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Abstract

The present paper deals with strong-monotonic, monotonic and weak-monotonic
language learning from positive and negative examples. The three notions of monot-
onicity reflect different formalizations of the requirement that the learner has to
produce always better and better generalizations when fed more and more data on
the concept to be learnt.

We characterize strong-monotonic, monotonic, weak-monotonic and finite lan-
guage learning from positive and negative data in terms of recursively generable
finite sets. Thereby, we elaborate a unifying approach to monotonic language learn-
ing by showing that there is exactly one learning algorithm which can perform any
monotonic inference task.

1. Introduction

The process of hypothesizing a general rule from eventually incomplete data is called
inductive inference. Many philosophers of science have focused their attention on problems
in inductive inference. Since the seminal papers of Solomonoff (1964) and of Gold (1967),
problems in inductive inference have additionally found a lot of attention from computer
scientists. The theory they have developed within the last decades is usually referred to
as computational or algorithmic learning theory. The today state of the art of this theory
is excellently surveyed in Angluin and Smith (1983, 1987).

Within the present paper we deal with identification of formal languages. Formal
language learning may be considered as inductive inference of partial recursive functions.
Nevertheless, some of the results are surprisingly in that they remarkably differ from
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solutions for analogous problems in the setting of inductive inference of recursive functions

(cf. e.g. Osherson, Stob and Weinstein (1986), Case (1988), Fulk (1990)).

The general situation investigated in language learning can be described as follows:
Given more and more eventually incomplete information concerning the language to be
learnt, the inference device has to produce, ;from time to time, a hypothesis about the
phenomenon to be inferred. The information given may contain only positive ezamples,
i.e., exactly all the strings contained in the language to be recognized, as well as both
positive and negative examples, i.e., the learner is fed with arbitrary strings over the
underlying alphabet which are classified with respect to their containment to the unknown
language. The sequence of hypotheses has to converge to a hypothesis which correctly
describes the language to be learnt. In the present paper, we mainly study language
learning from positive and negative examples.

Monotonicity requirements have been introduced by Jantke (1991A, 1991B) and Wie-
hagen (1991) in the setting of inductive inference of recursive functions. Subsequently
we have adopted their definitions to the inference of formal languages (cf. Lange and
Zeugmann (1991, 1992A, 1992B)). The main underlying question can be posed as follows:
Would it be possible to infer the unknown language in such a way that only better and
better hypotheses are inferred?

The strongest interpretation of this requirement means that we are forced to produce an
augmenting chain of languages, i.e., L; C L; iff L; is guessed later than L; (cf. Definition
3 (A)).

Wiehagen (1991) proposed to interpret "better” with respect to the language L having
to be identified, i.e., now we require L; N L C L; N L iff L; appears later in the sequence

of guesses than L; does (cf. Definition 3 (B)). That means, a new hypothesis is never
allowed to destroy something what a previously generated guess already correctly reflects.

The third version of monotonicity, which we call weak—monotonicity, is derived from
non—-monotonic logics and adopts the concept of cumulativity. Hence, we only require
L; C L; as long as there are no data fed to the inference device after having produced L;

that contradict L; (cf. Definition 3 (C)).

In all what follows, we restrict ourselves to deal exclusively with the learnability of
indexed families of non-empty uniformly recursive languages (cf. Angluin(1980)). This
case 1is of special interest with respect to potential applications. The first problem arising
naturally is to relate all types of monotonic language learning one to the other as well as
to previously studied modes of inference. This question has been completely answered in
Lange and Zeugmann (1991, 1992A). In particular, weak—-monotonically working learning
devices are exactly as powerful as conservatively working ones. A learning algorithm
is said to be conservative iff it only performs justified mind changes. That means, the
learner may change its guess only in case if the former hypothesis ”provably misclassifies”
some word with respect to the data seen so far. Considering learning from positive
and negative examples in the setting of indexed families it is not hard to prove that
conservativeness does not restrict the inference capabilities. Surprisingly enough, in the
setting of learning recursive functions the situation is totally different (cf. Freivalds,
Kinber and Wiehagen (1992)). Another interesting problem consists in characterizing
monotonic language learning. In general, characterizations play an important role in



inductive inference (cf. e.g. Wiehagen (1977, 1991), Angluin (1980), Freivalds, Kinber
and Wiehagen (1992)). On the one hand, they allow to state precisely what kind of
requirements a class of target objects has to fulfil in order to be learnable from eventually
incomplete data. On the other hand, they lead to deeper insights into the problem how
algorithms performing the desired learning task may be designed. Angluin (1980) proved
a characterization theorem for language learning from positive data that turned out to be
very useful in applications. In Lange and Zeugmann (1992B), we adopt the underlying
idea for characterizing all types of monotonic language learning from positive data in
terms of recursively generable finite sets.

