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Summary

Influenza viruses are probably a major cause of morbidity and mortality world wide.

Large segments of the human population are affected every year. In June 2009, World

Health Organization declared the influenza due to a new strain of swine origin H1N1

was responsible for the 2009 influenza pandemic. And on June 11, the WHO declared

an H1N1 pandemic moving the alert level to phase 6, marking the first global pandemic

since the 1968 Hong Kong influenza. There are a lot of data mining methods used in

biological sciences to analysis viruses. But if one designs data mining algorithms based

on domain knowledge, then the resulting algorithms tend to have many parameters.

Determining how relevant particular features are is often difficult and may require a

certain amount of guessing.

In this thesis, we introduce a universal data mining method which we call parameter-

free data mining. The approach of parameter-free data mining is aimed at scenarios

where we are not interested in a certain similarity measure but in the similarity be-

tween objects themselves. The most promising approach to this paradigm is called

normalized information distance which uses Kolmogorov complexity theory as its ba-

sis. As the normalized information distance (NID) cannot be computed, we apply

this idea to standard compression algorithms, such as gzip and bzip, have been

used as approximations of the Kolmogorov complexity. This yields the normalized

compression distance (NCD) as approximation of the NID.

To demonstrate the usefulness of the normalized compression distance for cluster-

ing influenza viruses data, two kinds of compressors and two clustering algorithms

have been used, which verified that this approach neither depend on the compression

methods nor the clustering methods we choose.
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Chapter 1

Introduction

1.1 Background of Parameter Free Data Mining

Influenza viruses were probably responsible for the disease described by Hippocrates

in 412BC [13], and thus they have been with us for a long time. Influenza viruses

remain a major cause of morbidity and mortality world wide. To analyze or predict

the viruses data, many methods to classify the viruses data have been developed.

The similarity between objects is a fundamental notion in everyday life. It is

also fundamental to many data mining and machine learning algorithms, and, in

particular to clustering algorithms. Often the similarity between objects is measured

by a domain-specific distance measure based on features of the objects. For example,

the distance between pieces of music can be measured by using features like rhythm,

pitch, or melody, i.e., features that do not make sense in any other domain. To

develop such methods one needs special knowledge about the application domain for

extracting the relevant features beforehand. Such an approach does not only cause

difficulties, but includes a certain danger or risk of being biased.

If one is pursuing the approach to design data mining algorithms based on domain

knowledge, then the resulting algorithms tend to have many parameters. By using

these parameters, one can then control the algorithms’ sensitivity to certain features.

Determining how relevant particular features are is often difficult and may require a

certain amount of guessing. Expressing this differently, one has to tune the algorithms

which is requiring domain knowledge and a larger amount of experience. Furthermore,

it may be expensive, error prune and time consuming to arrive at a suitable tuning.

1.2 Main Idea of Kolmogorov Complexity

However, as a radically different approach, the paradigm of parameter-free data min-

ing has emerged (cf. Keogh et al. [14]). The main idea of parameter-free data mining

is the design of algorithms that have no parameters and that are universally applicable

in all areas.
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The problem is whether or not such an approach can be realized at all. It is only

natural to ask how an algorithm can perform well if it is not based on extracting the

important features of the data and if we are not allowed to adjust its parameters until

it is doing the right thing. As expressed by Vitányi et al. [23], if we a priori know

the features, how to extract them, and how to combine them into exactly the distance

measure we want, we should do just that. For example, if we have a list of cars with

their color, motor rating, etc. and want to cluster them by color, we can easily do that

in a straightforward way.

So the approach of parameter-free data mining is aiming at scenarios where we

are not interested in a certain similarity measure but in the similarity between the

objects themselves. The most promising approach to this paradigm uses Kolmogorov

complexity theory [16] as its basis.

The key ingredient to this approach is the so-called normalized information distance

(NID) which was developed by various researchers during the past decade in a series

of steps (cf., e.g., [4, 15, 6]).

More formally the normalized information distance between two strings x and y is

defined as

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
, (1.1)

where K(x|y) is the length of the shortest program that outputs x on input y, and

K(x) is the length of the shortest program that outputs x on the empty input. It is

beyond the scope of the present paper to discuss the technical details of the definition

of the NID. We refer the reader to Vitányi et al. [23].

The NID has nice theoretical properties, the most important of which is universal-

ity. The NID is called universal, since it accounts for the dominant difference between

two objects (cf. Li et al. [15] and Vitányi et al. [23] and the references therein).

In a sense, the NID captures all computational ways in which the features needed in

the traditional approach could be defined. Since its definition involves the Kolmogorov

complexity K( · ), the NID cannot be computed. Therefore, to apply this idea to

real-world data mining tasks, standard compression algorithms, such as gzip, bzip,

or PPMZ, have been used as approximations of the Kolmogorov complexity. This

yields the normalized compression distance (NCD) as approximation of the NID (cf.

Definition 1).

In a typical data mining scenario we are given some objects as input. The pairwise

NCDs for all objects in question form a distance matrix. This matrix can be processed

further until finally standard algorithms, e. g., clustering algorithms can be applied.

This has been done in a variety of typical data mining scenarios with remarkable

success. Works of literature and music have been clustered according to genre or

author; evolutionary trees of mammals have been derived from their mitochondrial

genome; language trees have been derived from several linguistic corpora (cf., e.g., [6,

14, 5, 8, 3]).
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As far as virus data are concerned, Cilibrasi and Vitányi [9] used the SARS TOR2

draft genome assembly 120403 from Canada’s Michael Smith Genome Sciences Centre

and compared it to other viruses by using the NCD. They used the bzip compressor

and applied their quartet tree heuristic for hierarchical clustering. The resulting

ternary tree showed relations very similar to those shown in the definitive tree based

on medical-macrobiological genomics analysis which was obtained later (see [9] for

details).

1.3 Procedure

The main goal of the present paper is a detailed analysis of the general method

outlined above in the domain of influenza viruses. More specifically, we are inter-

ested in learning whether or not specific gene data for the hemagglutinin of influenza

viruses are correctly classifiable by using the concept of the NCD. For this purpose we

have chosen a set of 106 gene sequences from the National Center for Biotechnology

Information for which the correct classification of the hemagglutinin is known. As

explained in Chapter 3, there are 16 subtypes commonly called H1, . . . , H16. For

these 106 gene sequences (or subsets thereof) we then compute the NCD by using the

CompLearn Toolkit (cf. [7]) as done in [9].

This computation returns a symmetric matrix D such that dij is the NCD between

the data entries i and j (henceforth called distance matrix). Furthermore, we study

the influence of the compressor chosen and restrict ourselves here to the zlib and

bzip compressors which are the standard two built-in compressors for the CompLearn

Toolkit.

The next step is the clustering. Here of course the variety of possible algorithms is

large. Note that the CompLearn Toolkit contains also an implementation of quartet

tree heuristic for hierarchical clustering. However, this heuristic is computationally

quite expensive and does currently not allow to handle a matrix of dimension 106×106.

Therefore, we have decided to try the hierarchical clustering algorithm from the R

package (called hclust) with the average option. In this way we obtain a rooted tree

showing the relations among the input data.

The second clustering algorithm used is spectral clustering via kLines (cf. Fischer

and Poland [10]). We have successfully applied this method before (cf. [21, 20]) in

settings where the NID is approximated by the so-called Google Distance. It should

be noted that spectral clustering generally requires the transformation of the distance

matrix into an adjacency matrix of pairwise similarities (henceforth called similarity

matrix). The clustering is then done by analyzing its spectrum.

The results obtained are generally very promising. Quite often, we obtained a per-

fect clustering independently of the method used. On the other hand, when including

all data or a rather large subset thereof, the clustering obtained is not perfect but

the number of errors made is still sufficiently small to make the results interesting.
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Without going into details here, it can be said that the zlib compressor seems more

suitable in this setting than the bzip compressor (see Section 3.2 for details).



