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Abstract. This paper provides a systematic study of inductive inference
of indexable concept classes in learning scenarios in which the learner is
successful if its final hypothesis describes a finite variant of the target
concept – henceforth called learning with anomalies. As usual, we distin-
guish between learning from only positive data and learning from positive
and negative data.
We investigate the following learning models: finite identification, conser-
vative inference, set-driven learning, and behaviorally correct learning.
In general, we focus our attention on the case that the number of allowed
anomalies is finite but not a priori bounded. However, we also present
a few sample results that affect the special case of learning with an a
priori bounded number of anomalies. We provide characterizations of
the corresponding models of learning with anomalies in terms of finite
tell-tale sets. The varieties in the degree of recursiveness of the relevant
tell-tale sets observed are already sufficient to quantify the differences in
the corresponding models of learning with anomalies.
In addition, we study variants of incremental learning and derive a com-
plete picture concerning the relation of all models of learning with and
without anomalies mentioned above.

1 Introduction

Induction constitutes an important feature of learning. The corresponding theory
is called inductive inference. Inductive inference may be characterized as the
study of systems that map evidence on a target concept into hypotheses about it.
The investigation of scenarios in which the sequence of hypotheses stabilizes to an
accurate and finite description of the target concept is of some particular interest.
The precise definitions of the notions evidence, stabilization, and accuracy go
back to Gold [10] who introduced the model of learning in the limit.

The present paper deals with inductive inference of indexable classes of re-
cursive concepts (indexable classes, for short). A concept class is said to be an
indexable class if it possesses an effective enumeration with uniformly decid-
able membership. Angluin [2] started the systematic study of learning indexable
concept classes. [2] and succeeding publications (cf., e.g., [20], for an overview)



found a lot of interest, since most natural concept classes form indexable classes.
For example, the class of all context sensitive, context free, regular, and pattern
languages as well as the set of all boolean formulas expressible as monomial,
k-CNF, k-DNF, and k-decision list constitute indexable classes.

As usual, we distinguish learning from positive data and learning from posi-
tive and negative data, synonymously called learning from text and informant,
respectively. A text for a target concept c is an infinite sequence of elements of c
such that every element from c eventually appears. Alternatively, an informant
is an infinite sequence of elements exhausting the underlying learning domain
that are classified with respect to their membership to the target concept.

An algorithmic learner takes as input larger and larger initial segments of
a text (an informant) and outputs, from time to time, a hypothesis about the
target concept. The set of all admissible hypotheses is called hypothesis space.
When learning of indexable classes is considered, it is natural to require that
the hypothesis space is an effective enumeration of a (possibly larger) indexable
concept class. This assumption underlies almost all studies (cf., e.g., [2, 20]).

Gold’s [10] original model requires the sequence of hypotheses to converge to
a hypothesis correctly describing the target concept. However, from a viewpoint
of potential applications, it suffices in most cases that the final hypothesis ap-
proximates the target concept sufficiently well. Blum and Blum [5] introduced
a quite natural refinement of Gold’s model that captures this aspect. In their
setting of learning recursive functions with anomalies, it is admissible that the
learner’s final hypothesis may differ from the target function at finitely many
data points. Case and Lynes [6] adapted this model to language learning.

Learning with anomalies has been studied intensively in the context of learn-
ing recursive functions and recursively enumerable languages (cf., e.g., [11]). Pre-
liminary results concerning the learnability of indexable classes with anomalies
can be found in Tabe and Zeugmann [17]. Note that Baliga et al. [3] studied the
learnability of indexable classes with anomalies, too. However, unlike all other
work on learning indexable classes, [3] allows the use of arbitrary hypothesis
spaces (including those not having a decidable membership problem). There-
fore, the results from [3] do not directly translate into our setting.

The present paper provides a systematic study of learning indexable concept
classes with anomalies. We investigate the following variants of Gold-style con-
cept learning: finite identification, conservative inference, set-driven inference,
behaviorally correct learning, and incremental learning. We relate the resulting
models of learning with anomalies to one another as well as to the corresponding
versions of learning without anomalies. In general, we focus our attention to the
case that the number of allowed anomalies is finite but not a priori bounded.
However, we also present a few sample results that affect the special case that
the number of allowed anomalies is a priori bounded.