Because of the strong relation between inductive inference of recursive functions and
language learning on informant, one may conjecture that the characterizations for mon-
tonic learning of recursive functions (cf. Wiehagen (1991), Freivalds, Kinber and Wie-
hagen (1992)) do easily apply to monotonic language learning. However, monotonic-
ity requirements in inductive inference of recursive functions are defined with respect
to the graph of the hypothesized functions. This makes really a difference as the fol-
lowing example demonstrates. Let L C Y¥* be any arbitrarily fixed infinite context-
sensitive language. By Ly;, we denote the set of all finite languages over ¥. Then we
set Liinpar = {L U Lfin | Lyin € Lyin}. In our setting, L finver is strong-monotonically
learnable, even on text (cf. Lange and Zeugmann (1992A)). If one uses the same concept
of strong-monotonicity as in Freivalds, Kinber and Wiehagen (1992), one immediately
obtains from Jantke (1991A) that, even on informant, £y;,,. cannot be learnt strong-
monotonically. This is caused by the following facts. First, any IIM M that eventually
identifies L fiyyqr strong—monotonically with respect to the graphs of their characteristic
functions has to output sometime a program of a recursive function. Next, the first pro-
gram of a recursive function has to be a correct one. Finally, it is not hard to prove that
no IIM M can satisfy the latter requirement.

In order to develop a unifying approach to monotonic language learning, we present
characterizations of monotonic language learning on informant in terms of recursively
generable finite sets. In doing so, we will show that there is exactly one learning algorithm
performing each of the desired inference tasks on informant. Moreover, it turns out that a
conceptually very close algorithm may be also used for monotonic language learning from
positive data (cf. Lange and Zeugmann (1992B)).

2. Preliminaries

By N = {1,2,3,...} we denote the set of all natural numbers. In the sequel we assume
familarity with formal language theory (cf. e.g. Bucher and Maurer (1984)). By ¥ we
denote any fixed finite alphabet of symbols. Let ¥* be the free monoid over Y. The
length of a string w € ¥* is denoted by |w|. Any subset [ C ¥* is called a language.
By co — L we denote the complement of L, i.e., co — L = ¥*\ L. Let L be a language
and t = sy,5,,83,... a sequence of strings from ¥* such that range(t) = {s | k €
N} = L. Then t is said to be a text for L or, synonymously, a positive presentation.
Furthermore, let ¢ = (sq,b1),(s2,02),... be a sequence of elements of ¥* x {4+, —} such
that range(i) = {sx | k € N} = ¥*, ¢t = {sx | (s,br) = (s, +),k € N} = L and
i7 = {sp | (sg,bx) = (Sg,—), k € N} = co— L. Then we refer to ¢ as an informant. 1If



L is classified via an informant then we also say that L is represented by positive and
negative data. Moreover, let ¢, ¢ be a text and an informant, respectively, and let = be
a number. Then ¢,, 7, denote the initial segment of ¢ and 2 of length x, respectively,
e.g., 13 = (81,b1),(82,02),(83,b3). Let t be a text and let 2 € N. We write ¢t} as an
abbreviation for range*(t,) := {sx | k < z}. Furthermore, by i and 7 we denote the
sets ranget (i) := {sr | (sg,+) € i,k < 2z} and range™ (i) := {sx | (s§,—) € 1,k < z},
respectively. Finally, we write 2, C 1., if 7, is a prefix of ¢,,.

Following Angluin (1980) we restrict ourselves to deal exclusively with indexed families
of recursive languages defined as follows:
A sequence Ly, Ly, L3, ... is said to be an indexed family L of recursive languages provided
all L; are non-empty and there is a recursive function f such that for all numbers j and
all strings w € ¥* we have

1

f(j,w)={o et

, otherwise.

As an example we consider the set £ of all context-sensitive languages over ¥. Then
L may be regarded as an indexed family of recursive languages (cf. Bucher and Maurer
(1984)). In the sequel we often denote an indexed family and its range by the same symbol
L. What is meant will be clear from the context.

As in Gold (1967) we define an inductive inference machine (abbr. IIM) to be an
algorithmic device which works as follows: The IIM takes as its input larger and larger
initial segments of a text ¢ (an informant ¢) and it either requires the next input string,
or it first outputs a hypothesis, i.e., a number encoding a certain computer program, and
then it requires the next input string (cf. e.g. Angluin (1980)).