Chapter 2

Background and Theory

2.1 Definitions and Axioms for normalized com-

pression distance

As explained in the Introduction, the theoretical basis for computing the distance

matrix is deeply based in Kolmogorov complexity theory. In the following we assume

the definition of the NID as shown in Equation (1.1). The definition of the NID

depends on the function K which is uncomputable. Thus, the NID is uncomputable,

too.

Using a real-word compressor, one can approximate the NID by the NCD (cf.

Definition 1). Again, we omit details and refer the reader to [23].

Definition 1 The normalized compression distance between two strings x and y is

defined as

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
,

where C is any given data compressor.

Common data compressors are gzip, bzip, zlib, etc. Note that the compressor C

has to be computable and normal in order to make the NCD a useful approximation.

This can be stated as follows.

Definition 2 A compressor C is said to be normal if it satisfies the following axioms

for all strings x, y, z and the empty string λ.

(1) C(xx) = C(x) and C(λ) = 0; (identity)

(2) C(xy) ≥ C(x); (monotonicity)

(3) C(xy) = C(yx); (symmetry)

(4) C(xy) + C(z) ≤ C(xz) + C(yz); (distributivity)
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up to an additive O(log n) term, with n the maximal binary length of a string involved

in the (in)equality concerned.

These axioms are in various degrees satisfied by good real-world compressors like

bzip, PPMZ and gzip, where the latter did not perform so well, as informal experiments

have shown (cf. [6]). Also note that in all cases the compressor-specific window or

block size determines the maximum usable length of the arguments. As a matter of

fact, for our data these axioms seem to be fulfilled.

Here, we take 3 random viruses sequences from the data set. To verify the com-

pressors like bzip and gzip are satisfied with the axioms, we compressed viruses

sequences respectively, and then compare the compression sizes.

We chose H1N1AF091309 (x ), H1N1D10477(y), H1N1U47310(z ) from the data

set. After compressed, the size of the file(s) are as

x x ·x x ·y y ·x z x ·z + y · z
gzip 615B 635B 662B 757B 362B 1279B
bzip 569B 590B 816B 806B 341B 1524B

Compression sizes by gzip and bzip

Based on the compression results, we can say both bzip and zlib are approxi-

mately satisfied with those Aximos. They are normal compressors. So for our in-

vestigations we used the built-in compressors bzip and zlib and the ncd function

from the CompLearn Toolkit (cf. [7]). After having done this step, we have a distance

matrix D = (dncd(x, y))x,y∈X , where X = (x1, . . . , xn) is the relevant data list.

2.2 Clustering Algorithms

2.2.1 Hierarchical Clustering Algorithm

Next, we turn our attention to clustering. First, we shortly outline the hierarchical

clustering as provided by the R package, i.e., by the program hclust (cf. [2]). Input

is the (n×n) distance matrix D. The program uses a measure of dissimilarity for the

objects to be clustered. Initially, each object is assigned to its own cluster and the

program proceeds iteratively. In each iteration the two most similar clusters are joint,

and the process is repeated until only a single cluster is left. Furthermore, in every

iteration the distances between clusters are recomputed by using the Lance–Williams

dissimilarity update formula for the particular method used.

The methods differ in the way in which the distances between clusters are recom-

puted. Provided are the complete linkage method, the single linkage method, and the

average linkage clustering. In the first case, the distance between any two clusters is

equal to the greatest similarity from any member of one cluster to any member of the
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other cluster. This method works well for compact clusters but causes sensitivity to

outliers. The second method pays attention solely to the area where the two clusters

come closest to one another. The more distant parts of the clusters and the overall

structure of the clusters is not taken into account. If the total number of clusters is

large, a messy clustering may result.

The average linkage clustering defines the distance between any two clusters to be

the average of distances between all pairs of objects from any member of one cluster

to any member of the other cluster. As a result, the average pairwise distance within

the newly formed cluster, is minimum.

Heuristically, the average linkage clustering should give the best results in our

setting, and thus we have chosen it (see also Manning et al. [17] for a thorough

exposition). Note that for hierarchical clustering the number k of clusters does not

to be known in advance.

2.2.2 Spectral Clustering Algorithm

Next, the spectral spectral clustering algorithm used is shortly explained. Spectral

clustering is an increasingly popular method for analyzing and clustering data by

using only the matrix of pairwise similarities. It was invented more than 30 years

ago for partitioning graphs (cf., e.g., Spielman and Teng [22] for a brief history and

Luxburg [24] for a tutorial). Formally, spectral clustering can be related to approx-

imating the normalized min-cut of the graph defined by the adjacency matrix of

pairwise similarities [26]. Finding the exactly minimizing cut is an NP-hard problem.

The transformation of the distance matrix into a similarity matrix is done by

using a suitable kernel function. In our experiments we have used the Gaussian kernel

function, i.e.,

k(x, y) = ( exp(−1

2
d(x, y)2/(2 · σ2))) , (2.1)

where σ is the kernel width. As pointed out by Perona and Freeman [19], there

is nothing magical with this function. Moreover, it is most commonly used. An

advantage of using the Gaussian kernel function is that the resulting similarity matrix

is positive definite.

So, the remaining problem is a suitable choice for σ. Unfortunately, the per-

formance of spectral clustering heavily depends on this σ. In the experiments, we

compute the mean value of the entries of the distance matrix D and then set σ =

mean(D)/
√

2. In this way, the kernel is most sensitive around mean(D). Though we

are not aware of a theoretical result supporting this choice, it worked remarkably well

and further studies are needed to explore the properties of this choice.

The final spectral clustering algorithm for a known number of clusters k is stated

below. Following Fisher and Poland [10], we did not use k-means here, details had

been explained in [10].
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Algorithm Spectral clustering of a data list

Input : data list X = (x1, x2, . . . , xn), number of clusters k

Output : clustering c ∈ {1 . . . k}n
1. for x, y ∈ X, compute the distance matrix D = (dncd(x, y))x,y∈X
2. compute σ = mean(D)/

√
2

3. compute the similarity matrix A = ( exp(−1
2
d(x, y)2/(2 · σ2)))

4. compute the Laplacian L = S−
1
2AS−

1
2 , where Sii =

∑
j Aij and Sij = 0 for i 6= j

5. compute top k eigenvectors V ∈ Rn×k

6. cluster V using kLines [10]



Chapter 3

Experiments and Results

In this section we describe the data used, the experiments performed and the results

obtained.

3.1 Influenza Viruses - The Data Set

3.1.1 Brief Introduction of Influenza Viruses

We shortly describe the data set used. For any relevant background concerning the

biological aspects of the influenza viruses we refer the reader to Palese and Shaw [18]

and Wright et al. [25].

Influenza viruses were probably a major cause of morbidity and mortality world

wide. Large segments of the human population are affected every year. The family

of Orthomyxoviridae is defined by viruses that have a negative-sense, single-stranded,

and segmented RNA genome. There are five different genera in the family of Or-

thomyxoviridae: the influenza viruses A, B and C; Thogotovirus ; and Isavirus. In-

fluenza A viruses have a complex structure and possess a lipid membrane derived from

the host cell (cf. Figure 3.1).

Biologists classify influenza A viruses primarily by their hemagglutinin (HA) sub-

types and neuraminidase (NA) subtypes. So far, 16 subtypes of HA are known and

commonly denoted by H1, . . . , H16. In addition to these HA types, biologists distin-

guish 9 NA subtypes denoted by N1, . . . , N9.

Influenza A viruses of all 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9)

subtypes are maintained in their nature host, i.e., the duck. Of these duck viruses,

H1N1, H2N2 and H3N2 subtypes jumped into human population, and caused three

pandemics in the last century. Therefore, in the experiments performed we have

exclusively selected data of influenza viruses that have been obtained from viruses

hosted by the duck.

