
Grammars Regular Languages Equivalence End

Theory of Computation

Thomas Zeugmann

Hokkaido University
Laboratory for Algorithmics

http://www-alg.ist.hokudai.ac.jp/∼thomas/ToC/

Lecture 2: Introducing Formal Grammars

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Grammars

We have to formalize what is meant by generating a language.
If we look at natural languages, then we have the following
situation: The set Σ consists of all words in the language.
Although large, Σ is finite. What is usually done in speaking or
writing natural languages is forming sentences. A typical
sentence starts with a noun phrase followed by a verb phrase.
Thus, we may describe this generation by

< sentence > → < noun phrase >< verb phrase >

Clearly, more complicated sentences are generated by more
complicated rules. If we look in a usual grammar book, e.g., for
the English language, then we see that there are, however, only
finitely many rules for generating sentences.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Grammars

We have to formalize what is meant by generating a language.
If we look at natural languages, then we have the following
situation: The set Σ consists of all words in the language.
Although large, Σ is finite. What is usually done in speaking or
writing natural languages is forming sentences. A typical
sentence starts with a noun phrase followed by a verb phrase.
Thus, we may describe this generation by

< sentence > → < noun phrase >< verb phrase >

Clearly, more complicated sentences are generated by more
complicated rules. If we look in a usual grammar book, e.g., for
the English language, then we see that there are, however, only
finitely many rules for generating sentences.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Formal Grammars

This suggest the following general definition of a grammar:

Definition 1

G = [T , N, σ, P] is said to be a grammar if
(1) T and N are alphabets with T ∩N = ∅;
(2) σ ∈ N;
(3) P ⊆ ((T ∪N)+ \ T∗)× (T ∪N)∗ is finite.

We call T the terminal alphabet, N the nonterminal alphabet, σ the
start symbol and P the set of productions (or rules).

Usually, productions are written in the form α → β, where
α ∈ (T ∪N)+ \ T∗ and β ∈ (T ∪N)∗.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Formal Grammars

This suggest the following general definition of a grammar:

Definition 1

G = [T , N, σ, P] is said to be a grammar if
(1) T and N are alphabets with T ∩N = ∅;
(2) σ ∈ N;
(3) P ⊆ ((T ∪N)+ \ T∗)× (T ∪N)∗ is finite.

We call T the terminal alphabet, N the nonterminal alphabet, σ the
start symbol and P the set of productions (or rules).

Usually, productions are written in the form α → β, where
α ∈ (T ∪N)+ \ T∗ and β ∈ (T ∪N)∗.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Formal Grammars

This suggest the following general definition of a grammar:

Definition 1

G = [T , N, σ, P] is said to be a grammar if
(1) T and N are alphabets with T ∩N = ∅;
(2) σ ∈ N;
(3) P ⊆ ((T ∪N)+ \ T∗)× (T ∪N)∗ is finite.

We call T the terminal alphabet, N the nonterminal alphabet, σ the
start symbol and P the set of productions (or rules).

Usually, productions are written in the form α → β, where
α ∈ (T ∪N)+ \ T∗ and β ∈ (T ∪N)∗.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Generating a Language by a Grammar I

Next, we have to explain how to generate a language using a
grammar. This is done by the following definition:

Definition 2

Let G = [T , N, σ, P] be a grammar. Let α ′, β ′ ∈ (T ∪N)∗. α ′ is
said to directly generate β ′, written α ′ ⇒ β ′, if there exist
α1, α2, α, β ∈ (T ∪N)∗ such that α ′ = α1αα2, β ′ = α1βα2

and α → β is in P. We write ∗⇒ for the reflexive transitive
closure of ⇒ .

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Illustration

Example 1

Let G = [{a, b}, {σ}, σ, P], where
P = {σ → λ, σ → a, σ → b, σ → aσa, σ → bσb} .

