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Abstract

Learning of recursive functions refutably informally means that for every recursive
function, the learning machine has either to learn this function or to refute it, that
is to signal that it is not able to learn it. Three modi of making precise the notion of
refuting are considered. We show that the corresponding types of learning refutably
are of strictly increasing power, where already the most stringent of them turns
out to be of remarkable topological and algorithmical richness. Furthermore, all
these types are closed under union, though in different strengths. Also, these types
are shown to be different with respect to their intrinsic complexity; two of them
do not contain function classes that are “most difficult” to learn, while the third
one does. Moreover, we present several characterizations for these types of learning
refutably. Some of these characterizations make clear where the refuting ability of
the corresponding learning machines comes from and how it can be realized, in
general.

For learning with anomalies refutably, we show that several results from standard
learning without refutation stand refutably. From this we derive some hierarchies
for refutable learning. Finally, we prove that in general one cannot trade stricter
refutability constraints for more liberal learning criteria.
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1 Introduction

The basic scenario in learning theory informally consists in that a learning
machine has to learn some unknown object based on certain information, that
is the machine creates one or more hypotheses which eventually converge to
a more or less correct and complete description of the object. In learning
refutably the main goal is more involved. Here, for every object from a given
universe, the learning machine has either to learn the object or to refute it,
that is to “signal” if it is incapable to learn this object. This approach is
philosophically motivated by Popper’s logic of scientific discovery (testability,
falsifyability, refutability of scientific hypotheses), see [33] and [25], for a more
detailed discussion. Moreover, this approach has also some rather practical
implications. Indeed, if the learning machine informs a user of its inability to
learn a certain object, then the user can react upon this inability, by modi-
fying the machine, by changing the space of hypotheses, or by weakening the
learning requirements, for example.

A crucial point of learning refutably is to formally define how the machine is
allowed or required to refute a non-learnable object. In the ground-breaking
paper by Mukouchi and Arikawa [30] it is required that refuting takes place in
a “one shot” manner, that is, if after some finite amount of time, the machine
comes to the conclusion that it is not able to learn the object under con-
sideration, then it outputs a special “refuting symbol” and stops the learning
process forever. Two weaker possibilities of refuting are based on the following
observation. Suppose that at some time, the machine feels unable to learn the
unknown object and signals this by outputting the refuting symbol. Neverthe-
less, this time the machine keeps trying to learn this object. It may happen
that the information it further receives contains a new evidence which leads
to changing its mind about its inability to learn the object. Of course, this
process of “alternations” can repeat. And it may end in learning the object. Or
it may end in refuting it by never revising the machine’s belief in its inability
to learn the object, or, equivalently, by forever outputting the refuting symbol
from some point on. Or, finally, there may be infinitely many such alternations
between trying to learn and believing that this is impossible. In our paper, we
will allow and study all three of these modes of learning refutably.

Our universe is the class R of all recursive functions, i.e., all computable
functions being defined everywhere. The basic learning criterion used will be
Ex, learning in the limit, see Definition 1. We then consider the following
types of learning refutably:

RefEx, where refuting a non-learnable function takes place in the one shot
manner described above (cf. Definition 5).



WRefEx, where both learning and refuting are limiting processes, that is on
every function from the universe, the learning machine converges either to a

correct hypothesis for this function or to the refuting symbol, see Definition 6
(W stands for “weak”).

RelEx, where a function is considered as being refuted if the learning machine
outputs the refuting symbol infinitely often on this function, see Definition 7,
(Rel stands for “reliable”, since this type coincides with so-called reliable
learning, as we shall see below).

As it immediately follows from the definitions of all these types of learning
refutably, every function from our universe will indeed either be learned or
be refuted by every machine that learns refutably. In other words, it can
not happen that such a machine converges to an incorrect hypothesis, see
Correctness Lemma below. Thus, this lemma can be viewed as a justification
for the above approaches of refutable learning.

We then show that these types of learning refutably are of strictly increasing
power, see Theorem 16. Already the most stringent of them, RefEx, turns out
to be of remarkable topological and algorithmical richness (cf. Proposition 11
and Corollary 30). Furthermore, all of these learning types are closed under
union, Proposition 18, where RefEx and WRefEx, on the one hand, and
RelEx, on the other hand, do not behave completely analogous. Such a dif-
ference can also be exhibited with respect to the so-called intrinsic complexity;
actually, both RefEx and WRefEx do not contain function classes that are
“most difficult” to learn, while RelEx does contain such classes, see Theo-
rems 26 and 27, respectively. Moreover, we present several characterizations
for our types of learning refutably. Specifically, some of these characterizations
make it clear where the refuting ability of the corresponding learning machines
comes from and how it can be realized, in general (cf. Theorems 39 and 44).

Besides pure Ex-learning refutably we also consider Ex-learning with anoma-
lies as well as Be-learning with anomalies refutably (cf. Definitions 49 and 50).
We show that many results from standard learning without refutation stand
refutably. From this we derive several hierarchies for refutable learning, thereby
solving an open problem from [22], see Corollaries 56 and 67. Moreover, we
prove that, in general, one cannot trade a stricter refutability constraint for a
more liberal learning criterion (cf. Corollary 71 and Theorem 72).

Since the pioneering paper [30] learning with refutation has attracted much
attention. The line initiated by [30], i.e., studying learning with refutation for
indexed families of languages, was also applied to learning of elementary for-
mal systems in [31]. As a consequence of this model, if an indexed family of
recursive languages can be refutably learned from text then this class cannot
contain any infinite language. This limitation led Lange and Watson [25] to



consider a more tolerant approach. In their model a refuting learning machine
is no longer required to refute every text describing a language outside the
class to be learned. Instead, the machine has to refute only such texts con-
taining a finite sample being not contained in any language from the class
to be learned. This indeed leads to a richer spectrum of indexed families of
recursive languages that are learnable with so-called justified refutation. Jain
[18] then generalized the study in two directions. First, classes of arbitrary
recursively enumerable languages were considered. Second, the learning ma-
chine was allowed either to refute or to learn unrepresentative texts. For a
natural interpretation of “unrepresentative”, the power of the justified refu-
tation model has been shown to reach the power of the unrestricted model of
learning languages from text.

Learning functions with refutation was considered by Miyahara [29] for in-
dexed classes of primitive recursive fuctions. For arbitrary classes of arbitrary
recursive functions, an alternative approach has been developed and stud-
ied by Jantke [20] and Grieser [17]. In a sense, their approach is orthogonal to
ours. Actually, on the one hand, their model allows to learn richer classes than
we can. On the other hand, in certain cases every machine that learns such
a richer class converges to incorrect hypotheses on infinitely many functions
outside this class, whereas in our approach the Correctness Lemma guarantees
that no machine converges incorrectly on whatever function from the universe.

The paper is organized as follows. Section 2 provides the necessary notations
and definitions, as well as the Correctness Lemma. Section 3 deals with Ex-
learning refutably. In Section 4, we consider Ex- and Bce-learning with anoma-
lies refutably.

2 Notation and Preliminaries

Recursion-theoretic concepts not explained below are treated in [35]. N denotes
the set of natural numbers. Furthermore, i = j is defined as follows:

i -_{i—j, ifi > j;
7= 0, otherwise.

Let €, C, C, D, D, respectively, denote the membership, subset, proper sub-
set, superset and proper superset relations for sets. The empty set is denoted
by (). We let card(S) denote the cardinality of the set S. The minimum and
maximum of a set S are denoted by min(S) and max(S), respectively. We take
max(()) to be 0 and min(()) to be oco.



(-,+) denotes a 1-1 computable mapping from pairs of natural numbers onto
N. 7y, 7 are the corresponding projection functions. (-,-) is extended to n-
tuples of natural numbers in a natural way. n, with or without subscripts,
superscripts, primes and the like, ranges over partial functions. If n; and 7
are both undefined on input z, then, we take n(x) = n9(z). We say that
n C ne iff for all z in the domain of 1y, 71 (z) = n2(x). We let domain(n) and
range(n), respectively, denote the domain and range of the partial function
n. n(z)] and n(x) =] both denote that n(z) is defined and n(x)T as well as
n(z) =7 stand for n(x) is undefined. We identify a partial function n with its

graph {(x,n(x)) | x € domain(n)}.

For r € N, the r-extension of 1 denotes the function f defined as follows:

flay = {17k L < comeinto

T, otherwise.

We write r-ext(n) for the r-extension of 7. R denotes the class of all recursive
functions, i.e., total computable functions with arguments and values from N.
By Ry, we denote the class of all recursive functions with range contained in
{0,1}. C and S, with or without subscripts, superscripts, primes and the like,
range over subsets of R. For C C R, we let C denote R \ C. P denotes the
class of all partial recursive functions over N. f, g, h and F', with or without
subscripts, superscripts, primes and the like, range over recursive functions
unless otherwise specified.