The complete genome of these influenza viruses has 8 segmented-genes. Of these

8 genes, here we are only interested in their HA gene, since HA is a the major target

10
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Figure 3.1: Influenza A virus

of antibodies that neutralize viral infectivity, and responsible for binding the virus to

the cell it infects. The corresponding gene is found on segment 4.

Each datum consists of a sequence of roughly 1800 letters from the alphabet

{A, T, G, C}, e.g., looking such as AAAAGCAGGGGAATTTCACAAT

TAAACAAAAT . . . TGTATATAATTAGCAAA. These gene sequences are publicly

available from the National Center for Biotechnology Information (NCBI) which has

one of the largest collections of such sequences (cf. [11]).

When analyzed by biologists the definite method to determine the correct HA

subtype is based on the antiserum that prevent the docking of the virus. Sometimes

biologists also compare the actual sequence to already analyzed sequences and produce

a guess based on the Hamming distance of the new sequence to the analyzed ones.

3.1.2 Data set

As explained in the Introduction, the primary goal of the investigations undertaken

is to cluster the sequences correctly with respect to their HA subtype. In order to

achieve this goal with collected from each subtype up to 8 examples. The reason for

choosing at most 8 sequences from each type has been caused by their availability.

While for some subtypes there are many sequences, there are also subtypes for which

only very few sequences are available. The extreme case is the subtype H16 for which

only one sequence is in the data base. Table 3.2 shows the number of sequences

chosen. All of the subtypes from H1–H7 have 8 sequences for each, but some of the

subtypes like H8, H13, H14 and H15, they do not have enough sequences, even H16,

there is only one sequence available. So the reason we chose 8 sequences for most

of the subtypes is to keep the balance between 16 subtypes. And we also did other

experiments to prove that increase the sequences number will not help us to get better

results.
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H1 H2 H3 H4 H5 H6 H7 H8
8 8 8 8 8 8 8 7

H9 H10 H11 H12 H13 H14 H15 H16
8 8 8 8 2 4 4 1

Figure 3.2: Number of sequences for each subtype

It should be noted that most of these sequences are marked as complete cds, but

some are also marked as partial cds by the NCBI. For a complete list of the data

description we refer the reader to the dataset in the Appendix.

For the ease of presentation, in the following we use the following abbreviation for

the data entries. Instead of giving the full description, e.g.,

>gi|113531192|gb|AB271117| /Avian/4 (HA)/H10N1/Hong Kong/1980/// Influenza

A virus (A/duck/Hong Kong/938/80(H10N1)) HA gene for haemagglutinin, complete

cds.

we refer to this datum as H10N1AB271117 for short.

Among the available files have been two containing only a very short partial se-

quence of the gene, i.e., H7N1AM157391 and H10N4AM922160 (483 and 80 letters,

respectively). So, we did not consider these two files, since they do not seem to contain

enough information.

3.2 Results

3.2.1 Experiments Enviroment

All experiments have been performed under SuSE Linux. As already mentioned, for

the hierarchical clustering we used the open source R package (cf. [2]).

The Algorithm (Spectral clustering of a data list) has been realized by performing

Step 1 via the CompLearn function ncd (cf. [7]). Steps 2 through 6 have been imple-

mented in GNU Octave, version 2.1.72 (cf. [1]). It should be noted that ncd assigns

0.000000 to all elements on the main diagonal of the distance matrix (Version 1.1.5).

3.2.2 Aim

By performing our experiments we aimed to answer the following questions. First,

does the NCD provide enough information to obtain a correct clustering for the virus

data? Second, does the rather large number of clusters (recall that we 16 HA types)

cause any problems? Third, do the answers to the fist and second question depend

on the compressor and clustering, respectively, chosen?
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3.2.3 Clustering HA sequences for H1 through H3

To get started and for the sake of comparison, we used the subset containing all data

belonging to H1, H2, and H3, i.e., a total of 24 sequences (cf. Figure 3.2).

Using the maketree program from the CompLearn Toolkit, we get the following

clustering (cf. Figures 3.3 and 3.4). As Figures 3.3 and 3.4 show, the data are clearly

and correctly separated into three clusters. However, the intra-cluster dissimilarities

clearly differ from inter-cluster dissimilarities in Figure 3.3, i.e., for the zlib compres-

sor, while there is no such clear difference for the bzip compressor (cf. Figure 3.4).

Using hclust we obtained the trees shown in Figure 3.5 and 3.6 for the matrix D

computed for the compressor zlib and bzip, respectively.

After having computed the matrix D, we get the following order of the data

H2N4CY003984, H3N1CY005943, H3N2AB277754, H1N9CY017275,

H1N9CY035248, H3N3CY005936, H2N2L11128, H2N2L11136,

H2N2L11137, H2N1CY017693, H2N1CY021125, H2N3L11138,

H1N6CY004458, H1N1D10477, H2N3CY014710, H3N2EU74652,

H3N2CY006026, H1N1AF091309, H1N1U47310, H3N3AB292410,

H3N2D21171, H3N2M73771, H1N5CY004498, H1N5CY014968

Since spectral clustering is a hard clustering method, it has to return for each data

entry just one class label. Assigning canonically the clusters 1, 2, and 3 to the HA

subtypes, we therefore should get the sequence

2 3 3 1 1 3 2 2 2 2 2 2
1 1 2 3 3 1 1 3 3 3 1 1

which was indeed returned for both compressors. Note that σ = 0.56078 and

σ = 0.57329 for the zlib and bzip compressor, respectively.

3.2.4 Clustering HA sequences for H1 through H8
and H9 through H16

Next, we tried all HA sequences for H1 through H8 and from H9 through H16. The

reason for this partition has been caused by the different number of sequences avail-

able. Recall that there are only two sequences for H13 and only one sequence for H16

(cf. Figure 3.2).

For H1 through H8 the hierarchical clustering was error free for the zlib compressor

but not for bzip compressor (1 error) (see Figures 3.7 and 3.8).

Interestingly, for H9 through H16 the tree obtained for the zlib compressor con-

tains 4 errors, while the one obtained for bzip compressor has only one error.
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Our spectral clustering algorithm returned a perfect clustering for all HA sequences

for H1 through H8 for both compressors. On the other hand, for all sequences from

H9 through H16 the results differed with respect to the compressors.

For the zlib compressor we obtained 5 errors and for bzip the number of errors

was 7 when using for σ the mean as described above. However, it is well-known that

spectral clustering is quite sensitive to the kernel width σ. So, we also tried to vary

it a bit around the mean by rounding it to two decimal digits and then changing

the second one. For zlib the mean was 0.60873 and after two variations we found

σ = 0.59 which resulted in just one error, i.e., H16 was classified as H13. For the bzip

compressor such an improvement could not be obtained.

3.2.5 Clustering HA sequences for H1 through H12

As a possible explanation we conjecture that one needs a certain minimum of available

sequences in order to arrive at a correct spectral clustering. And there is no clustering

method putting one single member into one cluster. Trying all HA sequences for H1

through H12 kind of confirmed this conjecture, since we again obtained a perfect

spectral clustering for both compressors.

As Figures 3.9 and 3.10 show, for the hierarchical clustering, the tree obtained for

the zlib compressor is correct, but the the one obtained for the bzip compressor has

one error.

3.2.6 Clustering all HA sequences for 16 subtypes

Finally, we tried all data. Again hierarchical clustering was best for the zlib com-

pressor and showed only 2 errors. For the bzip compressor, we obtained 3 errors (see

Figures 3.11 and 3.12).