Then we can directly generate a from σ, since σ → a is in P.
Furthermore, we can generate the string abba from σ as
follows by using the rules σ → aσa, σ → bσb and σ → λ;
i.e., we obtain

σ ⇒ aσa ⇒ abσba ⇒ abba . (1)

A sequence like Eq. (1) is called a generation or derivation. If a
string s can be generated from a nonterminal h then we write
h

∗⇒ s.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Illustration

Example 1

Let G = [{a, b}, {σ}, σ, P], where
P = {σ → λ, σ → a, σ → b, σ → aσa, σ → bσb} .

Then we can directly generate a from σ, since σ → a is in P.
Furthermore, we can generate the string abba from σ as
follows by using the rules σ → aσa, σ → bσb and σ → λ;
i.e., we obtain

σ ⇒ aσa ⇒ abσba ⇒ abba . (1)

A sequence like Eq. (1) is called a generation or derivation. If a
string s can be generated from a nonterminal h then we write
h

∗⇒ s.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Illustration

Example 1

Let G = [{a, b}, {σ}, σ, P], where
P = {σ → λ, σ → a, σ → b, σ → aσa, σ → bσb} .

Then we can directly generate a from σ, since σ → a is in P.
Furthermore, we can generate the string abba from σ as
follows by using the rules σ → aσa, σ → bσb and σ → λ;
i.e., we obtain

σ ⇒ aσa ⇒ abσba ⇒ abba . (1)

A sequence like Eq. (1) is called a generation or derivation. If a
string s can be generated from a nonterminal h then we write
h

∗⇒ s.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Generating a Language by a Grammar II

Finally, we can define the language generated by a grammar.

Definition 3
Let G = [T , N, σ, P] be a grammar. The language L(G) generated
by G is defined as L(G) = {s | s ∈ T∗ and σ

∗⇒ s} .

The family of all languages that can be generated by a grammar
in the sense of Definition 2 is denoted by L0. These languages
are also called type-0 languages, where 0 should remind us to
zero restrictions.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Generating a Language by a Grammar II

Finally, we can define the language generated by a grammar.

Definition 3
Let G = [T , N, σ, P] be a grammar. The language L(G) generated
by G is defined as L(G) = {s | s ∈ T∗ and σ

∗⇒ s} .

The family of all languages that can be generated by a grammar
in the sense of Definition 2 is denoted by L0. These languages
are also called type-0 languages, where 0 should remind us to
zero restrictions.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Generating a Language by a Grammar II

Finally, we can define the language generated by a grammar.

Definition 3
Let G = [T , N, σ, P] be a grammar. The language L(G) generated
by G is defined as L(G) = {s | s ∈ T∗ and σ

∗⇒ s} .

The family of all languages that can be generated by a grammar
in the sense of Definition 2 is denoted by L0. These languages
are also called type-0 languages, where 0 should remind us to
zero restrictions.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

An Example - Palindromes I

Recall that a palindrome is a string that reads the same from left
to right and from right to left, e.g.,

AKASAKA

ÈÓ³ß³ÓÈ

k�h�hSh�h�k

Æó°ÎÏÏÎ°óÆ

Let us look again at the language of all palindromes over
Σ = {a, b}, i.e., Lpal = {w | w ∈ {a, b}∗, w = wT }.

Consider the grammar from Example 1, i.e.,
G = [{a, b}, {σ}, σ, P], where
P = {σ → λ, σ → a, σ → b, σ → aσa, σ → bσb}.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

An Example - Palindromes I

Recall that a palindrome is a string that reads the same from left
to right and from right to left, e.g.,

AKASAKA

ÈÓ³ß³ÓÈ

k�h�hSh�h�k

Æó°ÎÏÏÎ°óÆ

Let us look again at the language of all palindromes over
Σ = {a, b}, i.e., Lpal = {w | w ∈ {a, b}∗, w = wT }.