A computable numbering (or just numbering) is a partial recursive function
of two arguments. For a numbering ¢ (-,), we use v; to denote the function
Az.4p(i,x). In other words, ¢; is the function computed by the program i
in the numbering 9. ¢ and p range over numberings. Py denotes the set of
partial recursive functions in the numbering v, i.e., Py = {1; | i € N}. We set
Ry =AY | i € N& ¢, € R}. That is, Ry stands for the set of all recursive
functions in the numbering 1. A numbering 1 is called one-to-one iff 1; # 9;
for any distinct 4, j. Hence, for any n € Py, there is exactly one v-index i
such that ¥; = 7. ¢ denotes a fized acceptable programming system (cf. [35]).
We write ; for the partial recursive function computed by program ¢ in the
p-system. We let @ be an arbitrary Blum [6] complexity measure associated
with the acceptable programming system ; many such measures exist for any
acceptable programming system. We assume without loss of generality that
®;(z) > z, for all i, x. ¢, is defined as follows:

_ _ fwi(z), ifz<sand ®(z) <s;
Pis(@) = {T, otherwise.

A class C C R is said to be recursively enumerable iff there exists an r.e. set
X such that C = {y; | i € X}. For any non-empty recursively enumerable



class C, there exists a recursive function f such that C = {¢q) | i € N}.

A function g is said to be an accumulation point of a class C C R iff g € R
and (Vn € N)(3f € O)[(Vx < n)[g(z) = f(x)] & f # g]. Note that the
accumulation point may or may not belong to the class. For C C R, we let
Acc(C) = {g | g is an accumulation point of C}.

The quantifier V> denotes for all but finitely many; that is, (V>°z)[P(z)] means
card({z | =P(z)}) < oo. The following functions and classes are commonly
considered below. Zero is the everywhere 0 function, i.e., Zero(z) = 0, for all
x € N. FINSUP = {f | (Vv*°z)[f(z) = 0]} denotes the class of all recursive

functions of finite support.

2.1 Function Identification

We first describe inductive inference machines. We assume, that the graph of
a function is fed to a machine in canonical order.

For a partial function 1 such that n(x) is defined for all x < n, we write
n[n] for the set {(z,n(x)) | x < n}, the finite initial segment of n of length n.
Clearly, n[0] denotes the empty segment. SEG denotes the set of all finite initial
segments, i.e., {f[n] | f € R & n € N}. Furthermore, we set SEGo; = {f[n] |
f € Ro1 & n e N} Welet o, 7 and ~y, with or without subscripts, superscripts,
primes and the like, range over SEG. A denotes the empty segment. We assume
some computable ordering of elements of SEG. Thus, one can talk about
recursively enumerable subsets of SEG and comparison among members of
SEG, that is ¢ < 7, if 0 appears before 7 in this ordering. Similary one can
talk about the least element of a subset of SEG.

Let |o| denote the length of o. Thus, |f[n]| = n, for every total function f
and all n € N. If |o] > n, then we let o[n] denote {(z,0(x)) | © < n}. An
inductive inference machine (IIM) is an algorithmic device that computes a
total mapping from SEG into N (cf. [15]). Since the set of all finite initial
segments, SEG, can be coded onto N, we can view these machines as taking
natural numbers as input and emitting natural numbers as output. We say
that M(f) converges to i (written: M(f)| = i) iff (V*°n)[M(f[n]) = i]; M(f)
is undefined if no such 7 exists. The next definitions describe several criteria
of function identification.

Definition 1 (Gold [15]). Let f € R and let M be an IIM.

(a) M Ex-identifies f (written: f € Ex(M)) just in case there exists an
i € N such that M(f)] =1 and ¢; = f.

(b) M Ex-identifies C iff M Ex-identifies each f € C.

(c) Bx = {CCR|(IM)[C C Ex(M)]}.



By the definition of convergence, only finitely many data points from a function
f have been observed by an IIM M at the (unknown) point of convergence.
Hence, some form of learning must take place in order for M to learn f. For this
reason, hereafter the terms identify, learn and infer are used interchangeably.

Definition 2 (Barzdips [2], Case and Smith [10]). Let f € R and let M
be an IIM.

(a) M Bc-identifies f (written: f € Bc(M)) iff, for all but finitely many
n € N, M(f[n]) is a program for f, i.e., om(sm)) = f-

(b) M Bec-identifies C iff M Be-identifies each f € C.

(¢c) Bc ={CCR|(EM)[C CBc(M)]}.

Definition 3 (Minicozzi [28], Blum and Blum [5]). Let M be an IIM.

(a) M is reliable iff for all f € R, M(f)] = M Ex-identifies f.

(b) M RelEx-identifies C (written: C C RelEx(M)) iff M is reliable and M
Ex-identifies C.

(c) RelEx = {C C R | (3M)[M RelEx-identifies C|}.

Thus, intuitively, a machine is reliable if it does not converge on functions it
fails to identify. For further references on reliable learning besides [28,5], see
23,16,22,41,8].

Definition 4 NUM = {C | (3C’ | C C C’' C R)[C’ is recursively enumerable]}.

For references on inductive inference within NUM, the set of all recursively
enumerable classes and their subclasses, the reader is referred to [15,3,12]. For
references surveying the general theory of learning recursive functions, we refer
the reader to [1,5,10,11,24,32,19].

2.2 Learning Refutably

In this subsection we introduce learning with refutation. The idea is that the
learning machine should “refute” functions which it does not identify. We
consider three versions of refutation based on how the machine is required to
refute a function. First we need to extend the definition of IIM to allow a
machine to output a special symbol L. Thus, now an IIM is a mapping from
SEG to NU{L}. Convergence of an IIM on a function can be defined as before
(where a machine may now converge to a natural number or to L).

Definition 5 Let M be an IIM. M RefEx-identifies a class C (written: C C
RefEx(M)) iff the following conditions are satisfied.

(a) C C Ex(M).

(b) For all f € Ex(M), for all n, M(f[n]) # L.



(¢c) For all f € R such that f & Ex(M), there exists an n such that (Ym <
n)[M(f[m]) # L] and (Ym = n)[M(f[m]) = L].

Intuitively, for RefEx-identification, the IIM M outputs the special symbol
L on input function f to indicate that it is not going to Ex-identify f.

The following generalization of RefEx places less restrictive constraint on how
the machine refutes a function. WRef below stands for weak refutation.

Definition 6 Let M be an [IM. M WRefEx-identifies a class C (written:
C C WRefEx(M)) iff the following conditions are satisfied.

(a) C C Ex(M).
(b) For all f € R such that f ¢ Ex(M), M(f)] = L.

For weakly refuting a function, the machine just needs to converge to the
refutation symbol L. Before convergence, it may change its mind finitely many
times whether or not it is going to refute the function.

There is another possible way a machine may refute a function f, i.e., it
outputs L on f infinitely often. This version actually turns out to be equivalent
to RelEx-learning considered above.

Definition 7 Let M be an IIM. M RelEx'-identifies a class C (written: C C
RelEx'(M) ) iff the following conditions are satisfied.

(a) C C Ex(M).
(b) For all f € R such that f ¢ Ex(M), there exist infinitely many n such
that M(f[n]) = L.

Proposition 8 RelEx = RelEx'.
Proof. We first show that RelEx C RelEx'.
Suppose M RelEx-identifies C. Define M’ as follows:
M/(f[n]) _ {M(f[n])v if n=20or M(f[n - 1]) = M(f[”])u

4, otherwise.

It is easy to verify that M’ RelEx'-identifies C.

We now show that RelEx’ C RelEx. Suppose M RelEx'-identifies C. Define
M’ as follows:

M(fla) = { MUl EMUID L

n, otherwise.

It is easy to verify that M’ Ex-identifies each f Ex-identified by M. Also, if
M outputs L on f infinitely often, then M(f)T, since it outputs arbitrarily



large numbers on f. It follows that M’ RelEx-identifies C. |

As it immediately follows from their definitions, for any of the learning types
RefEx, WRefEx and RelEx, we get that any recursive function has either to
be learned or to be refuted. We make this point formally precise by stating the
following Correctness Lemma. Informally, this lemma says that for every type
of learning refutably and for every machine that learns in the corresponding
sense, one can trust in the correctness of every hypothesis from N the machine
may converge to.

Lemma 9 (Correctness Lemma). Let I € {RefEx, WRefEx, RelEx}.
For any C C R, any IIM M with C CI(M), and any f € R, if M(f)] € N,
then omr) = f.

Proof. We prove the lemma here for RefEx. The remaining cases can be han-
dled analogously. Let C C R and let M be any IIM such that C C RefEx.
Furthermore, let f € R and assume that M(f)] € N. Thus, we can con-
clude that f € Ex(M). Otherwise condition (c¢) in Definition 5 must have
happened, and hence M(f[m]) = L for all but finitely many m, a contra-
diction to M(f)| € N. Finally, by Definition 1, part (a), we directly obtain

omp) = f- |

Using essentially the idea from Gold [14], (for Ex-identification), for I being
any of the learning criteria considered in this paper, one can show that:

There exists an r.e. sequence My, M1, Ms, ... of total inductive inference
machines such that, for all C € I, there exists an ¢ € N such that C C I(M;).