On the other hand, the best result we could obtain for spectral clustering had 5

errors (for both compressors). Below we show the clustering obtained for the zlib

compressor for σ = 0.63, where c0 is the desired classification and sp the one returned

from the spectral clustering algorithm.
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c0 = 7 7 14 2 11 12 12 3 7 10
sp = 7 7 14 2 11 12 12 3 7 10

c0 = 10 5 9 9 9 3 1 1 9 11
sp = 10 5 9 9 9 3 1 1 9 11

c0 = 11 5 3 7 5 2 2 2 4 10
sp = 11 5 3 7 5 2 2 2 4 10

c0 = 5 8 12 2 2 4 4 4 11 9
sp = 5 8 12 2 2 4 4 4 11 9

c0 = 10 2 6 6 6 5 1 1 4 10
sp = 10 2 13 13 6 5 1 1 4 10

c0 = 7 4 8 15 2 9 9 16 10 14
sp = 7 4 8 15 2 9 9 3 10 14

c0 = 14 7 7 6 14 7 8 8 12 12
sp = 14 7 7 6 14 7 8 8 12 12

c0 = 11 15 3 15 5 11 3 1 1 8
sp = 11 15 3 15 5 11 3 1 1 8

c0 = 4 3 3 6 12 10 4 5 3 6
sp = 4 3 3 6 12 10 4 5 3 6

c0 = 13 13 12 1 1 11 12 8 11 10
sp = 13 13 12 1 1 11 12 8 11 10

c0 = 5 9 15 8 6 6
sp = 5 9 15 8 13 13

So, the errors occur at positions 43, 44, 58, 105, and 106 and affect H6 which is

four times assigned to H13 and one time H16 which got in the H3 cluster. We omit

further details due to the lack of space.

Note that one can also compute the sum square error (s.s.e.) of all eigenvalues

w.r.t. their means in order to determine quite reliably from the eigenvalues of the

Laplacian the number k of clusters.
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S(T)=0.998932

H2N2L11128

0.688

0.755

H2N2L11137

0.382

0.553

H3N2M73771

0.254

0.395

H1N5CY004498

0.270

0.469

H1N9CY035248

0.815

0.920

H3N2D21171

0.722

0.935

H3N2CY006026

0.578

H3N2AB277754

0.274

H3N3CY005936

H1N9CY017275

0.703

H2N1CY017693

0.252 0.536

H3N1CY005943

0.681

H2N2L11136
0.536

0.920

H3N2EU74652

0.791

H2N3CY014710

H1N1U47310

H1N5CY014968

0.233

H2N4CY003984

H1N1AF091309

0.095

0.239

H1N1D10477

H2N3L11138

H1N6CY004458

H2N1CY021125

H3N3AB292410

Figure 3.3: Classification of HA sequences for H1 through H3; compr.: zlib

S(T)=0.994397

H2N2L11128

0.865

0.803

H2N2L11137

0.671

0.758

H3N2M737710.600 0.680

H1N5CY004498

0.606

0.729

H1N9CY035248

0.858

0.865

H3N2D21171

0.824

0.877

H3N2CY006026

0.771

H3N2AB277754 0.609

H3N3CY005936

H1N9CY017275
0.820

H2N1CY017693

0.615

0.753

H3N1CY005943

0.817

H2N2L11136

0.731

H3N2EU74652

0.885

H2N3CY014710

0.847

H1N1U47310

H1N5CY014968

0.599

H2N4CY003984

H1N1AF091309

0.434

0.597

H1N1D10477

H2N3L11138

H1N6CY004458

H2N1CY021125

H3N3AB292410

Figure 3.4: Classification of HA sequences for H1 through H3; compr.: bzip



Master’s Thesis: Virus Data Clustering based on Kolmogorov Complexity 17

H1N9CY035248
H1N1U47310

H1N9CY017275
H1N1AF091309

H1N1D10477
H1N5CY004498

H1N5CY014968
H1N6CY004458
H2N1CY017693
H2N1CY021125

H2N4CY003984
H2N2L11137
H2N3L11138

H2N2L11128
H2N2L11136

H2N3CY014710
H3N2D21171

H3N2CY006026
H3N2AB277754
H3N3AB292410

H3N2EU74652
H3N1CY005943

H3N2M73771
H3N3CY005936

0.0 0.5 1.0 1.5 2.0

C
lu

ster D
en

d
ro

g
ram

hclust (*, "average")
dist(H

1_2_3zlib)

Height

Figure 3.5: Clustering all HA sequences for H1 through H3 via hclust; compr.: zlib
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Figure 3.6: Clustering all HA sequences for H1 through H3 via hclust; compr.: bzip
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Figure 3.7: Clustering of all HA sequences for H1 through H8 via hclust;
compr.:zlib;
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Figure 3.8: Clustering of all HA sequences for H1 through H8 via hclust;
compr.:bzip;
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Figure 3.9: Clustering of all HA sequences for H1 through H12 via hclust;
compr.:zlib;
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Figure 3.10: Clustering of all HA sequences for H1 through H12 via hclust;
compr.:bzip;
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Figure 3.11: Clustering of all HA sequences for all subtypes via hclust; compr.:zlib;
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Figure 3.12: Clustering of all HA sequences for all subtypes via hclust; compr.:bzip;



Chapter 4

Application in Swine Influenza
Viruses

Our experiments gave us very good clustering results for clustering all 16 subtypes

HA sequences. In this Chapter, we do not only focus on the influenza viruses hosted

by the nature host duck but also other hosts, like human.

Swine influenza virus is common throughout swine populations worldwide. Trans-

mission of the virus from swine to humans is not common and does not always lead to

human influenza, often resulting only in the production of antibodies in the blood. If

transmission does cause human influenza, it is called zoonotic swine influenza. Peo-

ple with regular exposure to swine are at increased risk of swine influenza infection.

H1N1 is a subtype of influenza A and the most common cause of influenza in hu-

mans. Some strains of H1N1 are endemic in humans and cause a small fraction of

all influenza-like illness and a large fraction of all seasonal influenza. Other stains

of H1N1 are endemic in swine which is referred to as swine influenza and in birds,

namely, avian influenza. But H1N1 strains caused roughly half of all human flu in-

fection in 2006. In June 2009, World Health Organization declared that flu due to

a new strain of swine origin H1N1 was responsible for the 2009 flu pandemic. This

strain is commonly called ”swine flu” by the public media. On June 11, 2009, the

WHO declared an H1N1 pandemic, moving the alert level to phase 6, marking the

first global pandemic since the 1968 Hong Kong flu.

4.1 Latest Global Pandemic–swine influenza

4.1.1 Clustering viruses hosted by human and duck

In this section, we aim to learn which property is more ”similar” in these influenza

viruses, the host or the subtype. Usually, the birds can pass avian influenza viruses

to swine, where the two viruses co-mingle and form a new strain then pass to human

or other hosts. But sometimes, the avian influenza viruses or swine influenza viruses

can also pass to human directly. At this time, the similarity between subtype should

24
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be more obvious than the host. There is also another possibility for the emergence of

new viruses, which we can see from viruses evolution. The new subtype viruses may

be the mutation of the subtypes, which already existed in the host. In this case, the

similarity between host should be more obvious than the subtype.

Because of this, we did following experiments. First, we downloaded 8 following

swine influenza viruses segments 4 from NCBI, and all of them are hosted by human.

GQ247726 Influenza A virus (A/Moscow/02/2009(H1N1)) segment 4 hemagglu-

tinin (HA) gene, complete cds

GQ223408 Influenza A virus (A/Beijing/501/2009(H1N1)) segment 4 hemagglu-

tinin (HA) gene, complete cds

GQ221788 Influenza A virus (A/Arizona/02/2009(H1N1)) segment 4 hemagglu-

tinin (HA) gene, complete cds

GQ219577 Influenza A virus (A/Kobe/1/2009(H1N1)) segment 4 hemagglutinin

(HA) gene, complete cds

GQ249333 Influenza A virus (A/Paris/2591/2009(H1N1)) segment 4 hemagglu-

tinin (HA) gene, complete cds

GQ219580 Influenza A virus (A/Osaka-C/1/2009(H1N1)) segment 4 hemagglutinin

(HA) gene, complete cds

GQ162170 Influenza A virus (A/Mexico/4108/2009(H1N1)) segment 4 hemagglu-

tinin (HA) gene, complete cds

GQ250161 Influenza A virus (A/Guangdong/03/2009(H1N1)) segment 4 hemag-

glutinin (HA) gene, complete cds

All of the latest swine influenza viruses are H1N1 subtype, and because we want

to know the relation between hosts and between subtypes. We reset the data set as

H1 subtype viruses and hosted by human and duck.