At this point we have to clarify what space of hypotheses we should choose, thereby
also specifying the goal of the learning process. Gold (1967) and Wiehagen (1977) pointed
out that there is a difference in what can be inferred in dependence on whether we want
to synthesize in the limit grammars (i.e., procedures generating languages) or decision
procedures, i.e., programs of characteristic functions. Case and Lynes (1982) investigated
this phenomenon in detail. As it turns out, IIMs synthesizing grammars can be more
powerful than those ones which are requested to output decision procedures. However, in
the context of identification of indexed families both concepts are of equal power. Nev-
ertheless, we decided to require the I[IMs to output grammars. This decision has been
caused by the fact that there is a big difference between the possible monotonicity re-
quirements. A straightforward adaptation of the approaches made in inductive inference
of recursive functions directly yields analogous requirements with respect to the correse-
ponding characteristic functions of the languages to be inferred. On the other hand, it is
only natural to interpret monotonicity with respect to the language to be learnt, i.e., to
require containement of languages as described in the introduction. As it turned out, the
latter approach increases considerably the power of monotonic language learning (cf. e.g.
the example presented in the introduction). Furthermore, since we exclusively deal with
indexed families £ = (L;);en of recursive languages we almost always take as space of
hypotheses an enumerable family of grammars Gy, Gy, Gs, ... over the terminal alphabet
¥ satisfying £ = {L(G;) | j € N}. Moreover, we require that membership in L(G;) is
uniformly decidable for all j € N and all strings w € ¥*. As it turns out, it is sometimes



very important to choose the space of hypotheses appropriately in order to achieve the
desired learning goal. Then the IIM outputs numbers j which we interpret as ;.

A sequence (j;)zen of numbers is said to be convergent in the limit if and only if there
is a number j such that j, = j for almost all numbers .

Definition 1, (Gold (1967)) Let L be an indexed family of languages, L € L, and
let (G)jen be a space of hypotheses. An IIM M LIM — TXT (LIM — IN F)-identifies
L on a text t (an informant i) iff it almost always outputs a hypothesis and the sequence
(M(t.))een (M (2z))zen) converges in the limit to a number j such that L = L(G).
Moreover, M LIM —TXT (LIM — INF)-identifies L, tff M LIM —TXT (LIM —
INF)—identifies L on every text (informant) for L. We set:
LIM-TXT(M)={LeL|M LIM-TXT—identiftres L} and define LIM —INF(M)
analogously.

Finally, let LIM —TXT (LIM—INF) denote the collection of all families L of indexed
families of recursive languages for which there is an IIM M such that L C LIM —
TXT(M) (LCLIM—INF(M)).

Definition 1 could be easily generalized to arbitrary families of recursively enumerable
languages (cf. Osherson et al. (1986)). Nevertheless, we exclusively consider the restricted
case defined above, since our motivating examples are all indexed families of recursive
languages. Note that, in general, it is not decidable whether or not M has already
inferred L. Within the next definition, we consider the special case that it has to be
decidable wether or not an IIM has succesfully finished the learning task.

Definition 2, (Trakhtenbrot and Barzdin (1970)) Let £ be an indexed family
of languages, L € L, and let (G})jen be a space of hypotheses. An IIM M FIN —
TXT (FIN — INF)-identifies L on a textt (an informant v) iff it outpuls only a single
and correct hypothesis j, i.e., L = L(G;), and stops.

Moreover, M FIN — TXT (FIN — INF)—identifies L, iff M FIN —TXT (FIN —
INF)—identifies L on every text (informant) for L. We set:
FIN-TXT(M)={L € L| M FIN-TXT —identifres L} and define FIN —INF(M)

analogously.

The resulting identification type is denoted by FIN — TXT (FIN — INF). Next

we formally define strong-monotonic, monotonic and weak-monotonic inference.

Definition 3, Jantke ((1991A), Wiehagen (1991)) An IIM M is said to identify
a language L from text (informant)

(A) strong—monotonically
(B) monotonically

(C) weak-monotonically
iff

M LIM —TXT (LIM — INF)—identifies L and for any text t (informant i) of L as

well as for any two consecutive hypotheses j,, jr4r which M has produced when fed t, and
tork (iz and i.y1), for some k> 1,k € N, the following conditions are satisfied:



(A) (Gj.) € I(Gj,y)
(B) L(G,

(C) if toyr C L(G},) then L(Gy,) C L(Gy,,,) (if it € L(Gy,) and iz, C co— L(G},),
then L(Gh) g L(G1z+k>)

)NLC LGy, )NL

We denote by SMON — TXT, SMON — INF, MON —TXT, MON — INF,
WMON —TXT, WMON — INF the family of all thoses sets £ of indexed families
of languages for which there is an IIM inferring it strong—monotonically, monotonically,
and weak-monotonically from text ¢ or informant ¢, respectively.

Note that even SMON — T XT contains interesting "natural” families of formal lan-
guagues (cf. Lange and Zeugmann (1991, 1992A)). Finally in this section we define
conservatively working ITMs.