In the following, we assume Mg, M, Mo, ... to be one such sequence of ma-
chines.

3 Ex-Learning Refutably

In this section, we first derive several properties of the types of learning
refutably defined above. We then relate these types by their so-called intrinsic
complexity. Finally, we present several characterizations for refutable learn-
ability.



3.1 Properties and Relations

We start with exhibiting some properties of the classes being learnable refutab-
ly. Specifically, these properties imply that the corresponding learning types
are of strictly increasing power, where already the most stringent of these
types, RefEx, turns out to be of surprising richness. The first of these prop-
erties consists in that any class from RefEx can be enriched by including all
of its accumulation points. Note that, in general, this is not possible for the
classes from WRefEx and RelEx, as it immediately follows from the proof
of Theorem 16.

Proposition 10 For any C € RefEx, C U Acc(C) € RefEx.

Proof. Informally, the result follows from the fact that in any type of refutable
learning, any function f € R, will either be identified or refuted. Since in
RefEx-learning an accumulation point can never be refuted, it has to be
learned. Formally, suppose C € RefEx as witnessed by some total IIM M.
Let g € R be an accumulation point of C. We claim that M must Ex-identify g.
Assume to the contrary that for some n, M(g[n]) = L. Then, by the definition
of accumulation point, there is a function f € C such that g[n] C f. Hence
M(f[n]) = L, too, a contradiction to M RefEx-identifying C. |

The next proposition shows that RefEx contains “topologically rich”, namely
non-discrete classes, i.e. classes which contain accumulation points. Thus,
RefEx is “richer” than usual Ex-learning without any mind change, since
any class being learnable in that latter sense may not contain any of its ac-
cumulation points (cf. [26]). More precisely, RefEx and Ex-learning without
mind changes are set-theoretically incomparable; the missing direction easily
follows from Theorem 53 below.

Proposition 11 RefEx contains non-discrete classes.

Proof. For v € N, define f; as follows.

filz) = {(1), if x < i;

otherwise.

Let C = {f; | i € N} U{Zero}. Then, clearly, C is non-discrete and RefEx-
learnable. |

The following proposition establishes some bound on the topological richness
of the classes from WRefEx.

Definition 12 A class C C R is called initially complete iff for every o €

10



SEG, there is a function f € C such that o C f.
Proposition 13 WRefEx does not contain any initially complete class.

Proof. Assume to the contrary that there is an initially complete class C that
is WRefEx-learnable by some total IIM M.

Claim 14 For all 0 € SEG, there exists a T € SEG such that o C 7, and
M(o) # M().

Proof. 1f for all extensions 7 of o, M(0) = M(7), then M can Ex-identify at
most one extension of . But then C is not initially complete. O

Now, let o;, © € N, be defined such that o; can be obtained effectively from
i, oo = A, and for all i, o; C 0,41 and M(0;) # M(o;11). Note that this is
possible due to Claim 14. Now let f = U;eyo0i. Clearly, f € R, but M on
f makes infinitely many mind changes. Thus, M neither Ex-identifies, nor
refutes f. Thus, M does not WRef-identify C. |

The following result is needed for proving Theorem 16 below.
Lemma 15 C={f € R | (Vz € N)[f(z) # 0]} & Ex.

Proof. Suppose by way of contradiction M Ex-identifies C. For any o € SEG,
let 7, be defined as follows:

_Jo(z)+1, ifo(x)l;
7o(7) = {T, otherwise.

Let prog be a recursive function such that, for any program p, @pogp) () =
¢p(x) = 1. Note that by the s-m-n theorem, there exists such a recursive
function prog. Now define M/(0) = prog(M(7,)).

It is easy to verify that if M Ex-identifies C, then M’ Ex-identifies R. However,
R & Ex, see [15]. Thus C ¢ Ex. |

We are now ready to prove that RefEx, WRefEx and RelEx, respectively,
are of strictly increasing power.

Theorem 16 RefEx C WRefEx C RelEx.

Proof. RefEx C WRefEx C RelEx follows easily from the definitions and
Proposition 8.

11



We first show that WRefEx \ RefEx ## (). For that purpose, we define
SEGT = {fln] | f e R & n € N & (Vz € N)[f(z) # 0]}. Let C = {0-
ext(c) | 0 € SEGT}. Then Acc(C) = {f € R | (Vx € N)[f(x) # 0]}, which is
not in Ex, by Lemma 15. Thus, C U Acc(C) ¢ Ex, and hence, C ¢ RefEx, by
Proposition 10.

In order to show that C € WRefEx, let prog € R be a recursive function
such that for any o € SEG™, prog(c) is a ¢-program for 0-ext(c). Let M be
defined as follows.

1, if f[n] € SEGY;
M(f[n]) = { prog(o), if 0-ext(f[n]) = 0-ext(c), for some o € SEG™;
1, otherwise.

It is easy to verify that M WRefEx-identifies C.

We now show that RelEx \ WRefEx # (). Clearly, FINSUP is initially com-
plete and FINSUP € NUM. Since NUM C RelEx, see [28], we have that
FINSUP € RelEx. On the other hand, FINSUP ¢ WRefEx by Proposi-
tion 13. |

As a consequence from the proof of Theorem 16, we can derive that the types
RefEx, WRefEx and RelEx already differ on recursively enumerable classes.

Corollary 17 RefEx N NUM C WRefEx N NUM C RelEx N NUM.

Proof. Immediately from the proof of Theorem 16. |

We next point out that all the types of learning refutably share a pretty rare,
but desirable property, namely to be closed under union.

Proposition 18 RefEx, WRefEx and RelEx are closed under union.

Proof. In [28] it was shown that RelEx is closed under union. Now, suppose
I € {RefEx, WRefEx}, C C I(M') and S C I(M”). Then, define an IIM M
as follows.

M'(f[n]), it M'(f[n]) # L;
M(fln]) = {M”(f[n]), otherwise.

Thus, informally, M simulates the first machine that currently does not refute
the given function. It is easy to verify that CUS C I(M). |

12



Proposition 18 obviously applies also to the union of any finite number of
classes. RelEx is even closed under the union of any effectively given infinite
sequence of classes, see [28]. However, the latter is not true for both RefEx
and WRefEx, as it can be seen by shattering the class FINSUP into its
subclasses of one element each.

3.2 Intrinsic Complexity

There is another field where RefEx and WRefEx, on the one hand, and
RelEx, on the other hand, behave differently, namely that of intrinsic com-
plexity. The intrinsic complexity compares the difficulty of learning by using
some reducibility notion, see [13]. As usual, with every reducibility notion
comes a notion of completeness. Intuitively, a function class is complete for
some learning type, if this class is “most difficult” to learn among all the classes
from this learning type. As we will show, the types RefEx and WRefEx do
not contain such complete classes, while RelEx does. We now proceed more
formally.

Definition 19 A sequence P = pg,p1,... of natural numbers is called Ex-
admissible for f € R iff P converges to a program p for f.

Definition 20 (Rogers [35]). A recursive operator is an effective total map-
ping, O, from (possibly partial) functions to (possibly partial) functions, which
satisfies the following properties:

(a) Monotonicity: For all functions n,n', if n Cn' then ©(n) C O(1').

(b) Compactness: For alln, if (x,y) € ©(n), then there exists a finite function
a Cn such that (z,y) € O(«).

(¢) Recursiveness: For all finite functions o, one can effectively enumerate

(in o) all (z,y) € O(a).

For each recursive operator ©, we can effectively (from ©) find a recursive
operator ©' such that

(d) for each finite function a, ©'(«) is finite, and its canonical index can be
effectively determined from «, and
(e) for all total functions f, ©'(f) = ©(f).
This allows us to get a nice effective sequence of recursive operators.
Proposition 21 There exists an effective enumeration, ©q, O, --- of recur-

sive operators satisfying condition (d) above such that, for all recursive opera-
tors ©, there exists an i € N satisfying O(f) = ©;(f) for all total functions f.

13



Definition 22 (Freivalds et al. [13]). Let S,C € Ex. Then S is called Ex-
reducible to C (written: S <gx C ) iff there exist two recursive operators ©
and = such that for all f € S,

(a) ©(f) €€,
(b) for any Ex-admissible sequence P for ©(f), Z(P) is Ex-admissible for f.

Intuitively, if S is Ex-reducible to C, then C is at least as difficult to Ex-learn
as § is. Actually, if M Ex-learns C, then S can be Ex-learned by a machine
that, on any function f € S, outputs the sequence Z(M(O(f))).

Definition 23 Let I be a learning type and C C R. C is called Ex-complete
mIiff C €1, and for allS €1, S <gx C .