Again, first we calculate the symmetric distance matrix, and then use clustering

methods to get the cluster results. Again for the ease of presentation, in the following

we added a character ”d” before the viruses hosted by duck and a character ”h” before

the swine influenza viruses because they are hosted by human.

As Figure 4.1 and Figure 4.2 show, the viruses data hosted by human and duck are

clearly and correctly separated into two clusters. And the similarity between viruses

hosted by human are seem bigger than the viruses hosted by duck. That maybe

because we chose all viruses hosted by human from 2009, but the viruses hosted by

duck are different from year by year. However now we are not only satisfied with the

methods give us the perfect clustering results, but also want to know whether the

results can supply more informations to us.

To answer our question,in influenza viruses which property is more ”similar”, the

host or the subtype? We need viruses data from both different subtypes and different
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Figure 4.1: Clustering viruses hosted by human and duck via hclust; compr.: zlib
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Figure 4.2: Clustering viruses hosted by human and duck via hclust; compr.: bzip

hosts. So we reset the data set again as H1 and H2 subtypes with duck host and

human host. Now our data set has 2 kinds of subtypes viruses and 2 kinds of hosts

viruses. Then we repeat our experiment procedures. Figure 4.3 and Figure 4.4 give

us the results.

Based on the clustering results, we can say, in this data set, it seems like the

similarity between subtypes are bigger than the similarity between host. But we

can not say the similarity between subtypes are always bigger than host. That is

also depend on the data we choose. Recall that as WHO declared that influenza

due to the new strain of swine origin H1N1 was responsible for this pandemic. As

we introduced, same subtype viruses maybe jump to different hosts, in this case, it

should be more similar in subtype than in host. But if we choose some viruses, they

are mutations in genes in the host, or more specifically, in subtype, the similarity in
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hosts should be more obviously.

4.2 Clustering viruses with different hosts

As introduced in viruses evolution, duck is the original nature host for viruses, how

did viruses go to lives in all around the world. One of the guess [12] is when viruses

go to human, they first go to swine. Like the latest pandemic. So we also want to

know the relationship between the viruses hosts in our data set?

So next we download 8 segment 4 viruses hosted by swine, but also H1 subtype.

We add them to duck and human data set we used, and now we have a total of 24

sequences with 3 different kinds of host by all H1 subtype. Here we list the new

sequences we added to the data set.

>gi—4585158—gb—AF091308— /swine/4 (HA)/H1N1/USA/1930/// Influenza

A virus (A/swine/Iowa/15/30 (H1N1)) segment 4 hemagglutinin precursor (HA)

mRNA, complete cds

>gi—516372—gb—X57492— /swine/4 (HA)/H1N1/USA/1930/// Influenza A virus

(A/swine/Iowa/15/30(H1N1)) HA1 and HA2 genes for haemagglutinin, genomic RNA

>gi—473536—gb—D00837— /swine/4 (HA)/H1N1/United Kingdom/1939/// In-

fluenza A virus (A/swine/Cambridge/1939(H1N1)) gene for haemagglutinin, com-

plete cds

>gi—216409465—gb—AB434408— /swine/4 (HA)/H1N2/Japan/1980/// Influenza

A virus (A/swine/Ehime/1/1980(H1N2)) HA gene for hemagglutinin, complete cds

>gi—3831762—gb—AF085413— /swine/4 (HA)/H1N2/United Kingdom/1994///

Influenza A virus (A/swine/Scotland/410440/94(H1N2)) haemagglutinin precursor,

mRNA, complete cds.

>gi—3831764—gb—AF085414— /swine/4 (HA)/H1N2/United Kingdom/1994///

Influenza A virus (A/swine/England/438207/94(H1N2)) haemagglutinin precursor,

mRNA, complete cds.

>gi—3831766—gb—AF085415— /swine/4 (HA)/H1N2/United Kingdom/1995///

Influenza A virus (A/swine/England/690421/95(H1N2)) haemagglutinin precursor,

mRNA, complete cds.

>gi—3831768—gb—AF085416— /swine/4 (HA)/H1N2/United Kingdom/1996///

Influenza A virus (A/swine/England/17394/96(H1N2)) haemagglutinin precursor,

mRNA, complete cds.

And also for ease of presentation, we add the character ”p” before the viruses which

are hosted by swine. As Figure 4.5 and 4.6 show, the viruses hosted by human, duck

and swine are clearly and correctly separated into three clusters. As we discussed in

the last section, the results are also depend on the data we choose, limited viruses
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sequences and only several kinds of hosts are not enough to be used to verify or explain

the evolution in biology. The results only can explain the relation between the hosts

or subtypes we used in these data sets. If we want to know what the biological

evolution really like, we need much more data and will cost much more.

Finally, to verify our results we also made the high quality program unrooted

binary tree by the CompLearn Toolkit, and we get the following clustering results(see

cf. Figures 4.7 and 4.8). Even the clustering results are really good, it took hours for

the (24× 24) distance matrix to output the results.

.
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Figure 4.3: Classification of HA sequences hosted by human and duck compr.: zlib
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Figure 4.4: Classification of HA sequences hosted by human and duck ; compr.: bzip
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Figure 4.5: Classification of H1 sequences hosted by human, duck and swine; compr.:
zlib
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Figure 4.6: Classification of H1 sequences hosted by human, duck and swine; compr.:
bzip
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Figure 4.7: Clustering viruses hosted by swine, human and duck via hclust; compr.:
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Chapter 5

Conclusions

The usefulness of the normalized compression distance for clustering the HA type of

virus data for the HA gene for it (segment 4) has been demonstrated. Though we just

used the built-in compressors zlib and bzip the results are (almost) correct when

clustering the resulting distance matrix for the whole data set with hclust or spectral

clustering via kLines. What is also remarkable in this context is the robustness with

respect to the completeness of the data. As mentioned above, some data contain only

a partial cds but this did not influence the quality of the clustering as the results, e.g.,

H1N1U47310 and H3N2D21171 have only 1000 letters.

We have not reported the running time here, since it is still in the range of several

seconds. Though the quartet tree algorithm by Cilibrasi and Vitányi [9] returns a high

quality classification, it lacks scalability, since it tries to optimize a quality function,

a task which is NP-hard. So, even for the small example including the 24 data for H1,

H2, and H3 resulting in (24× 24) distance matrix, it took hours to find the resulting

(very good) clustering. In contrast, the clustering algorithms used in this study scale

nicely at least up to the amount of data for which the distance matrix is efficiently

computable, since they have almost the same running time as the ncd algorithm.
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Appendix

Here we list the description for the viruses dataset(hosted by ”duck”) we used in our

experiments.

>gi—4585160—gb—AF091309— /Avian/4 (HA)/H1N1/Canada/1976/// Influenza

A virus (A/duck/Alberta/35/76(H1N1)) segment 4 hemagglutinin precursor (HA)

mRNA, complete cds.

>gi—221299—gb—D10477— /Avian/4 (HA)/H1N1/Canada/1976/// Influenza A

virus (A/mallard/Alberta/35/1976(H1N1)) gene for haemagglutinin, complete cds.

>gi—1912350—gb—U47310— /Avian/4 (HA)/H1N1/Canada/1976/// Influenza

A virus (A/duck/Alberta/35/76(H1N1)) hemagglutinin precursor (HA) mRNA, par-

tial cds.