Consider the grammar from Example 1, i.e.,
G = [{a, b}, {σ}, σ, P], where
P = {σ → λ, σ → a, σ → b, σ → aσa, σ → bσb}.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

An Example - Palindromes I

Recall that a palindrome is a string that reads the same from left
to right and from right to left, e.g.,

AKASAKA

ÈÓ³ß³ÓÈ

k�h�hSh�h�k

Æó°ÎÏÏÎ°óÆ

Let us look again at the language of all palindromes over
Σ = {a, b}, i.e., Lpal = {w | w ∈ {a, b}∗, w = wT }.

Consider the grammar from Example 1, i.e.,
G = [{a, b}, {σ}, σ, P], where
P = {σ → λ, σ → a, σ → b, σ → aσa, σ → bσb}.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

An Example - Palindromes I

Recall that a palindrome is a string that reads the same from left
to right and from right to left, e.g.,

AKASAKA

ÈÓ³ß³ÓÈ

k�h�hSh�h�k

Æó°ÎÏÏÎ°óÆ

Let us look again at the language of all palindromes over
Σ = {a, b}, i.e., Lpal = {w | w ∈ {a, b}∗, w = wT }.

Consider the grammar from Example 1, i.e.,
G = [{a, b}, {σ}, σ, P], where
P = {σ → λ, σ → a, σ → b, σ → aσa, σ → bσb}.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

An Example - Palindromes II

We have to show that Lpal = L(G).

Claim 1. Lpal ⊆ L(G).

The proof is done inductively. For the induction basis, consider
w = λ, w = a and w = b. Since P contains σ → λ, σ → a, and
σ → b, we get σ

∗⇒ w in all three cases.
Induction Step: Now let |w| > 2. Since w = wT , w must begin
and end with the same symbol, i.e., w = ava or w = bvb, where
v must be a palindrome, too.
By the induction hypothesis we have σ

∗⇒ v, and thus

σ ⇒ aσa
∗⇒ ava proving the w = ava case, or

σ ⇒ bσb
∗⇒ bvb proving the w = bvb case.

This shows Claim 1.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

An Example - Palindromes II

We have to show that Lpal = L(G).

Claim 1. Lpal ⊆ L(G).

The proof is done inductively. For the induction basis, consider
w = λ, w = a and w = b. Since P contains σ → λ, σ → a, and
σ → b, we get σ

∗⇒ w in all three cases.

Induction Step: Now let |w| > 2. Since w = wT , w must begin
and end with the same symbol, i.e., w = ava or w = bvb, where
v must be a palindrome, too.
By the induction hypothesis we have σ

∗⇒ v, and thus

σ ⇒ aσa
∗⇒ ava proving the w = ava case, or

σ ⇒ bσb
∗⇒ bvb proving the w = bvb case.

This shows Claim 1.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

An Example - Palindromes II

We have to show that Lpal = L(G).

Claim 1. Lpal ⊆ L(G).

The proof is done inductively. For the induction basis, consider
w = λ, w = a and w = b. Since P contains σ → λ, σ → a, and
σ → b, we get σ

∗⇒ w in all three cases.
Induction Step: Now let |w| > 2. Since w = wT , w must begin
and end with the same symbol, i.e., w = ava or w = bvb, where
v must be a palindrome, too.
By the induction hypothesis we have σ

∗⇒ v, and thus

σ ⇒ aσa
∗⇒ ava proving the w = ava case, or

σ ⇒ bσb
∗⇒ bvb proving the w = bvb case.

This shows Claim 1.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

An Example - Palindromes III

Claim 2. L(G) ⊆ Lpal.
Induction Basis: If the generation is done in one step, then one
of the productions not containing σ on the right hand side must
have been used, i.e., σ → λ, σ → a, or σ → b. Thus, σ ⇒ w

results in w = λ, w = a or w = b; hence w ∈ Lpal.