Definition 4, (Angluin (1980A))
An IIM M CONSERVATIVE-TXT (CONSERVATIVE-INF)-identifies L on textt (on

informant ¢ ), iff for every text t (informant ¢) the following conditions are satisfied:

(1) L€ LIM —TXT(M) (L€ LIM — INF(M))

(2) If M on input t, makes the guess j, and then makes the guess j,yr # j. at some
subsequent step, then L(G;,) must fail to contain some string fromt,,r (L(G;,) must
fail either to contain some string w € z;"_l_k or it generates some string w € i;_l_k).

CONSERVATIVE-TXT(M) and CONSERVATIVE —INF(M) as well as the collections
of sets CONSERVATIVE-TXT and CONSERVATIVE-INF are defined in an analogous

manner as above.

Intuitively speaking, a conservatively working IIM performs ezclusively justified mind
changes. Note that WMON — T'XT = CONSERVATIVE-TXT as well as WMON —
INF = CONSERVATIVE-INF. Finally, the figure below summarizes the known results

concerning monotonic inference (cf. Lange and Zeugmann (1991, 1992A)).

FIN —TXT C SMON —TXT C MON —TXT C WMON —TXT C LIM —TXT
N % N % N % N N
FIN —INF C SMON —INF C MON —INF C WMON —INF =LIM — INF

(* # denotes incomparability of sets. *)

3. Characterization Theorems

In this section we give characterizations of strong—monotonic, monotonic and weak—
monotonic inference from positive and negative data as well as for FIN — INF. Charac-
terizations play an important role in that they lead to a deeper insight into the problem
how algorithms performing the inference process may work (cf. e.g. Blum and Blum



(1975), Wiehagen (1977, 1991), Angluin (1980), Zeugmann (1983), Jain and Sharma
(1989)). Starting with the pioneering paper of Blum and Blum (1975), several theoretical
framworks have been used for characterizing identification types. For example, charac-
terizations in inductive inference of recursive functions have been formulated in terms of
complexity theory (cf. Blum and Blum (1975), Wiehagen and Liepe (1976), Zeugmann
(1983)) and in terms of computable numberings (cf. e.g. Wiehagen (1977), (1991) and
the references therein). Surprisingly, some of the presented characterizations have been
succesfully applied for solving highly nontrivial problems in complexity theory. Moreover,
up to now it remains open how to solve the same problems without using these char-
acterizations. It seems that characterizations may help to get a deeper understanding
of the theoretical framework where the concepts for characterizing identification types
are borrowed from. The characterization for SMON — T XT (cf. Lange and Zeugmann
(1992B)) can be considered as further example along this line. This characterization has
the following consequence. If £ € SMON —TXT, then set inclusion in £ is decidable (if
one chooses an appropriate description of £). On the other hand, Jantke (1991B) proved
that, if set inclusion of pattern languages is decidable, then the family of all pattern lan-
guages may be inferred strong—monotonically from positive data. However, it remained
open whether the converse is also true. Using our result, we see it is, i.e.,if one can design
an algorithm that learns the family of all pattern languages strong—-monotonically from
positive data, then set inclusion of pattern languages is decidable. This may show at least
a promising way how to solve the open problem wether or not set inclusion of pattern
languages is decidable.

Our first theorem characterizes SMON — INF in terms of recursively generable finite
positive and negative tell-tales. A family of finite sets (P;);en is said to be recursively
generable, iff there is a total effective procedure ¢ which, on every input j, generates all
elements of P; and stops. If the computation of g(j) stops and there is no output, then
P; is considered to be empty. Finally, for notational convenience we use L(G) to denote
{L(G;) | j € N} for any space G = ((G;)jen of hypotheses.

Theorem 1. Let £ be an indeved family of recursive languages. Then: £ € SMON —

INF if and only if there are a space of hypotheses G = (G;)jen and recursively generable
families (f’j)jEN and (Nj)jEN of finite sets such that

(1) range(L) = L(G)
(2) Forallje N, ) # ]5]- C L(éj) and Nj Cco— L(éj).

(3) Forallk, j € N, if P, C P; as well as N}, C co— L((G;), then L(Gy) C L(G).

Proof. Necessity: Let L € SMON — INF. Then there are an [IM M and a space of
hypotheses (G;)jen such that M infers any L € £ strong-monotonically with respect to
(Gj)jen. We proceed in showing how to construct (Cij)];EN . This will be done in two
steps. In the first step, we define a space of hypotheses (G})jen as well as corresponding
recursively generable families (P;);en and (N;);en of finite sets where P; may be empty
for some j € N. Afterwards, we define a procedure which enumerates a certain subset of

g.



First step: Let ¢ : N x N — N be Cantor’s pairing function. For all k, z € N we
set Geb,z) = Gr. Obviously, it holds range(L) = L(G). Let ¥ be the lexicographically
ordered informant for L(Gy), and let = € N.