>gi—78095837—gb—CY004498— /Avian/4 (HA)/H1N5/Canada/1981/08/19/ In-

fluenza A virus (A/pintail duck/ALB/631/1981(H1N5)) segment 4, complete sequence

>gi—115279042—gb—CY014968— /Avian/4 (HA)/H1N5/USA/1978/08/01/ In-

fluenza A virus (A/mallard duck/New York/6861/1978(H1N5)) segment 4, complete

sequence

>gi—78095742—gb—CY004458— /Avian/4 (HA)/H1N6/Canada/1977/08/02/ In-

fluenza A virus (A/mallard duck/ALB/42/1977(H1N6)) segment 4, complete sequence

>gi—117572843—gb—CY017275— /Avian/4 (HA)/H1N9/USA/1987/10/19/ In-

fluenza A virus (A/mallard/Ohio/265/1987(H1N9)) segment 4, complete sequence

>gi—209866000—gb—CY035248— /Avian/4 (HA)/H1N9/USA/2007/09/12/ In-

fluenza A virus (A/mallard duck/Minnesota/Sg-00113/2007(H1N9)) hemagglutinin

(HA) gene, partial cds

>gi—119365124—gb—CY017693— /Avian/4 (HA)/H2N1/USA/1986/10/20/ In-

fluenza A virus (A/mallard/Ohio/30/1986(H2N1)) segment 4, complete sequence

>gi—134047655—gb—CY021125— /Avian/4 (HA)/H2N1/USA/1986/// Influenza

A virus (A/mallard/Ohio/37/1986(H2N1)) segment 4, complete sequence

>gi—408520—gb—L11128— /Avian/4 (HA)/H2N2/Hong Kong/1978/// Influenza

A virus (A/duck/Hong Kong/273/78 (H2N2)) hemagglutinin (HA) gene, complete

cds.

>gi—408552—gb—L11136— /Avian/4 (HA)/H2N2/USA/1961/// Influenza A virus

(A/mallard/MT/Y61 (H2N2)) hemagglutinin (HA) gene, complete cds.

>gi—408598—gb—L11137— /Avian/4 (HA)/H2N2/USA/1978/// Influenza A virus

(A/mallard/NY/6750/78 (H2N2)) hemagglutinin (HA) gene, complete cds

>gi—115278357—gb—CY014710— /Avian/4 (HA)/H2N3/Germany/1973/// In-

fluenza A virus (A/duck/Germany/1215/1973(H2N3)) segment 4, complete sequence
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>gi—408600—gb—L11138— /Avian/4 (HA)/H2N3/Canada/1976/// Influenza A

virus (A/mallard/Ontario/56/76 (H2N3)) hemagglutinin (HA) gene, complete cds.

>gi—78059446—gb—CY003984— /Avian/4 (HA)/H2N4/Canada/2002/08/02/ In-

fluenza A virus (A/mallard/Alberta/149/2002(H2N4)) segment 4, complete sequence

>gi—82652711—gb—CY005943— /Avian/4 (HA)/H3N1/Canada/1976/08/11/ In-

fluenza A virus (A/mallard duck/ALB/26/1976(H3N1)) segment 4, complete sequence

>gi—116235390—gb—AB277754— /Avian/4 (HA)/H3N2/Japan/1977/// Influenza

A virus (A/duck/Hokkaido/5/1977(H3N2)) segment 4, complete sequence.

>gi—82654664—gb—CY006026— /Avian/4 (HA)/H3N2/Hong Kong/1975/// In-

fluenza A virus (A/duck/Hong Kong/7/1975(H3N2)) segment 4, complete sequence

>gi—418070—gb—D21171— /Avian/4 (HA)/H3N2/Hong Kong/1977/// Influenza

A virus (A/duck/Hong Kong/245/1977(H3N2)) gene for hemagglutinin, partial cds

>gi—189312953—gb—EU74652— /Avian/4 (HA)/H3N2/USA/1978/// Influenza

A virus (A/duck/NY/6874/1978(H3N2)) hemagglutinin (HA) gene, complete cds.

>gi—324409—gb—M73771— /Avian/4 (HA)/H3N2/Canada/1976/// Influenza

A virus (A/duck/Alberta/78/1976(H3N2)) hemagglutinin gene, complete cds.

>gi—125490300—gb—AB292410— /Avian/4 (HA)/H3N3/Hong Kong/1976/// In-

fluenza A virus (A/duck/Hong Kong/22A/1976(H3N3)) HA gene for haemagglutinin,

complete cds.

>gi—82652561—gb—CY005936— /Avian/4 (HA)/H3N3/Canada/1978/08/15/ In-

fluenza A virus (A/mallard duck/ALB/712/1978(H3N3)) segment 4, complete se-

quence

>gi—125490288—gb—AB292404— /Avian/4 (HA)/H4N1/Hong Kong/1980/// In-

fluenza A virus (A/duck/Hong Kong/951/1980(H4N1)) HA gene for haemagglutinin,

complete cds.

>gi—49357153—gb—AY633284— /Avian/4 (HA)/H4N1/Canada/1998/// Influenza

A virus (A/mallard/Alberta/47/98(H4N1)) hemagglutinin precursor (HA) gene, par-

tial cds

>gi—82653122—gb—CY005968— /Avian/4 (HA)/H4N1/Canada/1977/08/28/ In-

fluenza A virus (A/mallard duck/ALB/291/1977(H4N1)) segment 4, complete se-

quence

>gi—82652863—gb—CY005953— /Avian/4 (HA)/H4N2/Canada/1978/08/10/ In-

fluenza A virus (A/mallard duck/ALB/354/1978(H4N2)) segment 4, complete se-

quence

>gi—82652975—gb—CY005959— /Avian/4 (HA)/H4N2/Canada/1984/08/06/ In-

fluenza A virus (A/mallard duck/ALB/630/1984(H4N2)) segment 4, complete se-

quence

>gi—82654737—gb—CY006030— /Avian/4 (HA)/H4N2/Hong Kong/1976/// In-

fluenza A virus (A/duck/Hong Kong/24/1976(H4N2)) segment 4, complete sequence
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>gi—125490296—gb—AB292408— /Avian/4 (HA)/H4N3/Hong Kong/1977/// In-

fluenza A virus (A/duck/Hong Kong/229/1977(H4N3)) HA gene for haemagglutinin,

complete cds.

>gi—195183810—gb—AB450446— /Avian/4 (HA)/H4N3/Mongolia/2007/// In-

fluenza A virus (A/duck/Mongolia/274/2007(H4N3)) HA gene for haemagglutinin,

complete cds.

>gi—4240447—gb—AF082040— /Avian/4 (HA)/H5N1/USA/1981/// Influenza

A virus (A/duck/Minnesota/1525/81(H5N1)) hemagglutinin H5 mRNA, partial cds.

>gi—1840071—gb—U79453— /Avian/4 (HA)/H5N1/USA/1975/// Influenza A

virus (A/mallard/Wisconsin/428/75(H5N1)) hemagglutinin mRNA, partial cds.

>gi—82623227—gb—CY005918— /Avian/4 (HA)/H5N2/Canada/1976/08/12/ In-

fluenza A virus (A/mallard duck/ALB/57/1976(H5N2)) segment 4, complete sequence

>gi—193877643—gb—EU743293— /Avian/4 (HA)/H5N2/USA/1975/// Influenza

A virus (A/mallard/WI/42/1975(H5N2)) segment 4 hemagglutinin (HA) gene, com-

plete cds.