Theorem 24 Let C € WRefEx. Then there exists a class S € RefEx such
that S Lgx C.

Proof. Suppose C € WRefEx as witnessed by M. Note that for all recursive
functions f, M(f) converges to a program for f, or converges to L. In partic-
ular, there is no recursive function f on which M makes infinitely many mind
changes. Based on this we define a class S € RefEx that is not Ex-reducible
to C. Let ©g, ©1, ... be an enumeration of the operators as in Proposition 21.
We will construct &, with the following two properties:

(1) For each i, there exist distinct functions f, f* in S such that M(0,(f)) =
M(O;(f")). This would immediately imply that S €gx C.
(2) S € RefEx.

For each i, we will define some functions in S, which have f(0) = i. These will
be used to diagonalize against O; (to satisfy (1) above).

For each i, do the following (independent staging construction for each ).

Let o9 = {(0,4)}. Go to stage 0.

Stage s

1. Put 0-ext(o,) and 1-ext(oy) in S.

2. Let fy = 0-ext(oy), and f; = l-ext(oy).

3. Search for ¢, if any, such that M(0;(fo[t])) # M(O;(f1[t])).
4. If and when such a t is found, pick the least such ¢.

5. Suppose M(0;(f,[t])) # M(O;(0s)), where w € {0,1}.

6. Let o511 = fult]-

7. Go to stage s + 1.

End stage s

14



Claim 25 For each i, there are only finitely many stages.

Proof. Otherwise M makes infinitely many mind changes on the recursive
function ©;(Usen 0s)- O

For each 7, one can effectively (in i) enumerate the initial segments which start
with ¢, but are not extended by any function in §. To see this, consider any
7 2 {(0,7)}. Execute the stages as above, until

(i) a oy is defined such that 7 C 0-ext(o,) or 7 C 1-ext(o,) (in which case 7 is
extended by a function in §), or

(i) a stage s is reached such that oy is inconsistent with 7, and 0,1 C 7 (in
which case 7 is extended by a function in S iff 7 C 0-ext(os—1) or 7 C 1-
ext(os_1)), or

(iii) a stage s is reached such that o5 C 7, and, for fy = 0-ext(cs) and f; = 1-
ext(oy), it is observed that M(0;(fo[z])) = M(©;(f1[z])), for all z < ¢, and 7
is inconsistent with both fy[t] and fi[t] (in which case 7 is not extended by
any function in S).

Note that above exhausts all the possible cases by the construction of S.
Moreover, for each i, there are only finitely many f such that f(0) = ¢ and

f € S, and these f can be recursively enumerated (effectively in 7). It follows
that S € RefEx.

Now by construction, for each i, (1) is satisfied, since for the last stage s which

is executed, M(0;(0-ext(cs))) = M(O;(1-ext(0s))), where both 0-ext(os) and
l-ext(o,) are in S. |

Theorem 24 immediately yields the following result.

Theorem 26 (1) There is no Ex-complete class in RefEx.
(2) There is no Ex-complete class in WRefEx.

In contrast to Theorem 26, RelEx contains an Ex-complete class.
Theorem 27 There is an Ex-complete class in RelEx.
Proof. In [13] it was shown that FINSUP is Ex-complete in Ex. Moreover,

FINSUP € RelEx, see proof of Theorem 16. Hence, FINSUP is Ex-complete
in RelEx. i
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3.3 Characterizations

We now present several characterizations for RefEx, WRefEx and RelEx.
The first group of characterizations relates refutable learning to the established
concept of classification. The main goal in recursion theoretic classification can
be informally described as follows. Let be given some finite (or even infinite)
family of function classes. Then, for an arbitrary function from the union of
all these classes, one has to find out which of these classes the corresponding
function belongs to, see [4,39,37,36,9]. What we need in our characterization
theorems below will be some special cases of classification, namely classifica-
tion where only two classes are involved in the classification process, more
exactly, a class together with its complement; and semi-classification which is
some weakening of classification. Notice that the corresponding characteriza-
tions using these kinds of classification are in a sense close to the definitions of
learning refutably. Nevertheless, these characterizations are useful in that their
characteristic conditions are easily testable, i.e. they allow to check, whether
or not a given class is learnable with refutation. Furthermore, they also allow
to create classes being learnable refutably in a given sense.

Let Ry, denote the class of all computable functions mapping the set N into
the set {0, 7} and being everywhere defined.

Definition 28 A class S C R is called finitely semi-classifiable iff there is
¢ € Ro,» such that

(a) for every f € S, there is an n € N such that ¢(f[n]) =0,
(b) for every f € S and for alln € N, ¢(f[n]) = 7.

Intuitively, a class S C R is finitely semi-classifiable if for any function from
that class, after some finite amount of time one finds out that the function
belongs to the class, whereas for any other function, i.e. for any function from
S, one finds out “nothing”.

Theorem 29 For any C C R, C € RefEx iff C is contained in some class
S € Ex such that S is finitely semi-classifiable.

Proof. Necessity. Suppose C € RefEx as witnessed by some total IIM M. Let
S = Ex(M). Clearly, C C S. Furthermore, (i) for any f € S and any n € N,
M(f[n]) # L, and (ii) for any f € S, there is n € N such that M(f[n]) = L.

Now define ¢ as follows.



Clearly, ¢ € Ro» and S is finitely semi-classifiable by c.

Sufficiency. Suppose C C & C Ex(M), and S is finitely semi-classifiable by
some ¢ € Ry2. Now define M’ as follows.

M'(f[n]) = {M<f[nl>a if (f[n]) =7;

: if ¢(f[z]) = 0, for some x < n.

It is easy to verify that M’ RefEx-identifies C. |

We can apply the characterization of RefEx above in order to show that
RefEx contains “non-trivial” classes. Therefore, let

C={f1fER&pro = [f& (Vx e N)[Psq)(z) < f(z+1)]}

Clearly, C € Ex and C is finitely semi-classifiable. Hence, by Theorem 29, C
is RefEx-learnable. Moreover, C ¢ NUM was shown in [40], Theorem 4.2.
Hence, we get the following corollary illustrating that RefEx contains “algo-
rithmically rich” classes, that is classes being not contained in any recursively
enumerable class.

Corollary 30 RefEx\ NUM # ().
We now characterize WRefEx.

Definition 31 (Wiehagen and Smith [39]). Let C,S C R, where C,S are
disjoint. (C,S) is called classifiable iff there is ¢ € R such that for any f € C
and for almost all n € N, ¢(f[n]) = 0; and for any f € S and for almost all
neN, c(f[n]) = 1.

Thus, intuitively, a pair of disjoint classes C, S is classifiable if for any function
from the union of C and §, in the limit one can find out which of the classes C or
S this function belongs to. For characterizing WRefEx, we need a special case
of classification, namely where the classes under consideration form a partition
of the class of all recursive functions, i.e. one class is just the complement of
the other.

Definition 32 A class C C R is called classifiable iff (C,C) is classifiable.

Theorem 33 For any C C R, C € WRefEx iff C is contained in some
classifiable class S € Ex.

Proof. Necessity. Suppose C € WRefEx as witnessed by some total [IM M.
Let S = Ex(M). Clearly, C C S and S € Ex. Now define ¢ as follows.
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0, if M(f[n]) # L;
e(flnl) = { 1, if M(fH) =1.

Then, clearly, § is classifiable by c.

Sufficiency. Suppose C € S C Ex(M), and let S be classifiable by some
¢ € Ro1. Then, define M’ as follows.

, _ [M(f[n]), ife(f[n]) =0
M (fln)) = {L, if o fn]) = 1
Clearly, M’ witnesses that C € WRefEx. |

Finally, we give a characterization of RelEx in terms of semi-classifiability.

Definition 34 (Stephan [37]). A class S C R is called semi-classifiable iff
there is ¢ € Roz such that

(a) for any f € S and almost all n € N, ¢(f[n]) =0,
(b) for any f € S and infinitely many n € N, ¢(f[n]) = 7.

Intuitively, a class of recursive functions is semi-classifiable if for any function
from this class, in the limit one is able to find out that this function belongs
to the class, while for any recursive function outside that class, there is no
required evidence in the limit to know where this function comes from.

Theorem 35 For any C C R, C € RelEx iff C is contained in some semi-
classifiable class S € Ex.

Proof. Necessity. Suppose C € RelEx by some total IIM M. Let S = Ex(M).
Clearly, C C S. In order to show that § is semi-classifiable, define ¢ as follows.

0, ifn =0 or M(fln— 1)) = M(ffn)
e(fn]) = {?, it 0> 0 and M(f[n — 1]) £ M(f[n)).

Now, for any f € S, M(f)[, and thus ¢(f[n]) = 0 for almost all n € N. On
the other hand, if f € S then f ¢ Ex(M). Consequently, since M is reliable
and total, we have M(f[n — 1]) # M(f[n]) for infinitely many n € N. Hence
¢(f[n]) = 7 for infinitely many n. Thus, S is semi-classifiable by c.

