平成22年6月19日

提出期限:平成22年6月28日

## 演習第九

Solve at least three of the following problems.

- 1. Prove or disprove the following:
  - (1.1) REG is closed under inverse homomorphisms.
  - (1.2) CF is closed under inverse homomorphisms.
- 2. Prove or disprove the following theorem. For all  $L \in \mathfrak{CF}$  and for all  $R \in \mathfrak{REG}$  we have  $L \setminus R \in \mathfrak{CF}$ .
- 3. Consider the following language over the alphabet  $\Sigma = \{0, 1, 2\}$

$$L = \{0^{n}21^{m} \mid n, m \in \mathbb{N}, \ n \leqslant m \leqslant 4n\}.$$

- (3.1) Prove that L is context-free.
- $(3.2) \ \ {\rm Construct} \ \ a \ pushdown \ \ automaton \ \ \mathcal{K} = [Q, \Sigma, \Gamma, \delta, q_0, k_0, F] \ \ such \ \ that \ \ L(\mathcal{K}) = L.$
- 4. Prove the following: Let  $\Sigma$  be any alphabet such that  $\operatorname{card}(\Sigma) = 1$ . Prove that

$$\mathfrak{CF} \cap \wp(\Sigma^*) = \mathfrak{REG} \cap \wp(\Sigma^*) ,$$

i.e., every context-free language  $L \subseteq \Sigma^*$  is regular.