Induction Step: Suppose, the generation takes n + 1 steps,
n > 1. Thus, we have

σ ⇒ aσa
∗⇒ ava or

σ ⇒ bσb
∗⇒ bvb

Since by the induction hypothesis, we know that v ∈ Lpal, we
get in both cases w ∈ Lpal.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

An Example - Palindromes III

Claim 2. L(G) ⊆ Lpal.
Induction Basis: If the generation is done in one step, then one
of the productions not containing σ on the right hand side must
have been used, i.e., σ → λ, σ → a, or σ → b. Thus, σ ⇒ w

results in w = λ, w = a or w = b; hence w ∈ Lpal.

Induction Step: Suppose, the generation takes n + 1 steps,
n > 1. Thus, we have

σ ⇒ aσa
∗⇒ ava or

σ ⇒ bσb
∗⇒ bvb

Since by the induction hypothesis, we know that v ∈ Lpal, we
get in both cases w ∈ Lpal.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Regular Grammars

Definition 4
A grammar G = [T , N, σ, P] is said to be regular provided for all
α → β in P we have α ∈ N and β ∈ T∗ ∪ T∗N.

A language L is said to be regular if there exists a regular
grammar G such that L = L(G). By REG we denote the set of all
regular languages.

Example 2

Let G = [{a, b}, {σ}, σ, P] with P = {σ → ab, σ → aσ}.
G is regular and L(G) = {anb | n > 1} is a regular language.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Regular Grammars

Definition 4
A grammar G = [T , N, σ, P] is said to be regular provided for all
α → β in P we have α ∈ N and β ∈ T∗ ∪ T∗N.

A language L is said to be regular if there exists a regular
grammar G such that L = L(G). By REG we denote the set of all
regular languages.

Example 2

Let G = [{a, b}, {σ}, σ, P] with P = {σ → ab, σ → aσ}.
G is regular and L(G) = {anb | n > 1} is a regular language.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Examples for Regular Languages

Example 3

Let G = [{a, b}, {σ}, σ, P] with P = {σ → λ, σ → aσ, σ → bσ}.

Again, G is regular and L(G) = Σ∗.

Consequently, Σ∗ is a regular language.

Example 4
Let Σ be any alphabet, and let X ⊆ Σ∗ be any finite set. Then, for
G = [Σ, {σ}, σ, P] with P = {σ → s | s ∈ X}, we have L(G) = X.

Consequently, every finite language is regular.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Examples for Regular Languages

Example 3

Let G = [{a, b}, {σ}, σ, P] with P = {σ → λ, σ → aσ, σ → bσ}.

Again, G is regular and L(G) = Σ∗.

Consequently, Σ∗ is a regular language.

Example 4
Let Σ be any alphabet, and let X ⊆ Σ∗ be any finite set. Then, for
G = [Σ, {σ}, σ, P] with P = {σ → s | s ∈ X}, we have L(G) = X.

Consequently, every finite language is regular.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

What else is regular?

Question
Which languages are regular?

For answering this question, we first deal with closure
properties.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

What else is regular?

Question
Which languages are regular?

For answering this question, we first deal with closure
properties.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Closure Properties

Theorem 1
The regular languages are closed under union, product and Kleene
closure.

Proof. Let L1 and L2 be any regular languages. Since L1 and L2
are regular, there are regular grammars G1 = [T1, N1, σ1, P1] and
G2 = [T2, N2, σ2, P2] such that Li = L(Gi) for i = 1, 2. Without
loss of generality, we may assume that N1 ∩N2 = ∅ for
otherwise we simply rename the nonterminals appropriately.
We start with the union. We have to show that L = L1 ∪ L2 is
regular. Now, let

Gunion = [T1 ∪ T2, N1 ∪N2 ∪ {σ}, σ, P1 ∪ P2 ∪ {σ → σ1, σ → σ2}] .

By construction, Gunion is regular.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Closure Properties

Theorem 1
The regular languages are closed under union, product and Kleene
closure.