>gi—148532723—gb—EF597247— /Avian/4 (HA)/H5N3/Hong Kong/1976/// In-

fluenza A virus (A/duck/Hong Kong/23/1976(H5N3)) hemagglutinin (HA) gene, par-

tial cds

>gi—1840069—gb—U79452— /Avian/4 (HA)/H5N3/USA/1975/// Influenza A

virus (A/mallard/Wisconsin/169/75(H5N3)) hemagglutinin mRNA, partial cds

>gi—157169393—gb—EF607888— /Avian/4 (HA)/H5N5/USA/2000/// Influenza

A virus (A/mallard/MN/105/2000(H5N5)) hemagglutinin gene, complete cds

>gi—4240449—gb—AF082041— /Avian/4 (HA)/H5N6/Germany/1984/// Influenza

A virus (A/duck/Potsdam/2216-4/1984(H5N6)) hemagglutinin H5 mRNA, partial

cds.

>gi—87246912—gb—DQ376618— /Avian/4 (HA)/H6N1/Taiwan/1972/// Influenza

A virus (A/duck/Taiwan/0526/72(H6N1)) hemagglutinin (HA) gene, complete cds

>gi—193876585—gb—EU743286— /Avian/4 (HA)/H6N1/USA/1969/// Influenza

A virus (A/duck/PA/486/1969(H6N1)) segment 4 hemagglutinin (HA) gene, com-

plete cds.

>gi—18074894—gb—AJ410541— /Avian/4 (HA)/H6N2/Hong Kong/1977/// In-

fluenza A virus genomic RNA for haemagglutinin (ha gene) strain A/duck/Hong

Kong/134/77 (H6N2)

>gi—115278142—gb—CY014616— /Avian/4 (HA)/H6N2/Hong Kong/1977/// In-

fluenza A virus (A/duck/Hong Kong/d134/1977(H6N2)) segment 4, complete se-

quence

>gi—78072375—gb—CY004202— /Avian/4 (HA)/H6N3/Canada/1985/08/13/ In-

fluenza A virus (A/mallard duck/ALB/76/1985(H6N3)) segment 4, complete sequence



Master’s Thesis: Virus Data Clustering based on Kolmogorov Complexity 39

>gi—78093479—gb—CY004234— /Avian/4 (HA)/H6N3/Canada/1990/08/01/ In-

fluenza A virus (A/mallard duck/ALB/191/1990(H6N3)) segment 4, complete se-

quence

>gi—78070027—gb—CY004086— /Avian/4 (HA)/H6N4/Canada/1979/08/25/ In-

fluenza A virus (A/pintail duck/ALB/1343/1979(H6N4)) segment 4, complete se-

quence

>gi—70608906—gb—DQ021680— /Avian/4 (HA)/H6N4/USA/1998/// Influenza

A virus (A/mallard/MD/R326/98(H6N4)) hemagglutinin gene, partial cds

>gi—146219366—gb—AB268557— /Avian/4 (HA)/H7N1/Mongolia/2001/// In-

fluenza A virus (A/duck/Mongolia/47/2001(H7N1)) HA gene for haemagglutinin,

complete cds

>gi—195926997—gb—AB269694— /Avian/4 (HA)/H7N1/Japan/2003/// Influenza

A virus (A/duck/Hokkaido/143/2003(H7N1)) HA gene for haemagglutinin, complete

cds

>gi—218436727—gb—AB473543— /Avian/4 (HA)/H7N1/Mongolia/2002/// In-

fluenza A virus (A/duck/Mongolia/867/2002(H7N1)) genomic RNA, segment 4, com-

plete sequence

>gi—115278134—gb—CY014612— /Avian/4 (HA)/H7N1/China/1992/// Influenza

A virus (A/duck/Nanchang/1904/1992(H7N1)) segment 4, complete sequence

>gi—138395665—gb—CY021557— /Avian/4 (HA)/H7N1/Italy/2000/01/24/ In-

fluenza A virus (A/duck/Italy/551/2000(H7N1)) segment 4, complete sequence

>gi—62910860—gb—DQ003216— /Avian/4 (HA)/H7N1/Hong Kong/1972/// In-

fluenza A virus (A/duck/Hongkong/301/72(H7N1)) hemagglutinin (HA) gene, com-

plete cds.

>gi—146350799—gb—AB302789— /Avian/4 (HA)/H7N2/Hong Kong/1978/// In-

fluenza A virus (A/duck/Hong Kong/301/1978(H7N2)) HA gene for haemagglutinin,

complete cds.

>gi—902756—gb—U20461— /Avian/4 (HA)/H7N2/Hong Kong/1978/// Influenza

A virus (A/duck/Hong Kong/293/78(H7N2)) hemagglutinin precursor (HA) mRNA,

complete cds.

>gi—115279539—gb—CY015173— /Avian/4 (HA)/H8N2/USA/1991/08// Influenza

A virus (A/duck/Alaska/702/1991(H8N2)) segment 4, complete sequence

>gi—195183830—gb—AB450454— /Avian/4 (HA)/H8N4/Japan/1981/// Influenza

A virus (A/duck/Hokkaido/95/1981(H8N4)) HA gene for haemagglutinin, complete

cds.

>gi—11596270—gb—AF310987— /Avian/4 (HA)/H8N4/Canada/1979/// Influenza

A virus (A/Pintail duck/Alberta/114/79(H8N4)) segment 4 hemagglutinin (HA1)

mRNA, partial cds.
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>gi—11596272—gb—AF310988— /Avian/4 (HA)/H8N4/Canada/1984/// Influenza

A virus (A/Mallard duck/Alberta/357/84(H8N4)) segment 4 hemagglutinin (HA1)

mRNA, partial cds.

>gi—82653160—gb—CY005970— /Avian/4 (HA)/H8N4/Canada/1977/08/06/ In-

fluenza A virus (A/mallard/Alberta/283/1977(H8N4)) segment 4, complete sequence.

>gi—117163687—gb—EF061122— /Avian/4 (HA)/H8N4/China/2005/// Influenza

A virus (A/duck/Yangzhou/02/2005(H8N4)) segment 4, complete sequence

>gi—195183782—gb—AB450435— /Avian/4 (HA)/H8N7/USA/1991/// Influenza

A virus (A/duck/Alaska/702/1991(H8N7)) HA gene for haemagglutinin, complete

cds.

>gi—49357111—gb—AY633116— /Avian/4 (HA)/H9N1/Canada/1983/// Influenza

A virus (A/mallard/Alberta/743/83(H9N1)) hemagglutinin precursor (HA) gene, com-

plete cds

>gi—78096059—gb—CY004642— /Avian/4 (HA)/H9N1/Canada/1983/08/12/ In-

fluenza A virus (A/mallard duck/ALB/506/1983(H9N1)) segment 4, complete se-

quence

>gi—82623259—gb—CY005919— /Avian/4 (HA)/H9N1/Canada/1983/08/07/ In-

fluenza A virus (A/mallard duck/ALB/396/1983(H9N1)) segment 4, complete se-

quence

>gi—6007003—gb—AF156382— /Avian/4 (HA)/H9N2/Hong Kong/1977/// In-

fluenza A virus (A/duck/Hong Kong/168/77(H9N2)) segment 4 hemagglutinin pre-

cursor, gene, partial cds.

>gi—31339421—gb—AF523386— /Avian/4 (HA)/H9N2/Hong Kong/1976/// In-

fluenza A virus (A/duck/Hong Kong/86/76(H9N2)) hemagglutinin (HA) gene, partial

cds

>gi—47157066—gb—AY603067— /Avian/4 (HA)/H9N2/China//// Influenza A

virus (A/duck/China(H9N2)) hemagglutinin (HA) gene, complete cds.

>gi—145284497—gb—EF541419— /Avian/4 (HA)/H9N3/Viet Nam/2001/// In-

fluenza A virus (A/duck/Viet Nam/68/2001(H9N3)) segment 4 hemagglutinin (HA)

gene, partial cds.

>gi—145284499—gb—EF541420— /Avian/4 (HA)/H9N3/Viet Nam/2001/// In-

fluenza A virus (A/duck/Viet Nam/340/2001(H9N3)) segment 4 hemagglutinin (HA)

gene, partial cds.

