Since many practical problems have been found that fit the characteristics given above,
decision tree learning is often used. Examples comprise the classification of medical pa-
tients by their diseases, loan applicants by their likelihood of defaulting on payment and
many more.

Now, we are ready to deal with the problem how to learn decision trees.

76 LECTURE7: DECISION TREELEARNING

7.2. The Basic Decision Tree Learning Algorithm

The material we are going to represent here is based on Quinlan’s (1986) ID3 algorithm
and its successor C4.5 (cf. Quinlan(1993)). These algorithms employ a top-down, greedy
search through the set of possible decision trees. Our exposition here roughly corresponds
to the ID3 algorithm. Intuitively, this algorithm first answers the question “which attribute
should be tested at the root of a decision tree?”

For seeing how to answer this question, let us try the different attributes from the weather
data set first. Figure 7.2 shows the four possible choices for the root and the resulting tree

stumps for the weather data.

overcast \ rainy cool
yes yes yes yes yes yes
yes yes yes yes yes yes
no yes yes no yes yes
no yes no no yes no
no no no
no
: high j normal j false j true
yes yes yes yes
yes yes yes yes
yes yes yes yes
no yes yes no
no yes yes no
no yes yes no
no no no
no

Figure 7.2: Decision tree stumps for the weather data.

So, how did we obtain these decision tree stumps? First, we have selected the attribute
to be put into the root, e.gautlook , ortemperature . There are five entries in the
weather data set having the valsennyfor outlook . Two of them classifyyes and
three classifyno. Moreover, there are four entries having the vaduercastor outlook
and all of them classifyes . Finally, there are five entries having the vakaeny for
outlook and three of them classifyes while two classifyno. Thus, we get the tree

THE BASIC DECISION TREE LEARNING ALGORITHM 77

stump as drawn in Figure 7.2 when takiogtlook as root. The remaining three stumps
are obtained analogously.

Our goal is to arrive at small decision trees. Any leaf with only one clagss—or no
— will not have to be split further. This should happen as early as possible. But clearly, if a
leaf has more than one class, we have to repeat the process recursively. Of course, we can
thus generate all possible decision trees and then choose the smallest one from the set of
all decision trees obtained. But intuitively it is clear, that this approach is computationally
infeasible, since the number of all trees to be generated will be exponential in the number
of attributes. So, how can we recover? The idea is to decide which of the decision tree
stumps is the best for further processing. Once we have made a choice, all other decision
tree stumps are abandoned and we recursively repeat the process only for the stump chosen.

Suppose we have a measure of purity for each node. Then we could choose the attribute
that produces the purest daughter nodes. The measure of purity we are going to use is called
informationand measured in bits. But unlike usual bits, our bits here can also be less than
one. We shall look at details of how to compute these bits later. These bits are then used to
compute another measure that will be actually used to decide which of the stumps is best.
This measure Quinlan (1986) has used and it is catitmrmation gain The information
gain is a statistical property measuring how well a given attribute separates the training
examples according to their target classification. Thus, ID3 computes the information gain
for each of the tree stumps obtained and chooses one having the highest information gain.

So, let us assume that we can compute the bits mentioned above. Bits are computed for
the number ofyes andno classes at the leaf nodes. For the decision tree stump having
outlook inits root, there are three leaf nodes, i[2. 3], [4, 0], and[3, 2]. The information
values of these nodes are

info([2,3]) = 0.971bits
info([4,0]) = 0.0bits
info([3,2]) = 0.971bits.

Next, the average information value of these informations is calculated. Here we take the
number of instances into account that go down each branch, i.e., five down the first, four
down the second and five down the third one. This gives a total of 14 instances, and thus
we obtain

_ 5 4 5

nfo([2,3],[4,0],[3,2)) = 170971+ 0.0+ 0971

info([2, 3], [4, 0], 3, 2]) 0971+ — 0.0+ - 0.97
— 0.693bits .

This calculation is also applied to the training examples corresponding just to the root.
There are 14 examples, nine of which are classiiesl and five of which are classified
no. Using the still unknown formula we get

info([9, 5]) = 0.940bits.