Proof. Let L1 and L2 be any regular languages. Since L1 and L2
are regular, there are regular grammars G1 = [T1, N1, σ1, P1] and
G2 = [T2, N2, σ2, P2] such that Li = L(Gi) for i = 1, 2. Without
loss of generality, we may assume that N1 ∩N2 = ∅ for
otherwise we simply rename the nonterminals appropriately.
We start with the union. We have to show that L = L1 ∪ L2 is
regular.

Now, let

Gunion = [T1 ∪ T2, N1 ∪N2 ∪ {σ}, σ, P1 ∪ P2 ∪ {σ → σ1, σ → σ2}] .

By construction, Gunion is regular.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Closure Properties

Theorem 1
The regular languages are closed under union, product and Kleene
closure.

Proof. Let L1 and L2 be any regular languages. Since L1 and L2
are regular, there are regular grammars G1 = [T1, N1, σ1, P1] and
G2 = [T2, N2, σ2, P2] such that Li = L(Gi) for i = 1, 2. Without
loss of generality, we may assume that N1 ∩N2 = ∅ for
otherwise we simply rename the nonterminals appropriately.
We start with the union. We have to show that L = L1 ∪ L2 is
regular. Now, let

Gunion = [T1 ∪ T2, N1 ∪N2 ∪ {σ}, σ, P1 ∪ P2 ∪ {σ → σ1, σ → σ2}] .

By construction, Gunion is regular.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Closure under Union

Claim 1. L = L(Gunion).

We have to start every generation of strings with σ. Thus, there
are two possibilities, i.e., σ → σ1 and σ → σ2. In the first case,
we can continue with all generations that start with σ1 yielding
all strings in L1. In the second case, we can continue with σ2,
thus getting all strings in L2. Consequently, L1 ∪ L2 ⊆ L.

On the other hand, L ⊆ L1 ∪ L2 by construction. Hence,
L = L1 ∪ L2. (union)

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Closure under Union

Claim 1. L = L(Gunion).

We have to start every generation of strings with σ. Thus, there
are two possibilities, i.e., σ → σ1 and σ → σ2. In the first case,
we can continue with all generations that start with σ1 yielding
all strings in L1. In the second case, we can continue with σ2,
thus getting all strings in L2. Consequently, L1 ∪ L2 ⊆ L.

On the other hand, L ⊆ L1 ∪ L2 by construction. Hence,
L = L1 ∪ L2. (union)

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Closure under Product I

We have to show that L1L2 is regular. A first idea might be to
use a construction analogous to the one above, i.e., to take as a
new starting production σ → σ1σ2.

Unfortunately, this production is not regular. We have to be a
bit more careful. But the underlying idea is fine, we just have to
replace it by a sequential construction.

The idea for doing that is easily described. Let s1 ∈ L1 and
s2 ∈ L2. We want to generate s1s2. Then, starting with σ1 there
is a generation σ1 ⇒ w1 ⇒ w2 ⇒ · · · ⇒ s1. But instead of
finishing the generation at that point, we want to have the
possibility to continue to generate s2. Thus, all we need is a
production having a right hand side resulting in s1σ2.
This idea can be formalized as follows:

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Closure under Product I

We have to show that L1L2 is regular. A first idea might be to
use a construction analogous to the one above, i.e., to take as a
new starting production σ → σ1σ2.

Unfortunately, this production is not regular. We have to be a
bit more careful. But the underlying idea is fine, we just have to
replace it by a sequential construction.

The idea for doing that is easily described. Let s1 ∈ L1 and
s2 ∈ L2. We want to generate s1s2. Then, starting with σ1 there
is a generation σ1 ⇒ w1 ⇒ w2 ⇒ · · · ⇒ s1. But instead of
finishing the generation at that point, we want to have the
possibility to continue to generate s2. Thus, all we need is a
production having a right hand side resulting in s1σ2.
This idea can be formalized as follows:

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Let Gprod = [T1 ∪ T2, N1 ∪N2, σ1, P], where

P = P1 \ {h → s | s ∈ T∗
1 , h ∈ N1}

∪ {h → sσ2 | h → s ∈ P1, s ∈ T∗
1 } ∪ P2 .