Sufficiency. Suppose C C S C Ex(M). Suppose S be semi-classifiable by some
¢ € Rp». Define M’ as follows.

, M(f[n]), if c(f[n])
““Umbz{n, if ¢( f[n))

0;
0
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Clearly, for any f € S, for almost all n, ¢(f[n]) = 0. Hence M’ will Ex-
identify f, since M does so. If f € S, then ¢(f[n]) = ? for infinitely many n.

Consequently, M’ diverges on f caused by arbitrarily large outputs. Thus, M’
RelEx-identifies C. i

Notice that there is some kind of “dualism” in the characterizations of RefEx
and RelEx above. Indeed, a class is RefEx-learnable in case this class is
contained in some Ex-learnable class the complement of which is finitely semi-
classifiable. In contrast, a class is RelEx-learnable if this class is contained in
an Ex-learnable class that itself is semi-classifiable.

The characterizations of the second group below, this time for RefEx and
RelEx, significantly differ from the characterizations presented above in two
points. First, the characteristic conditions are stated here in terms that for-
mally have nothing to do with learning. And second, the sufficiency proofs
are again constructive and they make clear where the “refuting ability” of
the corresponding learning machines in general comes from. For stating the
corresponding characterization of RefEx, we need the following notions.

Definition 36 A numbering 1 is called strongly one-to-one iff there is a re-
cursive function d of two arguments such that for any distinct i, € N, there
exists an x < d(i,j) such that ¥;(z) # ¢,(z).

Obviously, any strongly one-to-one numbering is one-to-one. Moreover, given
any distinct 1-indices ¢ and j, the functions 1; and ¢; do not only differ, but
one can effectively compute a bound on the least argument on which these
functions differ.

Definition 37 (Rice [34]). A class II C P is called completely r.e. iff
{i | i € 1T} s recursively enumerable.

Thus, a class of partial recursive functions is completely r.e. if its complete
index set, i.e. the set of all programs of functions from II in the acceptable
programming system ¢, is recursively enumerable. We will need the following
characterization of completely r.e. classes.

Lemma 38 ([34,27]). For any II C P, II is completely r.e. iff there is an
r.e. subset S of SEG such that I ={g|ge P & (Fo € S)[o C g]}.

Hence, a class I is completely r.e. if for some effective class of finite functions,
II contains exactly all the computable superfunctions of these finite functions.

Theorem 39 For any C C R, C € RefEx iff there are numberings ¢ and o
such that

(1) 4 is strongly one-to-one and C C Py,
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(2) P, is completely r.e. and R, = Ry.

Proof. Necessity. Without loss of generality assume that C is infinite. Let
C € RefEx as witnessed by a total IIM M. Then let

Z ={(z,n) | (Vo < n)[p.(2)l] & M(p.[n]) = 2z &
[n =0V M(p.[n — 1]) # M(p.[n])]}.

Intuitively, the set Z contains “initial segments” of any function where M
might begin to converge to a correct hypothesis. Let e be a 1-1 recursive
function such that Z = range(e). For any i, j,x € N, where e(i) = (z,n) and
e(j) = (w,m), define

o.(z), ifx<n;
Yi(z) = v.(z), ifx>nand (Vy < z)[e.(y)]] and
l My |n<y<z+1)M(p.ly]) = M(p.[n])];

T, otherwise.

and d(i,j) = max({n,m}).

Then it can easily be seen that v is a strongly one-to-one numbering as wit-
nessed by the function d.

In order to show C C P, we prove a somewhat stronger result which is needed
in the following. Therefore, let S denote the class of all recursive functions
that are Ex-learnable by M. Clearly, C C S.

Claim 40 § = Ry.

Proof. Let f € §. Then there is a minimal n € N and a z € N such that p, = f
and for all m > n, M(f[m]) = z. Consequently, (z,n) € Z and i; = ¢, = f,
where e(i) = (z,n). Hence f € Ry.

Let now f € Ry. Let f = 1; and e(i) = (z,n). Then ¢; = ¢,, since ¢; = f
is everywhere defined. Consequently, for all m > n, M(f[m]) = M(p.[m]) =
M(¢.[n]) = z. Hence f is Ex-learnable by M, and thus f € S. O

Claim 40 above completes the proof of condition (1).
In order to show condition (2) let

A= {0 €SEG | M(s) = L}.

Clearly, A is recursively enumerable.
Finally, let o be an arbitrary numbering such that

P,={n|n€P& (30 € Ao Cnl}.
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Obviously, P, is completely r.e. by Lemma 38.
Claim 41 R, =R,.
Proof. By Claim 40, it suffices to prove that R, = S.

Let f € R,. Then, by the definitions of P, and A, M(f[n]) = L for some n.
Consequently, f cannot be Ex-learned by M. Hence f € S.

Suppose now f € S. Then, by definition of RefEx, f must be refuted by M.
Thus, M(f[n]) = L for some n, and hence f € P,. O

Claim 41 completes the proof of condition (2).

Sufficiency. Let ¢ be a strongly one-to-one numbering as witnessed by a corre-
sponding function d. Let ¢ be a numbering such that for some r.e. § C SEG,
P,={n|neP& (3o el Cnl} and R, = Ry. Then an IIM M that
RefEx-learns R, 2 C can be defined as follows. Let f € R.

M(f)=“ In parallel do both (A) and (B).
(A) Go to stage 0.
Stage 1.
Output i. Check if there is j # ¢ such that
f1d(i, 3)] € ¢y
in which case go to stage ¢ + 1.
End Stage .
(B) Check if there is o € S such thate C f
in which case output L forever.”

Claim 42 M Ex-learns any function from R.

Proof. Let f € Ry. First notice that (B) can never happen, since otherwise
f € R, would follow, a contradiction to R, and R, being disjoint. Let f = ..
Then, clearly, for any i < z, f[d(i, z)] C v, will hold. Hence, in (A), stage z will
be reached. But stage z can never be left, since this would yield f[d(z, j)] C v,
for some j # z, implying the contradiction v, # f via [(Jx < d(z, j))[¢.(z) #
1;()]]. Consequently, on f, M will converge to z, thus Ex-learning f. O

Claim 43 M refutes any function from R..

Proof. For any function f € R, = R,, (B) happens by the definition of P,.
Hence M refutes f. O

Claims 42 and 43 complete the sufficiency proof. |
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It follows from the proof of Theorem 39 that in RefEx-learning the processes
of learning and refuting, respectively, can be nicely separated. Actually, in
general, a suitable machine can be provided with two spaces, one for learn-
ing, 1, and one for refuting, p. If and when the “search for refutation” in
the refutation space has been successful, then the learning process can be
stopped forever. This search for refutation is based on the property that the
whole space for refutation forms a completely r.e. class P, of partial recursive
functions. Then, by the characterization lemma for completely r.e. classes,
any system S of “representatives” for P, can serve as a set of indicators for
refutation. The spaces for learning and for refuting are interconnected by the
essential property that their recursive kernels, R, and R,, disjointly exhaust
the class of all recursive functions. This property eventually guarantees that
each recursive function either will be learned or refuted. Notice that the above
characterization of RefEx is in a sense “more granular” than the characteriza-
tion of RefEx by Theorem 29. Intuitively, the characterization of Theorem 29
requires that one should be able to find out anyhow if the given function does
not belong to the class to be learned. The characterization of Theorem 39 now
makes precise how this task can be done. Indeed, the set .S may be thought as
just sampling all possibilities of violating the structure of the functions from
the class to be learned, thereby indicating if and when the corresponding func-
tion has to be refuted. Furthermore, notice that the RefEx-characterization
of Theorem 39 is incremental to a characterization of Ex in that the existence
of a numbering with condition (1) above is just necessary and sufficient for
Ex-learning the corresponding class C, see [38]. Finally, notice that the refu-
tation space could be “economized” in the same strict manner as the learning
space, that is, it can be made one-to-one.

The following characterization of RelEx is a slight modification of a result
from [21].

Theorem 44 For every C C R, C € RelEx iff there are a numbering i) and
a function d € R such that

(1) for all f € R, if Hf = {i | f[d(i)] C ¢} is finite, then Hy contains a
Y-index of f,

(2) for every f € C, Hy is finite.

Proof. Necessity. Let C € RelEx as witnessed by some total IIM M, and let
YV ={fln]| feR&[n=0V M(f[n—1]) # M(f[n])]}.

Suppose e is a 1-1 recursive function such that range(e) = Y. For i,z € N
and e(i) = f[n], let d(i) = n and

il = {f(m), if x <n;

©om(fi)) (), otherwise.
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Clearly, 1 is a numbering and d € R. Now let f € R be such that Hy =
{i0,...,im} is finite. Notice that Hy must be non-empty, since f[0] € Y and,
hence, by definition of ¢, iy € Hy, where e(ig) = f[0]. For j < m, let o; =
e(i;). Without loss of generality, let m be such that |a,,| is maximum among
la;| for j < m. Then, by definition of Y and ¢, M(f[n]) = M(a,,), for any
n > |ay,|. Hence M converges on f. Since M is reliable, f = ¢mya,,) follows.
Moreover, by the definition of ¥, we have v¢; , = f. Consequently, H; contains
a 1-index of f. This proves condition (1). For showing condition (2) suppose
f € C. Then M converges on f. Consequently, there are at most finitely many
n € N such that f[n] € Y. By definition of ¢, this implies that H is finite.