>gi—113531192—gb—AB271117— /Avian/4 (HA)/H10N1/Hong Kong/1980///

Influenza A virus (A/duck/Hong Kong/938/80(H10N1)) HA gene for haemagglutinin,

complete cds.

>gi—82653957—gb—CY005997— /Avian/4 (HA)/H10N1/Canada/1995/08/01/

Influenza A virus (A/mallard/ALB/5/1995(H10N1)) segment 4, complete sequence
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>gi—195183803—gb—AB450443— /Avian/4 (HA)/H10N2/Japan/2007/// Influenza

A virus (A/duck/Hokkaido/W87/2007(H10N2)) HA gene for haemagglutinin, com-

plete cds.

>gi—125490304—gb—AB292412— /Avian/4 (HA)/H10N3/Hong Kong/1979///

Influenza A virus (A/duck/Hong Kong/786/1979(H10N3)) HA gene for haemagglu-

tinin, complete cds.

>gi—82653900—gb—CY005994— /Avian/4 (HA)/H10N3/Canada/1978/08/08/

Influenza A virus (A/blue-winged teal/ALB/778/1978(H10N3)) segment 4, complete

sequence

>gi—114651172—gb—AB274041— /Avian/4 (HA)/H10N4/Japan/2000/// Influenza

A virus (A/duck/Hokkaido/18/00(H10N4)) HA gene for haemagglutinin, complete

cds.

>gi—195183828—gb—AB450453— /Avian/4 (HA)/H10N5/Japan/2004/// Influenza

A virus (A/duck/Hokkaido/24/04(H10N5)) HA gene for haemagglutinin, complete

cds.

>gi—195183835—gb—AB450456— /Avian/4 (HA)/H10N5/Mongolia/2003/// In-

fluenza A virus (A/duck/Mongolia/149/03(H10N5)) HA gene for haemagglutinin,

complete cds.

>gi—195183823—gb—AB450451— /Avian/4 (HA)/H11N1/Japan/1977/// Influenza

A virus (A/duck/Miyagi/47/1977(H11N1)) HA gene for haemagglutinin, complete

cds.

>gi—119365309—gb—CY017765— /Avian/4 (HA)/H11N1/USA/1986/11/06/ In-

fluenza A virus (A/black duck/Ohio/194/1986(H11N1)) segment 4, complete sequence

>gi—82654071—gb—CY006003— /Avian/4 (HA)/H11N2/Canada/1991/08/26/

Influenza A virus (A/mallard/ALB/124/1991(H11N2)) segment 4, complete sequence

>gi—82654052—gb—CY006002— /Avian/4 (HA)/H11N3/Canada/1983/08/23/

Influenza A virus (A/mallard duck/ALB/797/1983(H11N3)) segment 4, complete se-

quence

>gi—119502448—gb—CY018015— /Avian/4 (HA)/H11N3/USA/1986/10/24/ In-

fluenza A virus (A/mallard/Ohio/102/1986(H11N3)) segment 4, complete sequence

>gi—120169268—gb—AB288845— /Avian/4 (HA)/H11N6/United Kingdom/1956///

Influenza A virus (A/duck/England/1/1956(H11N6)) HA gene for haemagglutinin,

complete cds.

>gi—115278283—gb—CY014679— /Avian/4 (HA)/H11N6/United Kingdom/1956///

Influenza A virus (A/duck/England/1956(H11N6)) segment 4, complete sequence

>gi—221307—gb—D90306— /Avian/4 (HA)/H11N6/United Kingdom/1956///

Influenza A virus (A/duck/England/1/1956(H11N6)) gene for hemagglutinin precur-

sor, complete cds.
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>gi—11596278—gb—AF310991— /Avian/4 (HA)/H12N1/Canada/1983/// Influenza

A virus (A/Mallard duck/Alberta/342/83(H12N1)) segment 4 hemagglutinin (HA1)

mRNA, partial cds.

>gi—82654128—gb—CY006006— /Avian/4 (HA)/H12N1/Canada/1983/08/06/

Influenza A virus (A/mallard duck/Alberta/342/1983(H12N1)) segment 4, complete

sequence.

>gi—112382771—gb—DQ787811— /Avian/4 (HA)/H12N2/Russia/2002/// In-

fluenza A virus (A/duck/Primorie/3691/02(H12N2)) hemagglutinin precursor (HA)

gene, partial cds.

>gi—119943225—gb—AB288334— /Avian/4 (HA)/H12N5/Canada/1976/// In-

fluenza A virus (A/duck/Alberta/60/1976(H12N5)) HA gene for haemagglutinin,

complete cds.

>gi—120169264—gb—AB288843— /Avian/4 (HA)/H12N5/Japan/2001/// Influenza

A virus (A/duck/Hokkaido/66/01(H12N5)) HA gene for haemagglutinin, complete

cds.

>gi—134048125—gb—CY021293— /Avian/4 (HA)/H12N5/USA/2005/// Influenza

A virus (A/mallard/Maryland/1135/2005(H12N5)) segment 4, complete sequence

>gi—134048144—gb—CY021301— /Avian/4 (HA)/H12N5/USA/2005/// Influenza

A virus (A/mallard/Maryland/1153/2005(H12N5)) segment 4, complete sequence

>gi—221309—gb—D90307— /Avian/4 (HA)/H12N5/Canada/1976/// Influenza

A virus (A/duck/Alberta/60/1976(H12N5)) gene for hemagglutinin precursor, com-

plete cds.

>gi—118595865—gb—AB284988— /Avian/4 (HA)/H13N6/Russia/1998/// Influenza

A virus (A/duck/Siberia/272/1998(H13N6)) HA gene for haemagglutinin, complete

cds.

>gi—118722035—gb—AB285094— /Avian/4 (HA)/H13N6/Russia/1998/// Influenza

A virus (A/duck/Siberia/272PF/1998(H13N6)) HA gene for haemagglutinin, com-

plete cds.

>gi—324046—gb—M35996— /Avian/4 (HA)/H14/Russia/1982/// Influenza A/Mallard/Gurjev/244/82

hemagglutinin subtype H14 gene.

>gi—324045—gb—M35997— /Avian/4 (HA)/H14/Russia/1982/// Influenza A/Mallard/Gurjev/263/82

hemagglutinin subtype H14 gene.

>gi—120871775—gb—AB289335— /Avian/4 (HA)/H14N5/Russia/1982/// Influenza

A virus (A/mallard/Astrakhan/263/1982(H14N5)) HA gene for haemagglutinin, com-

plete cds.

>gi—115278117—gb—CY014604— /Avian/4 (HA)/H14N5/Russia/1982/// Influenza

A virus (A/mallard duck/Astrakhan/263/1982(H14N5)) segment 4, complete sequence

>gi—82791465—gb—CY006032— /Avian/4 (HA)/H15N2/Australia/1983/// In-

fluenza A virus (A/Australian shelduck/Western Australia/1756/1983(H15N2)) seg-

ment 4, complete sequence.
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>gi—126567438—gb—AB295613— /Avian/4 (HA)/H15N8/Australia/1983/// In-

fluenza A virus (A/duck/Australia/341/83(H15N8)) HA gene for haemagglutinin,

complete cds.

>gi—82654235—gb—CY006009— /Avian/4 (HA)/H15N8/Australia/1983/02/23/

Influenza A virus (A/duck/AUS/341/1983(H15N8)) segment 4, complete sequence

>gi—1226068—gb—L43916— /Avian/4 (HA)/H15N8/Australia/1983/// Influenza

A/duck/Australia/341/83 (H15N8) hemagglutinin mRNA, complete cds.

>gi—161878869—gb—EU148600— /Avian/4 (HA)/H16N3/Russia/1983/// Influenza

A virus (A/mallard/Gurjev/785/83(H16N3)) hemagglutinin precursor (HA) gene,

complete cds


