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1. Let X = N. We define xpy if x divides y. Prove or disprove

(a) (N, p) is a partially ordered set.

(b) The relation p is an equivalence relation.

2. Let X be any non-empty set and let p be any equivalence relation over X. Prove or
disprove that for all x,y € X we have:
(a) either [x] = [y] or [x] N [y] =0.
(b) Usexxl =X.

3. Prove or disprove: For every binary relation p over a set X we have p* = (p*)*, i.e., the
reflexive—transitive closure of the reflexive—transitive closure is the reflexive—transitive
closure itself.