78 LECTURE7: DECISION TREELEARNING

Theinformation gainis then just the difference, i.e.,
gain(outlook) = info([9,5]) — info([2, 3], [4, 0], [3,2]) = 0.247bits.
Analogously, we can compute

gaintemperature) = 0.029bits
gainhumidity) = 0.152bits
gainwindy) = 0.048bits.

So,outlook has the highest information gain and is thus chosen.

Next, we continue recursively. Clearly, a further splitartlook will produce nothing
new, thus only the remaining three attributes are considered. Looking again at the weather
data set, we see that there are the following five examples having thesvadng

| outlook | temperature | humidity | windy | play |
sunny hot high false no
sunny hot high true no
sunny mild high false no
sunny cool normal false yes
sunny mild normal true yes

So, we look at the possible rodmperature , humidity andwindy for the sub-
tree starting at theunnybranch (cf. Figure 7.3).

Then one gets the following values for the information gain

gaintemperature) = 0.571bits
gainhumidity) = 0.971bits
gainwindy) = 0.020bits.

Thus, at this poinhumidity is selected as splitting attribute. Then, we see that all re-
maining classes contain eithgrs orno. Thus, there is no need to split these nodes further
and the process terminates for this branch. Continued application of this idea finally leads
to the decision tree shown in Figure 7.1.

Ideally, the process finishes when all leaf nodes contain only one classification. But it
might be impossible to reach this situation if the training data contain two sets of attributes
with identical values but different classes. Thus, one stops when no further split is possible.

This explains the basic idea of the ID3 algorithm. We still have to provide the remaining
details. So, we continue by revealing the secret of how to compute the information gain.

For defining information gain precisely, we start from recalling the definition of a mea-
sure commonly used imformation theoryto measure in a precise way the amount of infor-
mation in a source. This measure is callettropy. Since this measure is very important

THE BASIC DECISION TREE LEARNING ALGORITHM 79

overcast \ rainy

high \ normal
no yes
no yes
no

overcast \ rainy

yes yes
no no

Figure 7.3: Expanded decision tree stumps for the weather data.

in our context of decision tree learning and in other parts of data mining we shall describe
it here in some more detalil.

For the sake of motivation, let us first assume that a contest is taking place. We have a
black box that emits source symbols from a sowagith a source alphabet = {s1, s»}.
The probability to see; is p; = % and the probability to se® is p, = ﬁ The winner
of the contest is the first one who can name both symbafs ifhus, the winner is the first
who has full information about the sgt Of course, we assume that neither contestant has
seen the source symbols beforehand. Now, suppose that in the first round the first contestant
gets source symbal, while the second one gets. So, at this point, who is more likely to

win the contest?

Since the first contestant still has to receiyewhose probability of occurrence ﬁ%ﬁ
while the second one has to wait seeingwhose probability of occurrence ﬁi it is
intuitively clear that the second contestant is more likely to win than the first.

Thus, in some sense, the second contestant has receivedhfioongationaboutS from
the source symbal, than did the first contestant. Therefore, it should be clear that, inde-
pendently of how we define precisely the information obtained from a source sytnéol,

80 LECTURE7: DECISION TREELEARNING

less likely a source symbol is to occur, the more information we obtain from an occurrence
of that symbol, and converselgonsequently, the information obtained from a source sym-
bol cannot be a function of the symbol itself, but rather of the symbol’s probabildiy
occurrence. Thus, we shall us@) to denote the information obtained from a source sym-
bol with probabilityp of occurrence. We shall make the following reasonable assumptions
about the functior (p), defined for all0 < p < 1.

Assumption 0. I(p) is not the constarit function.
Assumption 1. I(p) > 0 for all p.
Assumption 2. I(p) is continuous.

Moreover, we usually assume that the events of segiagds; on different transmis-
sions are independent. Thus, the information obtained from knowing thatspatid s;
have occurred should be the sui;) + I(p,). Since the probability of both events occur-
ring is p;p, we shall make

Assumption 3. I(p;p;) = 1(p;) + 1(p;).

