平成22年5月14日

提出期限:平成22年5月31日

演習第六

1. Prove the following theorem:

Theorem: For every context-free grammar $\mathfrak{G} = [\mathsf{T}, \mathsf{N}, \sigma, \mathsf{P}]$ there exists a context-free grammar \mathfrak{G}' such that $\mathsf{L}(\mathfrak{G}') = \mathsf{L}(\mathfrak{G}) \setminus \{\lambda\}$ and \mathfrak{G}' is λ -free.

Furthermore, if $\lambda \in L(\mathfrak{G})$ then there exists an equivalent context-free grammar \mathfrak{G}'' such that $\sigma'' \to \lambda$ is the only production having λ on its right-hand side and σ'' does not occur at any right-hand side.

2. Let $\mathcal{G} = [\Sigma, N, F, P]$, where $\Sigma = \{\alpha, +, *, (,), -\}$, and P is given by

$$\begin{array}{cccc} E & \rightarrow & F+F \\ E & \rightarrow & E+T \\ E & \rightarrow & E+F \\ F & \rightarrow & F*E \\ F & \rightarrow & F*(T) \\ F & \rightarrow & \alpha \\ T & \rightarrow & E-T \end{array}$$

Construct a reduced grammar \mathfrak{G}' such that $L(\mathfrak{G}) = L(\mathfrak{G}')$.

- 3. Construct context-free grammars for the following languages:
 - (1) $L = \{a^{2i}b^{2i} \mid i \in \mathbb{N}^+\},\$
 - (2) $L = \{a^i b^j \mid i, j \in \mathbb{N}^+ \text{ and } i \neq j\},\$
 - (3) $L = \{s \mid s \in \{a, b\}^* \text{ and number of } a's \text{ in } s \text{ equals the number of } b's \text{ in } s\}.$