We define:

. B mnge"'(z];) if y=min{z|z <z, M(i*) =k, ranget(:¥) # 0}

e(kz) = 0 otherwise
If pc(k 5 = range"'(i]gj) £ ), then we set Nc(km = range_(i];). Otherwise, we define
Nc(k,x) = @

Second step: The space of hypotheses (Gj)jeN will be defined by simply striking off all
grammars Gt ) With P ) = (). In order to save readability, we omit the corresponding
bijective mapplng yleldlng the enumaration (éj)jEN from (éj>jeN- It éj is referring to
Gc(k z), We set P Pc(k ) as well as N = Nc(k’x).

We have to show that (Gj)jEN, (Nj)jEN , and (Pj)jEN do fulfil the announced prop-
erties. Obviously, (pj)je ~ and (Nj)jeN are recursively generable families of finite sets.

Furthermore, it is easy to see that L(C;) C range(£). In order to prove (1), it suffices
to show that for every L € L there is at least one j € N with L = L(G,) and P; # 0.
Let :* be L’s lexicographically ordered informant. Since M has to infer L on %, too, and

L # (), there are k, x € N such that M(z; ) =k, L = L(Gy), range"’(' ) # 0 as well
as M( Ly £ k for all y < x. From that we 1mmed1ately conclude that L = L(G') and
that P # () for j = ¢(k,x). Due to our construction, property (2) is obviously fulfilled.
It remains to show (3). Suppose k, j € N such that P, C L(Gj) and N C co — L(Gj).
We have to show L(Gk) (G ). In accordance with our construction one can easily
observe: There is a uniquely defined initial segment say zx, of the lex1cograph1cally or-
dered informant for L(Gk) such that range( F) = Pk UN, . Furthermore M( Ky =m
with L(Gk) = L(G,,). Additionally, since P - L(G-) as well as Ny C co — L(Gj), ik is

an initial segment of the lexicographically ordered informant ¢ of L(G ).

Since M infers L(Gj) on informant 4/, there exist r, n € N such that M( x+r) =n
and L(Gj) = L(G,). Moreover, M works strong-monotonically. Thus, by the transitivity
of C we obtain L(Gk) - L(Gj).

Sufficiency: It suffices to prove that there is an IIM A inferring any L € £ on any
informant with respect to G. So let L € L, let z be any informant for L, and let € N.

M(z,) = ”Generate P and N for j = 1,...,2 and test whether (a) f’j Cif C L(CA;'J-) and
(b) N Ci, Cco— L(G ) . In case there is at least a j fulfilling the test, output
the mmlmal one, and request the next input.

Otherwise output nothing and request the next input.”

Since all of the P, and N, are uniformly recursively generable and finite, we see that
M is an IIM. We have to show that it infers L. Let k = ,uz[L L(G )]. We claim that
M converges to k. Consider Pl, .. Pk as well as Nl, .. Nk Then there must be an =z



such that f’k Cqit C L(Gk) and Nk Ci Cco— L(Gk) That means, at least after havmg
fed i, to M, the machine M outputs an hypothesis. Moreover, since Pk C z++ C L(Gk)
and Ny C try, C co— (G’k) for all » € N, the IIM M never produces a guess J > kon
r+r guppose M converges to j < k. Then we have P Cqt  C L( i) # L(Gk) and
N Cigy, Cco—L(G)foraHrEN.

Case 1: L(Gk) \ L( ) #D
Consequently, there is at least one string s € L(Ck)\L(G ) such that (s, +) has to appear
sometimes in 7, say in 7,4, for some r. Thus, it ¢ (CAY

)y Yz
Case 2: L(G;) \ L(Gr) # 0
Then we may restrict ourselves to the case L(Gk) C L(G ) since otherwise we are again
in case 1. Consequently, there is at least one string s € L(G )\L(Gk) such that (s, —) has

to appear sometime in ¢, say in ¢,4, for some r. Thus, 2 Loir Z co— ( ;), a contradiction.

), a contradiction.

Therefore, M converges to k on informant ¢. In order to complete the proof we show
that M works stong-monotonically. Suppose that M outputs k sometime and changes
its mind to j in some subsequent step. Hence, M (i) = k and M(i,y,) = j , for some
x, r € N. Due to the construction of M, we obtain B, C i C Z:+7‘ C L(éj) and
Ny Ciz C Iy C CO— L(éj). This yields P, C L(G;) as well as N, C co — L((;).
Finally, (3) implies (Gk) C L(G ). Hence, M works indeed strong-monotonically.

q-e.d.

Although, there are remarkable differences between formal language learning ;from
positive data, on the one hand, and language learning from positive and negative data,
on the other hand, the characterizations of SMON — INF' is formally quite similar to
that one of SMON — T'XT, (cf. Lange and Zeugmann (1992B)).