Now, the remarkable fact about these four assumptions is that essentially one function
satisfies them. This is expressed by the following theorem.

Theorem 7.1.A function(p) is satisfying Assumptions 0 through 3 made above if and
only if it has the form

1
I(p) = clog -,
p
wherec > 0 is a constant andbg is the logarithm to the base

Proof. That thelog function is satisfying Assumptions 1 through 3 is a well-known fact
from calculus. For the converse direction, we start from Assumption 3, and obtain

I(p*) = I(pp) = I(p) + I(p) = 21(p) -
Now, it is easy to show by induction that
I(p") = ni(p) foralln € N* . (7.1)
Taking into account thgt7.1) holds for allp € (0, 1] directly yields
1(p) = 1(p~™) = I((p»)") = nI(p")
Consequently, we can conclude

1 1
I(pm) = —1(p) - (7.2)
Since(7.1) and(7.2) are valid for alln € N* we additionally have
I(pm) = —I(p) forall n, m € N* .
m

But this means that

I(p") = ri(p) for all positive rational numbersg. (7.3)

INFORMATION, ENTROPY AND INFORMATION GAIN 81

Now, recalling that for every positive real numbethere is a sequende,,),cn of positive
rational numbers,, such thatim,, .., r,, = r we get by the continuity of the power function
lim, ., p'» = p". Hence, the continuity of functioh (cf. Assumption 2) and7.3) imply
that

I(p") = I(lim p™) = lim I(p"™) = I(p) lim 7, = 71(p)

n—oo n—oo

for all positive real numbers.

Now, let us fix anyg with 0 < ¢ < 1. Since anyp satisfying0 < p < 1 can be written
asp = ¢'°&? and sincel (p) > 0 (cf. Assumption 1) as well ag(p) not constant (cf.
Assumption 0), we have

1
I(p) = [(qlogqp) = I(q) lqup — Clog]_?

for some constant > 0. |

As the proof of Theorem 7.1 shows, we additionally haye) = 0 nicely matching our
intuition. Moreover, the arbitrary multiplicative constantan be absorbed in the units of
measurement of information.

7.3. Information, Entropy and Information Gain

First, we define information. Using the facts presented above, we naturally arrive at the
following definition.

Definition 16. Theinformation I(p) obtained from a source symholith probabil-
ity p > 0 of occurrence is given by

1
I(p) =log — .
() p

The unit of measurement of information is the bit, as already said above. The connection
to the binary unit (also called bit) comes from the following observation. If the soutge is
and has alphabet = {0, 1} and both symbols are equally likely, i.@e, = p; = 1/2, then
the information given by either source symbol/id/2) = log2 = 1. Thus, if the source
randomly emits one binary digit (bit), then the information obtained by a single emission is
one binary unit (bit).

Example. A PC monitor is capable of displaying pictures made up of pixels at a res-
olution of 1024 columns by 768 rows (or higher). Hence, if each pixel can be in any one
of 256 colors, there are a total 2¥10247% different pictures. If each of these pictures is
considered to be equally likely, the probability of a given picturei€*1456. Thus, the
information obtained from a single picture is

I = log 20291156 — 6291456 bits .

Next, consider a random speech of 1000 words from a 10 000 word vocabulary (what
would be amazing for a politician). Then the probability of speaking any sequence of 1000

82 LECTURE7: DECISION TREELEARNING

words from such a vocabulary i€000-1°°, Consequently, the amount of information
obtained from such a speech is

I = log 10000'°° = 1000 log 10000 < 14000 bits .

This clearly shows that a picture is worth more than a thousand words.
Now, we are ready for defining the concept of entropy.

Definition 17. LetS = (S, P) be a source with source alphabgt= {s,,...,s,} and
probability distribution? = {p,,...,p,}. The average information obtained from a single
sample fromsS is

q q q
H(S) = Zpil(pi) = Zpilog]% = Zpi log p; .
i=1 i=1 v i=1

The quantityH (S) is called entropy of the source. For the sake of convenience, we
define in all calculations involving entrofMog 0 to beO.