By construction, Gprod is regular.

Claim 2. L(Gprod) = L1L2.

Clearly, L(Gprod) ⊆ L1L2. We show L1L2 ⊆ L(Gprod). Let s ∈ L1L2.
Then, there are s1 ∈ L1 and s2 ∈ L2 such that s = s1s2. Since
s1 ∈ L1, there is a generation σ1 ⇒ w1 ⇒ · · · ⇒ wn ⇒ s1
in G1. So, wn must contain precisely one nonterminal, say h,
and thus wn = wh. Since wn ⇒ s1 and s1 ∈ T∗

1 , we must have
applied a production h → s, s ∈ T∗

1 such that wh ⇒ ws = s1.
But in Gprod all these productions have been replaced by
h → sσ2. Hence, the last generation wn ⇒ s1 is now replaced
by wh ⇒ wsσ2. Now, we apply the productions from P2 to
generate s2 which is possible, since s2 ∈ L2. (product)

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Let Gprod = [T1 ∪ T2, N1 ∪N2, σ1, P], where

P = P1 \ {h → s | s ∈ T∗
1 , h ∈ N1}

∪ {h → sσ2 | h → s ∈ P1, s ∈ T∗
1 } ∪ P2 .

By construction, Gprod is regular.

Claim 2. L(Gprod) = L1L2.

Clearly, L(Gprod) ⊆ L1L2. We show L1L2 ⊆ L(Gprod). Let s ∈ L1L2.
Then, there are s1 ∈ L1 and s2 ∈ L2 such that s = s1s2. Since
s1 ∈ L1, there is a generation σ1 ⇒ w1 ⇒ · · · ⇒ wn ⇒ s1
in G1. So, wn must contain precisely one nonterminal, say h,
and thus wn = wh. Since wn ⇒ s1 and s1 ∈ T∗

1 , we must have
applied a production h → s, s ∈ T∗

1 such that wh ⇒ ws = s1.

But in Gprod all these productions have been replaced by
h → sσ2. Hence, the last generation wn ⇒ s1 is now replaced
by wh ⇒ wsσ2. Now, we apply the productions from P2 to
generate s2 which is possible, since s2 ∈ L2. (product)

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Let Gprod = [T1 ∪ T2, N1 ∪N2, σ1, P], where

P = P1 \ {h → s | s ∈ T∗
1 , h ∈ N1}

∪ {h → sσ2 | h → s ∈ P1, s ∈ T∗
1 } ∪ P2 .

By construction, Gprod is regular.

Claim 2. L(Gprod) = L1L2.

Clearly, L(Gprod) ⊆ L1L2. We show L1L2 ⊆ L(Gprod). Let s ∈ L1L2.
Then, there are s1 ∈ L1 and s2 ∈ L2 such that s = s1s2. Since
s1 ∈ L1, there is a generation σ1 ⇒ w1 ⇒ · · · ⇒ wn ⇒ s1
in G1. So, wn must contain precisely one nonterminal, say h,
and thus wn = wh. Since wn ⇒ s1 and s1 ∈ T∗

1 , we must have
applied a production h → s, s ∈ T∗

1 such that wh ⇒ ws = s1.
But in Gprod all these productions have been replaced by
h → sσ2. Hence, the last generation wn ⇒ s1 is now replaced
by wh ⇒ wsσ2. Now, we apply the productions from P2 to
generate s2 which is possible, since s2 ∈ L2. (product)

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Closure under Kleene Closure

Let L be a regular language, and let G = [T , N, σ, P] be a regular
grammar such that L = L(G). We have to show that L∗ is
regular.