Theorem 2. Let £ be an indeved family of recursive languages. Then: £ € SMON —
TXT if and only if there are a space of hypotheses G = (G})jen and a recursively generable

family (Tj)jeN of finite and non—empty sets such that

(1) range(L) = L(G).
(2) T; C L(G,) for all j € N.

(3) Forall j, z € N, sz] - L(éz), then L(éj) C L(G’z).

Surprisingly enough, the characterizations of MON — INF and MON — T'XT are
quite different. This is caused by the following facts. For characterizing MON — T'XT,
one has to construct a recursively generable family of finite tell-tales that should contain
both, information concerning the corresponding language as well as concerning possible
intersections of this language L with languages L’ which may be taken as candidate
hypotheses. However, these intersections may yield languages outside the indexed family.
Moreover, as long as the output of the IIM M performing the monotonic inference really
depends on the range, the order and length of the textsegment fed to M one has to
deal with a non-recursive component. The non-recursiveness directly results from the
requirement that M has to infer each I € £ from any text, i.e., one has to find suitable



approximations of the uncountable many non-recursive texts. In Lange and Zeugmann
(1992B), a method is pointed out for overcoming these difficulties.

The problem explained above does not appear when characterizing MON — INF.
For language learning on informant, one can make the following observation. Any IIM
M performing a desired inference task can be always simulated by an order-independent
IIM M’ of the same inference power as M (cf. Blum and Blum (1975)). M’ has sim-
ply to rearrange the incoming data in lexicographical order. Then, M’ takes the longest
initial segment of the rearranged informant which forms an initial segment of the lexico-
graphically ordered informant of the language to be learnt as input and outputs the same
hypothesis as M will do when proccesing this amount of data. This is quite different from
what one can expect in language learning from positive data, since an IIM can never be
sure to have already seen a complete initial segment of the lexicographically ordered text
of a language to be learnt.

Next to, we present a characterization of MON — INF'.

Theorem 3. Let L be an indexed family of recursive languages Then: L € MON —
INF if and only if there are a space of hypotheses G = (G})jen and recursively generable
families (P])jEN and (N])]EN of finite sets such that

(1) range(L) = L(G)
(2) Forall je N, ) # ]5]- C L(Gj) and Nj Cco— L(Gj)

(3) Forallk, j € N, and for all L € L, if P, U P; C L(G}) N L as well as Ny U N; C
co — L(éj) Nco— L, then L(ék) NLC L(éj) NL.

Proof. Necessity: Let L € MON — INF. Then there are an IIM M and a space of
hypotheses (G;);en such that M infers any L € £ monotonically on any informant with
respect to (G;);en. Without loss of generality, we can assume that M works conserva-
tively, too, (cf. Lange and Zeugmann (1991, 1992)). The space of hypotheses (Gj)jEN as
well as the corresponding recursively generable families (]5]) jen and (N ;)jen of finite sets
are defined as in the proof of Theorem 1.

We proceed in showing that (Gj)jeN, (Nj)jeN , and (]Sj)jeN do fulfil the announced
properties. By applying the same arguments as in the proof of Theorem 1 one obtains
(1) and (2). It remains to show (3). Suppose L € £ and k, j € N such that P U ]5]' C
L(éj)ﬁL as well as NkUNj - co—L(éj)ﬁco—L. We have to show L(Gk)ﬂl) - L(Gj)ﬂL.
Due to our construction, we can make the following observations. There is a uniquely
defined initial segment of the lexicographically ordered informant ¢* for L(ék) , say i~
such that range(i¥) = Py U Ni. Moreover, M(i¥) = m with L(G}) = L(Gr). By i we
denote the uniquely defined initial segment of the lexicographically ordered informant ¢/
for L((;) with range(z’j) P; U N;. Furthermore, M(i}) = n and L(G;) = L(G,). From
P, C L(G;) and Ny C co — L((;), it follows i% C 47, Since P; C L and N; C co — L, we

conclude that z{l is an initial segment of the leX1cograph1caHy ordered mforma,nt il for L.
We have to distinguish the following three cases.

Case 1: z =y ) ) ) )
Hence, m = n and therefore L(G}) = L(G;). This implies L(Gy) N L C L(G;)N L



Case 2: z <y
Now, we have 1% C zz C +%. Moreover, M monotonically infers L. on informant :*. By the

transitivity of C we immediately obtain L(Gk) NLC L(Gj) N L.
Case 3: y <=z
Hence, l{/ C ¥ C ¢/. Since M works conservatively, too, it follows m = n. Therefore,

L(Gy) = L(G,). This implies L(Gy) N L C L(G;) N L.

Hence, (éj)jeN, (Nj)jEN as well as (Pj)jeN have indeed the announced properties.

Sufficiency: It suffices to prove that there is an IIM M inferring any L € £ monotoni-
cally on any informant with respect to G. So let L € L. let ¢ be any informant for L, and
x € N.