Sufficiency. Informally, an IIM reliably learning C, on every function f € R,
searches for all the elements of the set H; and applies the amalgamation
technique, see [10], to this set. In order to proceed more formally, let ¢ € R be
such that for any 7 € N, 1; = ¢;). Let amal be a recursive function mapping
any finite set I of v-indices to a y-index such that for any € N, @aman) ()
is defined by running ¢.;)(z) for every ¢ € I in parallel and taking the first
value obtained, if any. For any f € R and n € N, let

Hy={i|i < n&d(i) < n & (Vo < d(i))[Buy () < n & g (@) = F(2)]}.
Intuitively, Hy, is the set of all ¢-indices ¢ such that ¢« € Hy can be verified
within a uniformly (in n) bounded number of computation steps. Let

Hy, =A{i]i€ Hpn & (Vo <n)[e)(x) < n = o () = f(2)]}-
Thus, H}, is the subset of Hy, consisting of all indices ¢ such that on any

argument less than n,v; does not contradict f within n steps of computation.
Finally, let Hy 4 = 0.

Then define an IIM M as follows.

M(fn]) = “ If Hpp = Hypno1 # 0, then output amal(H},).
If Hf,, =0 or Hy, # Hy,_1, then output n.”
Claim 45 For any f € R, if Hy is finite, then M Ex-identifies f.
Proof. By assumption of the claim we can conclude lim,,_,o, Hy,, = Hy. There-
fore, Hf = lim,_.o, Hf,, exists, and H} contains exactly every i € Hy such

that 1; is a subfunction of f, including some 1-index of f, by condition (1).
Clearly, M(f[n]) converges to j = amal(H}), and ¢; = f. O

By Claim 45 and condition (2), M identifies C.
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It remains to show that M works reliably.
Claim 46 For any f € R, if M converges on f, then M Ex-identifies f.

Proof. By Claim 45, it suffices to prove that if M converges on f, then Hy is
finite. Suppose to the contrary that Hy is infinite. Then, by definition of M,
M diverges on f, a contradiction. a

This completes the proof of sufficiency. |

Theorem 44 instructively clarifies where the ability to learn reliably may come
from. Mainly, it comes from the properties of a well-chosen space of hypothe-
ses. In any such space 1) exhibited by Theorem 44, for any function f from the
class to be learned, there are only finitely many “candidates” for v-indices of
f, the set Hy. This finiteness of Hy together with the fact that H; then con-
tains a ¢-index of f, make sure that the amalgamation technique succeeds in
learning any such f. Conversely, the infinity of this set Hy of candidates auto-
matically ensures that the learning machine as defined in the sufficiency proof
of Theorem 44 diverges on f. This is achieved by causing the corresponding
machine to output arbitrarily large hypotheses on every function f € R with
Hy being infinite.

4 Ex°-Learning and Bc"-Learning Refutably

In this section, we consider Ex-learning and Bc-learning with anomalies refut-
ably. Again, we will derive both strengths and weaknesses of refutable learn-
ing. As it turns out, many results of standard learning, i.e. without refutation,
stand refutably. Specifically, this yields several hierarchies for refutable learn-
ing. Furthermore, we show that in general one cannot trade the strictness of
the refutability constraints for the liberality of the learning criteria.

For n,n" € P and a € N, we write n =% i and n =* 7 iff card({z | n(x) #
n'(z)}) < a and card({z | n(x) # n'(x)}) < oo, respectively.
Definition 47 ([15,5,10]). Leta € NU {x}, let f € R and let M be an IIM.

(a) M Ex"-identifies f (written: f € Ex*(M)) just in case, there ezists an i
such that M(f)| =1 and ¢; =" f.

(b) M Ex"-identifies C iff M Ex“-identifies each f € C.

(c) Ex* ={CCR|(3IM)[C C Ex*(M)]}.

Thus, in Ex®learning the final hypothesis may be slightly incorrect in that it
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is allowed to contain at most @ anomalies. Note that Ex = Ex".

Definition 48 ([2,10]). Let a € NU {x}, let f € R and let M be an IIM.

(a) M Bc“identifies f (written: f € Bc*(M)) iff, for all but finitely many
n €N, om(sm) =* f.

(b) M Bc“identifies C iff M Bc“-identifies each f € C.

(¢c) Be®* ={CCR|(IM)[C C Bc*(M)]}.

Note that Be = Bc'.

Harrington [10] showed that R € Bc*. Thus, we shall consider mainly Bc® for
a € N in the following.

We can now define IEx® and IBc” for I € {Ref, WRef, Rel} analogously to
Definitions 5, 6, and 7. We only give the definitions of RefEx” and RelBc”
as examples.

Definition 49 Let a € NU {x} and let M be an IIM. M RefEx"-identifies

C iff

(a) C C Ex*(M).

(b) For all f € Ex*(M), for all n, M(f[n]) # L

(¢) For all f € R such that f & Ex®(M), there exists an n such that (Ym <
n)M(f[m]) # L] and (Ym > n)[M(f[m]) = L].

Definition 50 (Kinber and Zeugmann [22]). Let a € NU {x} and let M
be an IIM. M RelBc“-identifies C iff

(a) C € Bc*(M).
(b) For all f € R such that f & Bc*(M), there exist infinitely many n such
that M(f[n]) = L.

Note that the learning types RelEx® and RelBc” were studied firstly in [23]
and [22], respectively.

Our first result points out some weakness of learning refutably. It shows that
there are classes which, on the one hand, are easy to learn in the standard sense
of Ex-learning without any mind change, but, on the other hand, which are
not learnable refutably, even if we allow both the most liberal type of learning
refutably, namely reliable learning, and the very rich type of Be-learning with
an arbitrarily large number of anomalies. For proving this result, we need the
following proposition.

Proposition 51 (a) For any a € N and any 0 € SEG, {f e R| o C f} &

Bc“.
(b) For any a € N and any 0 € SEG1, {f € Ro1 |0 C f} & Bc".
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Proof. We only show part (a). Part (b) can be shown similarly. Suppose by
way of contradiction that a« € N and ¢ € SEG are such that {f € R | ¢ C
f} € Bc“. Suppose M Bce-identifies {f € R | ¢ C f}. Let g be defined as

follows:

(z) = {a(m), if x < |o|;
9\ = f(x —|o]), otherwise.

Let gy = g¢ln + |of].
Let prog be a recursive function such that @, () = @p(x + |0}|).

Define M’ as follows: M'(f[n]) = prog(M(gy,))). It is easy to verify that if M
Bc“-identifies g¢, then M’ Bc“-identifies f. It follows that M’ Bc®-identifies R.
This contradicts the Bc®-hierarchy theorem in [10], and thus the proposition
follows. i

Next, we define Ex-learning without mind changes, or, equivalently, finite
learning. Informally, here the learning machine has “one shot” only to do its
learning task.

Definition 52 (Gold [15]). Let f € R and let M be an IIM.

(a) M Fin-identifies f (written: f € Fin(M)) iff there is n € N such that
fOT‘ any x <mn, M(f[l']) = ?7 M(f[”]) S N7 and PM(f[n]) = f

(b) M Fin-identifies C iff Ml Fin-identifies each f € C.

(¢) Fin={CCR|(3IM)[C C Fin(M)]}.

Theorem 53 For all a € N, Fin \ RelBc® # (.

Proof. Let C = {f € Roa ’ f # Zero & Pmin({z|f(z)=1}) = f} Clearly, C € Fin.
Suppose by way of contradiction that M RelBc”-identifies C. Then, by Kleene
recursion theorem [35], there exists an e such that ¢, may be defined in stages
as follows. Let p.(z) =0, for z < e, and p.(e) = 1.

Let ¢? denote ¢, defined before stage s. Go to stage 0.

Stage s.

1. Search for a 7 € SEGq; properly extending ¢? such that M(7) = L.
2. If and when such a 7 is found, let p**' = 7, and go to stage s + 1.
End stage s

We consider two cases.

Case 1. All stages finish (i.e. step 1 succeeds in all stages).
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In this case . € RNC, and M outputs L on infinitely many initial segments
of p..

Case 2. Stage s starts but does not finish.

In this case, by definition of RelBc”, M must Bc®-identify {f € Ro1 | ¢ C
f}, a contradiction to Proposition 51.

From the above cases it follows that M does not RelBc“-identify C. |

Next we show that allowing anomalies can help in learning refutably. Indeed,
while Ex*™' \ Ex” # () was shown in [10], we now strengthen this result to
RefEx-learning with anomalies. Therefore, we need the following lemma.

