平成22年7月10日

提出期限:平成22年7月26日

演習第十二

Solve at least three of the following four problems.

- 1. Prove or disprove the following two assertions. In case your answer is affirmative, provide a Turing program.
 - (12.1) The binary addition function is Turing computable provided that the inputs are made in unary presentation.
 - (12.2) The exponentiation function $f(n) = 2^n$ is Turing computable provided that the inputs n are made in unary presentation. Does your anwser change if the inputs are made in binary?
- 2. Prove the following:

Let $n \in \mathbb{N}$, let $\tau \in \mathfrak{I}^n$ and let $\psi \in \mathfrak{I}^{n+2}$. Then we have: if

$$\begin{array}{rcl} \varphi(x_1, \dots, x_n, 0) & = & \tau(x_1, \dots, x_n) \\ \varphi(x_1, \dots, x_n, y + 1) & = & \psi(x_1, \dots, x_n, y, \varphi(x_1, \dots, x_n, y)) \ , \end{array}$$

then $\phi \in \mathfrak{T}^{n+1}$.

3. Prove the following:

Let $n \in \mathbb{N}^+$; then we have:

if
$$\tau \in \mathfrak{I}^{n+1}$$
 and $\psi(x_1, \ldots, x_n) = \mu y[\tau(x_1, \ldots, x_n, y) = 1]$ then $\psi \in \mathfrak{I}^n$.

- 4. (a) Construct a TM accepting L_{pal2} .
 - (b) Construct a TM accepting $L = \{ww \mid w \in \{0, 1\}^*\}$.