M(t,) = ”Generate Pj and Nj for j =1, ...,z and test whether

(A) P; Cit C L(G;) and
(B) N; Ci7 Ceo— L(GY) .

In case there is at least a j fulfilling the test, output the minimal one and request
the next input.

Otherwise, output nothing and request the next input.”

Since all of the P, and N, are uniformly recursively generable and finite, we see that
M is an IIM. We have to show that it infers L. Let k = pz[L = L(G.)]. We claim that
M converges to k. Consider Pl, .. Pk as well as Nl, .. Nk Then there must be an =z
such that Pk Cit C L(Gk) and Nk g 1, Cco— (Gk). That means, at least after having
fed i, to M, the machine M outputs an hypothesis. Moreover, since P, C it,, C L(Gk)
as well as Nj C 1oy, C co— (ék) for all r € N, the IIM M never produces a guess 7 > k
On tpy,.

Suppose, M converges to j < k. Then we have: Pj Cif,, C L(Gj) # L(Gk) and
N; Cig,, Cco—L(G') for all r € N.

Case 1: L(Gk) \ L( ;) # 0
Consequently, there is at least one string s € L(Ck)\L( i) such that (s, +) has to appear
sometime in 7, say in 7,4, for some r. Thus, we have ¢}, ¢ L( ;), a contradiction.

Case 2: L((G;)\ L(Gy) # 0
Then we may restrict ourselves to the case L(Gy) C L(G; ) since otherwise we are again
in case 1. Consequently, there is at least one string s € L(G )\L(Gk) such that (s, —) has

to appear sometime in ¢, say in 7,4, for some r. Thus, 2, Z co— ( ) a contradiction.

Consequently, M converges to k£ on informant :. To complete the proof we show that M
works monotonically. Suppose M outputs k and changes its mind to j in some subsequent
step. Consequently, M(¢,) = k and M(i,4,) =J , for some z, r € N.

Case 1: L(Gj) =1L
Hence, L(Gy) N L C L(G;) N L = L is obviously fulfilled.



Case 2: L( ) # L
Due to the definition of M, it holds P, C it C if,, C L(G ). Hence, P.CLn L(G ).
Furthermore, we have N C 17 Ci, C co— L(Gj). This implies Nk C co— L(G])ﬂco L.
Since M (%,4,) = j, it holds that P; C L and N; C co— L. This yields P,UP; C L(G;)NL

as well as Nk U Nj C co— L(Gj) N co— L. From (3), we obtain L(Gk) NLC L(Gj) N L.

Hence, M MON — IN F—identifies L.
q.e.d.

JFrom our characterization for MON — INF| it immediately follows that any family
L which is inferrable on informant by a monotonically working IIM M can be learnt by
a rearrangment-independently as well as monotonically working I[IM M’, too. Osherson,
Stob and Weinstein (1986) defined rearrangement-independent IIMs as follows: An IIM
M is rearrangement-independent iff its output depends only on the range and the length
of its input. If we are dealt exclusively with monotonic inference from positive data by
rearrangment independent IMMs, denoted by MON R —TXT , we obtain a quite similar
characterization (cf. Lange and Zeugmann (1992B)).

Theorem 4. Let £ be an indexed family of recursive languages. Then: L € MONR—
TXT if and only if there are a space of hypotheses G = (G);jen and a recursively generable
family (Tj>]EN of finite sets such that

(1) range(L) = L(G)
(2) Forall j € N, Tj C L(Gy).

(3) Forall j,z € N, sz C L(G’z), then L(CA}'Z) 74 L(é)

(4) Forallk, j € N, cmdfor adl L €L, sz( )#L#L(Gk) and Ty, C L(GZ’)QL as
well as T] C L, then L(Gk) NLC L(G]) NL.

Because of WMON — INF = LIM — IN F as well as the following trivial proposition,
there is no need at all for characterizing WMON — INF. It can be easily shown that an
appropriate identification by enumeration strategy is able to infer every indexed family of
recursive languages on informant.

Proposition For any indexed family L of recursive languages: L € LIM — INF.

Finally, we present a characterization of FIN —INF'. Note that an analogous theorem
has been obtained independently by Mukouchi (1991).

However, even the next theorem has some special features distinguishing it jfrom the
characterizations already given. As pointed out above, dealing with characterizations
has been motivated by the aim to elaborate a unifying approach to monotonic inference.
Concerning MON — INF as well as SMON — INF this goal has been completely met
by showing that there is exactly one algorithm, i.e. that one described in Theorem 1 and
Theorem 3, which can perform the desired inference task, if the space of hypotheses is
appropriately chosen. Obviously, the same algorithms can be applied for weak-monotonic
inference, if the corresponding recursively generable families of finite sets will be appro-
priately choosen. The next theorem yields even a stronger implication. Namely, it shows,



if there is a space of hypotheses at all such that £ € FIN — INF with respect to this
space, then one can always use L itself as space of hypotheses, thereby again applying
essentially one and the same inference procedure.