Now, given a collectionS, containing positive and negative examples of some target
concept, the entropy & relative to this boolean classification is

Entropy(S) = —pe log ps — pe log ps (7.4)
wherep,, is the proportion of positive examples fhandp., is the proportion of negative
examples inS.

Now, let.S be a sample, letl be any attribute and let Valug$) be the set of all possible
values for attributed. Furthermore, lef, = {s| s € S andA(s) = v}. Then we formally
define the information gain as follows.

Definition 18.

gain(S, A) = Entropy(S) — > ‘é”” - Entropy(S,) .
veValuesa)

Here EntropysS) is the original entropy of the sample and the second term isxpected
entropy afterS has been partitioned using attribute

We continue by a having a closer look at Form(ifat). First, let us assume that there
are no positive examples, i.@5 = 0. Consequently, all examples are negative and hence
pe = 1. Then, recalling that we have definethbg 0 = 0, we get

Entropy(S) = —pglogpe — pelogps
= 0Olog0—1logl=0.

Analogously, if all examples are positive, i.e;, = 1 andps = 0, we also obtain

Entropy(S) = —pglogps — pelogpe
= —1llogl—0log0=0.

INFORMATION, ENTROPY AND INFORMATION GAIN 83

Next, suppose that the sample contains an equal number of positive and negative exam-
ples, i.e.py = po = 1/2. Then,

Entropy(S) = —pglogps — pelogpe

RN B O
T T3%5 7 5%y

1
+5=1
Note that we always have, + p- = 1. Thus, we have to study the function
f(z) = —xlogx — (1 —x)log(l —x)
for x € (0, 1). Recalling a bit calculus, it is easy to see that
f'(x) = —logz +log(l —z) ,

and thatf’(x) = Oifand only ifx = 1/2. Sincef’(xz) > Oforall z < 1/2, we see thaf (x)
is monotonically increasing for at € (0,1/2). Furthermoref'(z) < 0 for all x > 1/2,
and thusf(x) is monotonically decreasing for alle (1/2,1). Finally,

forall x € (0, 1), and therefore(z) is concave. Putting it all together, we get the graph of
the entropy function displayed in Figure 7.4.

Entropy(S)

Pg

Figure 7.4: Entropy function in dependence ofp.

84 LECTURE7: DECISION TREELEARNING

Next, we illustrate the use of the entropy function and information gain as given in
Definition 18 by looking again at our weather data SetWe have a total of 14 examples
and 9 of them are positive and 5 of them are negative. Consequgntly; 9/14 and
pe = b/14. So, we can compute Entrofdy) and obtain

9 9 5! 5!
Entrop)(S) = _ﬁ . 10g ﬁ — ﬁ . 10g ﬁ

1 -
= 11 [141og 14 — 9log 9 — 5log 5] = 0.940bits ,

i.e., the value we have already provided at Page 77. Note that is computationally advanta-
geous to perform the calculation as described above, i.e., without working out the fractions
and taking the logarithm of them.

Next, we compute the information gain for the attribubeglook , temperature
humidity —andwindy by using the formula provided in Definition 18. The attribute
outlook can take the three valussnny overcastandrainy. Looking at the weather data
set, we directly gettSsunny| = 5, [Sovercast| = 4 aNd|Syuiny| = 5. Furthermore,

2 2 3 3
Entro wnny) = —=log = — —log = = 0.971bits
PY(Saunny) Slog = — Zlog =097
Entropy(Sovercast) = Obits
3 3 2 2
Entro rainy) = ——log — — —log = = 0.971bits
PY(Sraing) Slog z — Zlog = =097
Putting it all together, we thus obtain
ain(S, outlook) =0.940 0 0.971 1 0 0 0.971 = 0.246bits
gain.>; - 1 VR VIR

and analogously

gain(S,temperature) = 0.029bits
gain(S,humidity) = 0.152bits
gain(S,windy) = 0.048bits,

i.e., again the values we already have provided at Page 77.