By definition L∗ =
⋃

i∈N Li. Since L0 = {λ}, we have to make
sure that λ can be generated. This is obvious if λ ∈ L.
Otherwise, we simply add the production σ → λ. The rest is
done analogously as in the product case, i.e., we set

G∗ = [T , N ∪ {σ∗}, σ∗, P∗], where

P∗ = P ∪ {h → sσ | h → s ∈ P, s ∈ T∗}∪ {σ∗ → σ, σ∗ → λ} .

We leave it as an exercise to prove that L(G∗) = L∗.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Closure under Kleene Closure

Let L be a regular language, and let G = [T , N, σ, P] be a regular
grammar such that L = L(G). We have to show that L∗ is
regular.
By definition L∗ =

⋃
i∈N Li. Since L0 = {λ}, we have to make

sure that λ can be generated. This is obvious if λ ∈ L.
Otherwise, we simply add the production σ → λ. The rest is
done analogously as in the product case, i.e., we set

G∗ = [T , N ∪ {σ∗}, σ∗, P∗], where

P∗ = P ∪ {h → sσ | h → s ∈ P, s ∈ T∗}∪ {σ∗ → σ, σ∗ → λ} .

We leave it as an exercise to prove that L(G∗) = L∗.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Equivalence of Grammars

We finish this lecture by defining the equivalence of grammars.

Definition 5

Let G and Ĝ be any grammars. G and Ĝ are said to be equivalent
if L(G) = L(Ĝ).

For having an example for equivalent grammars, we consider
G = [{a}, {σ}, σ, {σ → aσa, σ → aa, σ → a}],
and the following grammar:
Ĝ = [{a}, {σ}, σ, {σ → a, σ → aσ}].

Now, it is easy to see that L(G) = {a}+ = L(Ĝ), and hence G

and Ĝ are equivalent.

Note, however, that Ĝ is regular while G is not.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Equivalence of Grammars

We finish this lecture by defining the equivalence of grammars.

Definition 5

Let G and Ĝ be any grammars. G and Ĝ are said to be equivalent
if L(G) = L(Ĝ).

For having an example for equivalent grammars, we consider
G = [{a}, {σ}, σ, {σ → aσa, σ → aa, σ → a}],
and the following grammar:
Ĝ = [{a}, {σ}, σ, {σ → a, σ → aσ}].

Now, it is easy to see that L(G) = {a}+ = L(Ĝ), and hence G

and Ĝ are equivalent.

Note, however, that Ĝ is regular while G is not.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Equivalence of Grammars

We finish this lecture by defining the equivalence of grammars.

Definition 5

Let G and Ĝ be any grammars. G and Ĝ are said to be equivalent
if L(G) = L(Ĝ).

For having an example for equivalent grammars, we consider
G = [{a}, {σ}, σ, {σ → aσa, σ → aa, σ → a}],
and the following grammar:
Ĝ = [{a}, {σ}, σ, {σ → a, σ → aσ}].

Now, it is easy to see that L(G) = {a}+ = L(Ĝ), and hence G

and Ĝ are equivalent.

Note, however, that Ĝ is regular while G is not.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Equivalence of Grammars

We finish this lecture by defining the equivalence of grammars.

Definition 5

Let G and Ĝ be any grammars. G and Ĝ are said to be equivalent
if L(G) = L(Ĝ).

For having an example for equivalent grammars, we consider
G = [{a}, {σ}, σ, {σ → aσa, σ → aa, σ → a}],
and the following grammar:
Ĝ = [{a}, {σ}, σ, {σ → a, σ → aσ}].

Now, it is easy to see that L(G) = {a}+ = L(Ĝ), and hence G

and Ĝ are equivalent.

Note, however, that Ĝ is regular while G is not.

Theory of Computation c©Thomas Zeugmann

Grammars Regular Languages Equivalence End

Thank you!

Theory of Computation c©Thomas Zeugmann

	Grammars
	

	Regular Languages
	

	Equivalence
	

	End
	