Theorem 5. Let L be an indexed family of recursive languages. Then: L € FIN —
INF if and only if there are recursively generable families (P;)jen and (N;)jen of finite
sets such that

(1) Forallje N, 0 # P; C L; and N; C co— L;.
(2) For allk, j € N, if P, C L; and Ny, C co— L;, then Ly = L;.

Proof. Necessity: Let £ € FIN — INF. Then there are a space § = (G,)jen of
hypotheses and an IIM M such that M finitely infers £ with respect to G. We proceed
in showing how to construct (P;);en and (IV;);en. This is done in two steps. First we
construct (]5])] € N and (Nj)jeN with respect to the space G of hypotheses. Then we
describe a procedure yielding the wanted families (P;);en and (V) en with respect to L.

Let k € N be arbitrarily fixed. Furthermore, let i* be the lexicographically ordered
informant of L(G/). Since M infers L(G}) finitely on i*, there exists a € N such that
M(i%) = m with L(Gy) = L(G,,). We set Py = ranget(i¥) and N, = range™(:¥). The
desired families (P;);en and (IV;);en are obtained as follows. Let z € N. In order to get
P, and N, search for the least 7 € N such that P C L, and N Cco—L,. Set P, = P
and N, = Nj. Note that at least one wanted j has to exist, since for any pair (Pk, Nk) of
sets there is an informant ¢ of some language L € £ such that Pk C 4t and Nk Caq .

We have to show that (P;);en and (N;);en fulfil the announced properties. Due to
our construction, property (1) holds obviously. It remains to show (2). Suppose z, y € N
such that P, C L, and N, C co — L,.
index k such that P, = pk and N, = Nk Moreover, due to construction there is an
initial segment of the lexicographically ordered informant i* of L(G}), say i¥, such that
range(i¥) = P, U N, Furthermore, M(:%) = m with L(Gy) = L(G,,). Since P, C L,
and Ny, C co — Ly, i* is an initial segment of some informant for L,, too. Taking into
account that M finitely infers L, on any informant and that M(i¥) = m, we immediately
obtain L, = L(G,,). Finally, due to the definition of P, and N, we additionally know

that P, C L, and N C co — L., hence the same argument again applies and yields
L, = L(G,,). Consequently, L, = L,. This proves (2).

Sufficiency: It suffices to prove that there is an [IM M inferring any L € £ finitely on

In accordance with our construction there is an

any informant with respect to £. So let L € L, let ¢ be any informant for L, and z € N.

M(t;) = ”Generate P; and N; for j = 1,...,z and test whether
(B) Njgi;gCO—Lj.

In case there is at least a j fulfilling the test, output the minimal one and request
the next input.

Otherwise, output nothing and request the next input.”



Since all of the P; and N; are uniformly recursively generable and finite, we see that M
is an IIM. We have to show that it infers L. Let j = un[L = L,]. Then there must be an
x € N such that P; C it as well as N; €. That means, at least after having fed z, to
M, the machine M outputs an hypothesis and stops. Suppose M produces a hypotheses
k with & # j and stops. Hence, there has to be a z with z < z such that P, C i} and
Ny, C ¢ . Since z < z, it follows P, C L; and Ng C co — L;. Hence, (2) implies Ly = L;.
Concequently, M outputs a correct hypotheses for I and stops afterwards.

q.e.d.

4. Conclusions

We have characterized strong-monotonic, monotonic, and weak-monotonic language
learning from positive and negative data. All these characterization theorems lead to a
deeper insight into the problem what actually may be inferred monotonically. It turns
out that each of these inference tasks can be performed by applying exactly the same
learning algorithm.

Next we point out another interesting aspect of Angluin’s (1980) as well as of our
characterizations. Freivalds, Kinber and Wiehagen (1989) introduced inference from good
examples, i.e., instead of successively inputting the whole graph of a function now an IIM
obtains only a finite set argument /value-pairs containing at least the good examples. Then
it finitely infers a function iff it outputs a single correct hypothesis. Surprisingly, finite
inference of recursive functions from good examples is exactly as powerful as identification
in the limit. The same approach may be undertaken in language learning (cf. Lange and
Wiehagen (1991)). Now it is not hard to prove that any indexed family £ can be finitely
inferred from good examples, where for each L. € £ any superset of any of L’s tell-tales
may serve as good example.

Furthermore, as our results show, all types of monotonic languague learning have spe-
cial features distinguishing them from monotonic inference of recusive functions. There-
fore, it would be very interesting to study monotonic language learning in the general
case, i.e., not restricted to indexed families of recursive languages.
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