So far we have discussed entropy of a sample for the special case where the target clas-
sification is boolean. More generally, if the target attribute can take different values,
then the entropy relative to thiswise classification is defined as

Entropy(S) = — Y _p;logp; ,
=1

wherep; is the proportion of the sample belonging to class. Note that logarithm is still
to the base, because entropy is measured in bits. Also note that maximum isagaw

This completes the description of the ID3 algorithm. So, what else can be said about the
ID3 algorithm? For answering this question, let us look at the hypothesis space used by the
ID3 algorithm.

ID3’'SHYPOTHESISSPACE 85

7.4. 1D3’s Hypothesis Space

ID3’s hypothesis space is the set of all decision trees. Thus, itcsnapletespace
of finite discrete-valued functions, relative to the available attributes. Since every finite
discrete-valued function can be represented by some decision tree, ID3 avoids one of the
major risks of methods that search incomplete hypotheses spaces: That the hypothesis space
might not contain a correct description of the target function.

Conceptually, we may think of ID3 as a learning algorithm that searches the hypothesis
space of all decision trees for one that correctly describes the training data. The search is
guided by using the information gain measure.

ID3 maintains only a single current hypothesis as it searches through the space of deci-
sion trees. This contrast, for example, our pattern language learner presented in Lecture 6
which conceptually maintains the set of all patterns that are consistent with the text seen so
far in every learning step. From this set, it then chooses a descriptive pattern and outputs
it. Thus, ID3 does not have the ability to determine which alternative consistent hypotheses
are still available.

Moreover, ID3 in the form presented does not perform any backtracking in its search.
Once an attribute has been selected as root in the relevant subtree, this choice is never
reconsidered. While this improves the efficiency of the decision tree learner, it does not
necessarily guarantee that the learned decision tree is the smallest possible. In other words,
ID3 always selects thiecally optimal solutiorand may thus converge to a locally optimal
solution. However, this locally optimal solution may be less desirable thagldimally
optimal solutiorthat would have been encountered along a different branch of the search.

ID3 uses all training examples at each step in the search to make a statistically based
decision (i.e., by using the information gain) regarding how to refine its current hypothesis.
The advantage of this approach is that the resulting search is much less sensitive to errors
in individual training data than other methods using individual training data for making
decisions.

Next, we turn our attention to another very important problem, i.e.jrtlective bias
used by the ID3 algorithm.

7.5. Inductive Bias in Decision Tree Learning

Roughly speaking thénductive bias is the set of assumptions that, together with
the training data, deductively justify the classification assigned by the learner to future
examples. For example, the weather data set contains 14 examples. However, there are 36
possible examples, and of course, besides explaining the training data, one is also interested
in decision trees that classify the still unseen data correctly. Since there may be many
possible decision trees that correctly explain the training data, every learner has to make
a choice. The explicitely or implicitly made assumptions determining this choice are the
inductive bias of the learner.

86 LECTURE7: DECISION TREELEARNING

The ID3 algorithm chooses the first acceptable tree it encounters in its search through
the hypothesis space. Roughly speaking, the ID3 algorithm selects in favor of shorter trees
over longer ones, and selects the tree that places the attributes with highest information gain
closest to the root. So, there is a subtle interplay between the attribute selection heuristics
used by ID3 and the particular training examples it encounters .hus, it is difficult to charac-
terize precisely the inductive bias used by ID3. Nevertheless, as a first approximation we
may say:

Shorter trees are preferred over larger trees. Trees that place high information gain
close to the root are preferred over those that do not.

Of course, one has also to answer the question whether or not this is a good or not so good
inductive bias. But it is beyond the scope of the introductory nature of our course to provide
a thorough study of this problem.

References

[1] J.R. QUINLAN (1986), Induction of decision treeSlachine Learnindl, No.1, 81 —
106.

[2] J.R. QUINLAN (1993),C4.5: Programs for Machine Learning/lorgan Kaufmann,
San Mateo, CA.