Lemma 54 For every a € N, there exists a function p € R such that, for all
1€ N:

(a) range(pp) € {0, 1}

(b) @p) is undefined on at most a + 1 inputs.
(c) wp@y (1) =1, and, for all v < i, @pu(x) = 0.
(d) {f € Roa | opi) € [} € Ex*(My).

Proof. The lemma is proved by a modification of the proof of Ex**!'\ Ex® # ()
in [10]. By the parameterized recursion theorem [35], there exists a recursive
function p such that ¢,y may be defined in stages as follows. ¢,;)(i) = 1, and
pi)(x) = 0, for © < i. Let x5 denote the least  such that ¢,¢)(z) has not
been defined before stage s.

Go to stage 0.

Stage s
1. Dovetail steps 2 and 3, until step 2 succeeds. If and when step 2 succeeds,
go to step 4.

2. Search for a 7 € SEGq; such that
7(x) = @pu) (), for z < g,
7(z)], for zs < x < x4 + a,
7(z) = 0 or undefined, for z > z; + a,
and M;(7) # M (0 [2s))-
3. Forr=xz,4+a+1tooo
Let @p(x) = 0.
EndFor
4. If and when such a 7 is found let,
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5. ¢pe)(x) = 7(z), for x < |7| such that ¢, (x) has not been defined upto

NOw.
6. Go to stage s+ 1.
End stage s

Fix i. (a) and (c) clearly hold. We now consider two cases.
Case 1. All stages terminate.

In this case ¢, is total. Thus (b) is satisfied. Also due to step 5, M, changes
its mind infinitely often on ).

Case 2. Stage s starts but does not terminate.

In this case @) is undefined only on {z | z, < « < x, + a}, thus (b) is
satisfied. Also, for all f € Rg; such that ¢,y C f, M;(f) = Mi(@pu [2s))-
Let e = M;(pp(i[xs]). Let g be defined as follows:

wp(l)(x)a 1fl'<$s OI'{E>1‘S—|—a;
g(x) =140, if xg <z <xs+a, and p.()7;
1 = pe(z), otherwise.

It is easy to verify that g € Ro1, g 2 ¥pi), and Mi(g)] = M;(@pm [xs]) = e.
However, ¢, #% g, since g(x) # @e(x), for s, < z < x4+ a. Thus (d) holds.

Lemma follows from above cases. |

Theorem 55 For all a € N, RefEx*™" \ Ex® # (.

Proof. Let p be as in Lemma 54. Let C; = {Zero} U{f € Ro1 | ¢pu) C f}. Let
C = Ujen Ci- By Lemma 54 (d), it follows that C ¢ Ex“.

Now define M as follows. Let z be a program for Zero. Let MinO(o) = min({x |

o(z) = 1}),

M(o)
1. If o C Zero, then output z.
Else, let i = MinO(o).
2. If there exists an x such that ¢, (x) converges in at most |o| steps, and
©p@i)(x) # o(x), then output L.
Else output p(i).
End M(o)
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Clearly, M Ex“"'-identifies C. If f ¢ C, then let i = MinO(f). Now, there
must exist an x such that f(z) # @pu (x). Thus, M on some initial segment
of f, outputs L. Also, if M(c) = L, then M(7) = L, for all extensions 7 of o.

It follows that M RefEx®"!-identifies C. |

Clearly, from Theorem 55 we immediately get the following hierarchy results,
where the last one was already obtained in [23].

Corollary 56 For every a € N,

(1) RefEx® C RefEx“",
(2) WRefEx" C WRefEx*™!,
(3) RelEx” C RelEx*"™.

A proof similar to Lemma 54 can be used to show that

Lemma 57 There exists a function p € R such that, for alli,j € N:
(a) range(@p(i ) € {0,1}.

(b) ©p((iy) s undefined on at most j + 1 inputs.

(¢) pign((4,7)) =1, and, for all x < (i,7), @pi(x) = 0.

(d) {f € Rox | epuigy C f} € Ex!/(M).

Now a proof similar to the proof of Theorem 55 can be used to show the
following result. Notice that Ex* \ U,eny Ex® # () was proved in [10].

Theorem 58 RefEx" \ U,cy Ex® # 0.

From Theorem 55 we can derive further corollaries. Therefore, we need the
following notation. For n € P, let cyl, be defined as follows: cyl, ((z,y)) =
n(x). For C C R, let cyle = {cyl;|f € C}.

Proposition 59 (a) If C € RefBc, then cyl, € RefBc.
(b) cyle € Ex* iff cyl, € Ex iff C € Ex.
Proof. (a) Suppose M RefBc-identifes C.

For any o, let uncyl, be defined as follows. Let f,(z) = o({x,0)). Let m be the
smallest value such that f, is not defined. Then, let uncyl, = f,[m]. It is easy

to verify that, for all g, n, uncyl C g. Moreover, lim,,_, [uncyl 00.

cyly[n] cyly [n]’ =

Let progeyl(p) be a program obtained effectively from p for cyl,, . Now define
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M’ as follows:

L if (Jz,y, 2)[o((z,y))] # o((z,2))1];
1, if M(uncyl,) = L;
progeyl(p), if M(uncyl,) = p and

—(32,y, 2)[o((z,9))| # o({z, 2))1].

M'(0) =

It is easy to verify that M’ RefBc-identifies cyl,.

Assertion (b) is an immediate consequence of the corresponding definitions. il

In [10], Ex* C Bc was shown. This result also holds for all of our types of
refutable learning.

Proposition 60 ForI € {Ref, WRef, Rel}, IEx" C IBc.

Proof. Suppose C € TEx" as witnessed by M. Here for RelEx*-identification,
we assume that M is doing the identification in the sense of Definition 7 (that
isif f ¢ Ex*(M), then M on f outputs L infinitely often). Suppose C € Bc as
witnessed by M’ (since Ex* C Bc, such an M’ exists). Define M” as follows.

() = { MR BN 7 4

4, otherwise.

It is easy to verify that M"” IBc-identifies C. |

In [10] it was proved that Bc \ Ex* # (). This result holds refutably, as our
next corollary shows.

Corollary 61 RefBc\ Ex* # ().

Proof. By Theorem 55, there exists a class C € RefEx'\ Ex. Thus, by Propo-
sition 60, there exists a class C € RefBc \ Ex. Now, cyl, € RefBc \ Ex", by
Proposition 59. i

The next corollary points out that already RefEx! contains “algorithmically
rich” classes of predicates.

Corollary 62 RefEx' N 2R01 ¢ NUM N 2Ro1,

Proof. Let a = 0, and let C € 270 be defined as in the proof of Theorem 55.
Then, by that proof, C € RefEx'\ Ex. Hence C ¢ NUM, since NUM C Ex,
see [15]. |
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Corollary 62 can be even strengthened by replacing RefEx' with RefEx.
This another time exhibits the richness of already the most stringent of our
types of learning refutably.

Theorem 63 RefEx N2%01 ¢ NUM N 2Ro1,

Proof. Let (V"x) denote for all but at most n of z. That is, (V"z)[P(z)],
denotes card({z | =P(x)}) < n. In [8] it was shown that there exist recursive
functions g and p such that for each e, the following three conditions are
satisfied.

a) @pey(e) =1 and, for x < e, @y (x) = 0.

) domain(p,() is either N or an initial segment of N and range(yp)) €
{0,1}.
c) If p. is total, then

(c.1) @pe is total,

(c:2) (W)((V;ﬁ]l x ZmaX({e JIINNEY < 2)lei(y) # o) W]V [Ppie) (z) <

gl(e z))]], an

(c3) (% | 5 = Pp(e)) (V2)[@;(2) > pe()].

Let C = {¢pe) | e is total}. It was shown in [8] that this class contains
arbitrarily complex functions from R ; (based on clause c.3 above), and thus
C ¢ NUM.

(a
(b
(

We now define an IIM that RefEx-learns C. Let ¢ be a program for Zero.

g, if(Ve <n)[f(z) = 0;
ple),ife<n& f(e) =1& (Ve <e)[f(z) =0] &
~[Br <n)[Ppe) () <1 & ppiey () # f(2)]] &
M) ={ (3 sm(asgm card($) = j+2, min(S) >max({e, j1))
[(Vy < max(5))[®;(y) <n & p;(y) = f(y)] &
(Vi € 5)[®p(e) () > g(e, x, @;())]]];

1, otherwise.

It is easy to verify that M RefEx-identifies C. Theorem follows. |

Note that Theorem 63 contrasts a known result on reliable Ex-learning. Ac-
tually, if we require the Ex-learning machine’s reliability not only on the set
R of all recursive functions, but even on the set of all total functions, then all
the classes of recursive predicates belonging to this latter type turn out to be
in NUM, see [16].
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We now prove the analogue to Theorem 55 for Bc®-learning rather than Ex“-
learning. Note that B!\ Be® # ) was shown in [10]. We need the following
lemma.

Lemma 64 For any a € N, there exist a recursive function p and a partial
recursive function q such that, for all i:

(a) The following three conditions hold:
(a.1) for all j, range(wpi,j)) € {0,1},
(8.2) @pii0)(i) = 1,

(a.3) for all x < i, @y (z) = 0.

(b) Either {z | q(i,z)|} = N or there ezists an s such that {z | q(i,z)|} =
{z |z <s}.

(c) If {z | q(i,z)]} = N, then the following two conditions hold:

(c.1) for all §, ©pij) =" ©pi0)s

(c.2) Ypi0) € R and @y 0) € Be(M;).

(d) If {x | q(i,2)]} = {x | x < s}, then the following three conditions hold:

(d-1) ©pa,0) € Pp(iys) s

(d.2) Ypis) € R and ppi s € Be* (M),

(d.3) for all j such that 1 < j < s, domain(pp;;)) = domain(pyie)) and
Poti) =" Ppi0)-

Proof. The lemma is proved using a modification of the proof of Bc*™\ Be® #
() in [10]. By the Operator Recursion Theorem [7], there exists a recursive p
such that ¢, ;) may be defined as follows. For a fixed 7, we will define ¢, .),
and ¢(i,-), in stages as follows. The construction can be easily seen to be
effective in 7. Note that if ¢, ;) (x) (respectively ¢(i,y)) is not defined in
stages below then ¢, jy(x)T (respectively, ¢(i,y)T). Initially, let

q(i,0) =0,

©p@,0) (1) = 1, and

©p(i,0) (1) = 0, for & <.

Let z; denote the least 2 such that ¢, 0)(z) has not been defined before stage

s. Thus, x1 =7+ 1. Go to stage 1.
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Stage s

1. Let ¢(i,s) = 0.

For x < x,, let pp(.6) (%) = ©pgi0)(@).

2. Let f= O-QXt(gop(i’o)).

3. Dovetail steps 4 and 5 until step 4 succeeds. If and when step 4 succeeds,
go to step 6.

4. Search for a set Sy of cardinality @ + 1 and m, > z, such that

(\V/ZL’ S SS)[ZL‘ >myg & @M(f[ms])(x)“-
5. For x = x, to oo do
Let p(is)(x) = 0.
EndFor
6. If and when such an S; and m; are found,
let w = max(Ss U {x | ¢p(is (x) was defined in step 5 above }).

6.1 For x € S, let ¢pi.0)(2) = 1 = Om(fpma) (T)-

6.2 For z; < x < w such that x € S;, let v,i.0)(x) = 0.

6.3 For z, < x < w such that pp; () has not been defined upto now, let
Pp(is) () = 0.

6.4 Let pi,s) follow ¢, 0) from now on. That is, for z > w such that ¢, « ()
has not been defined upto now, ¢, s () is made to be same as ¢, 0) ()
whenever, if ever, ¢, 0) () gets defined.

(* This ensures that ¢, s and @, o) are same on all x & S *).

6.5 Go to stage s+ 1.

(* Note that x4 = w + 1. *)
End stage s

Fix i. Clearly, parts (a) and (b) of Lemma are satisfied. To show parts (c) and
(d) we consider two cases.
Case 1. All stages terminate.

In this case ¢(i,x) is defined for all z. (c.1) holds due to step 6.4. (Note that
©Op(i,s) and @p(;0) are same on all x & S;).

Also, due to step 6.1, for all s, PM(p,p(i.0[ms]) #* ©p,0)- Thus (c.2) is satisfied.
Case 2. Stage s starts but does not terminate.

In this case ¢(i, ) is defined for x < s, and undefined for x > s. (d.1) clearly
holds due to step 1. (d.2) holds since, for all but finitely many m, omg,, ., m)
is finite (otherwise step 4 would succeed). Comment at the end of step 6.4
implies (d.3).

This proves the lemma. |

Theorem 65 For all a € N, RefBc*t" \ Bc® # ().
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Proof. Let p and ¢ be as in Lemma 64. Let
FEHS € Ran | o) €T & T =" gy}, i o] ali,a)} = {o] 2 <s).
Let C = {Zero} U U;en Ci-

We claim that C € RefBc*™' \ Bc®. By Lemma 64, it follows that C; &
Bc*(M;). Thus, C ¢ Bce“.

Let
MinO(o) = min({z | o(x) = 1}),
Z1={0 € SEGy, | 0 € Zero & MinO(0)=1i & (Fzx €N)[ppi0) ()] # o(x)]]},

Zy={0 € SEGo, | 0 Z Zero & MinO(0) =1 &
(IseN)(ISCN| card(S) =a+2)[q(i, 5)| & (Ve €5)[piis) ()| # o () ]}

The following claim follows easily from the definition of C.
Claim 66 f € C iff (Vn € N)[f[n] & Z1 U Z,].

Note that Z; and Zs are recursively enumerable. Let Z7 and Z3 respectively
denote 73, Z; enumerated upto s steps in some standard recursive enumera-
tion.

Now define M as follows. Let z denote a program for Zero.

Z, if o C Zero;
1, if 3r Co)r ez u ZK);
p(i,s), otherwise, where MinO(o) = i, and
s =max({x < |o| | q(i, z) converges within |o| steps}).

It is easy to verify that,

(i) if f & C, then M(f[m]) = L for all but finitely many m. Moreover, M(c) =
1 implies M(¢’) = L for all extensions ¢’ of o,

(ii) if f = Zero then M outputs z as its only program on f,
(iii) if f € C; and {z | q(i,2)]} = N, then M Bc"*'-identifies f, due to
property (c.1) in Lemma 64,
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(iv) if f € C; and {z | q(i,z)]} = {z | x < s}, then M(f) converges to p(i, s),
which is an a + 1 error program for f (by definition of C;).

It thus follows that C € RefBc®™. |

Again, Theorem 65 yields the following hierarchies, where the last one solves
an open problem from [22].

Corollary 67 For every a € N,

(1) RefBc” C RefBc*,
(2) WRefBc* € WRefBc"'!,
(3) RelBc" C RelBc**!.

Proposition 68 RefBc* \ U,y Bc® # 0.

Proof. Since R € Bc”, see [10], we have that R € RefBc". Since R ¢
Uaen Bc?, see [10], proposition follows. |

Recall that in the proof of Theorem 16 we have derived that FINSUP &
WRefEx. This result will now be strengthened for WRefBc“-learning and
then used in the next corollary below.

Theorem 69 For every a € N, FINSUP ¢ WRefBc“.
Proof. Suppose by way of contradiction that M WRefBc"-identifies FINSUP.

Claim 70 (a) For all o, there exists a T O o such that M(71) # L.
(b) For all o, there exists a T 2 o such that M(1) = L.

Proof. Part (a) holds, since otherwise M does not Bce-identify 0-ext(c). Part
(b) holds since M cannot Bc®-identify all extensions of o. O

Now define o;, 7; as follows. 09 = A. Let 7; be an extension of o; such that
M(7;) = L. Let 0,11 be an extension of 7; such that M(7;) # L. Note that
all o; and 7; are defined by Claim 70 and can be effectively obtained. Now M
outputs L infinitely often on ;e 0, without converging to L. A contradiction
to M WRefBc“-identifying FINSUP. Theorem follows. |

The following corollary points out the relative strength of RelEx-learning
over WRefBc“-learning. In other words, in general, one cannot compensate
a stricter refutability constraint by a more liberal learning criterion.

Corollary 71 For all a € N, RelEx \ WRefBc® # ().
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Proof. Follows from Theorem 69, since FINSUP € RelEx. |

Our final result exhibits the strength of WRefEx-learning over RefBc®-
learning. Thus, it is in the same spirit as Corollary 71 above.

Theorem 72 For all a € N, WRefEx \ RefBc” # ().
Proof. Let

1, ifx=1;
T, otherwise.

0, ifx <y
oi(z) = {

Define C; as follows:

{0-ext(7)}, if 7 is the least extension (in SEGq ;) of o;
Ci= such that M;(7) = L;
0, otherwise.

Let C = {Zero} U U;en G- It is easy to verify that C € WRefEx. Suppose
by way of contradiction that M; RefBc“-identifies C. Then, we consider two
cases.

Case 1. There exists an extension 7 (in SEGq ;) of o; such that M;(7') = L.
In this case, let 7 be least such 7/. Now 0-ext(7) € C;, but M;(7) = L.

Case 2. There does not exist an extension 7' (in SEGq;) of o; such that
M, (") = L.

In this case M; must Bc®identify all f € R such that o; C f. However,
this contradicts Proposition 51.

From the above cases it follows that M; does not RefBc“-identify C. |

Note that Theorems 53, 69 and 72, and Corollary 71 hold even if we replace
Bc® by any criterion of inference for which Proposition 51 holds.
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