Next, we mention some prototypical results. In the setting of learning with
anomalies, the learning power of set-driven learners, conservative learners, and
unconstrained IIMs does coincide. In contrast, when anomaly-free learning is
considered, conservative learners and set-driven learners are strictly less power-



ful. Moreover, a further difference to learning without anomalies is established
by showing that behaviorally correct learning with anomalies is strictly more
powerful than learning in the limit with anomalies. Furthermore, in case the
number of allowed anomalies is finite but not a priori bounded, it is proved that
there is no need to use arbitrary hypothesis spaces in order to design superior
behaviorally correct learners, thus refining the corresponding results from [3].
However, if the number of anomalies is a priori bounded, it is advantageous
to use arbitrary hypothesis spaces. In order to establish these results, we pro-
vide characterizations of the corresponding models of learning with anomalies
in terms of finite tell-tale sets (cf. [2]). As it turns out, the observed varieties in
the degree of recursiveness of the relevant tell-tale sets are already sufficient to
quantify the differences in the corresponding models of learning with anomalies.

Moreover, we derive a complete picture concerning the relation of the different
models of incremental learning with and without anomalies.

2 Preliminaries

2.1 Basic notions

Let IN = {0, 1, 2, . . .} be the set of all natural numbers. By 〈., .〉: IN× IN → IN we
denote Cantor’s pairing function. Let A and B be sets. As usual, A4B denotes
the symmetrical difference of A and B, i.e., A4B = (A \B)∪ (B \A). We write
A # B to indicate that A4B 6= ∅. For all a ∈ IN, A =a B iff card(A4B) ≤ a,
while A =∗ B iff card(A4B) < ∞. We let σ � τ denote the concatenation of two
possibly infinite sequences σ and τ .

Any recursively enumerable set X is called a learning domain. By ℘(X ) we
denote the power set of X . Let C ⊆ ℘(X ) and let c ∈ C. We refer to C and c
as to a concept class and a concept, respectively. Sometimes, we will identify
a concept c with its characteristic function, i.e., we let c(x) = +, if x ∈ c, and
c(x) = −, otherwise. What is actually meant will become clear from the context.

We deal with the learnability of indexable concept classes with uniformly
decidable membership defined as follows (cf. [2]). A class of non-empty concepts C
is said to be an indexable concept class with uniformly decidable membership if
there are an effective enumeration (cj)j∈IN of all and only the concepts in C and a
recursive function f such that, for all j ∈ IN and all x ∈ X , it holds f(j, x) = +,
if x ∈ cj , and f(j, x) = −, otherwise. We refer to indexable concept classes with
uniformly decidable membership as to indexable classes, for short, and let IC
denote the collection of all indexable classes.

2.2 Gold-style concept learning

Let X be the underlying learning domain, let c ⊆ X be a concept, and let t =
(xn)n∈IN be an infinite sequence of elements from c such that {xn | n ∈ IN} = c.
Then, t is said to be a text for c. By Text(c) we denote the set of all texts for c.
Let t be a text and let y be a number. Then, ty denotes the initial segment of t
of length y + 1. Furthermore, we set content(ty) = {xn | n ≤ y}.



Let C be an indexable class. Then, we let Text(C) be the collection of all
texts in

⋃
c∈C Text(c).

As in [10], we define an inductive inference machine (abbr. IIM ) to be an
algorithmic mapping from initial segments of texts to IN ∪ {?}. Thus, an IIM
either outputs a hypothesis, i.e., a number encoding a certain computer program,
or it outputs “?,” a special symbol representing the case the machine outputs
“no conjecture.” Note that an IIM, when learning some target class C, is required
to produce an output when processing any admissible information sequence, i.e.,
any initial segment of any text in Text(C).

The numbers output by an IIM are interpreted with respect to a suitably
chosen hypothesis space H = (hj)j∈IN. Since we exclusively deal with the learn-
ability of indexable classes C, we always assume that H is also an indexing of
some possibly larger indexable class. Hence, membership is uniformly decidable
in H, too. If C ⊆ {hj | j ∈ IN} (C = {hj | j ∈ IN}), then H is said to be a
class comprising (class preserving) hypothesis space for C (cf. [20]). When an
IIM outputs some number j, we interpret it to mean that it hypothesizes hj .

We define convergence of IIMs as usual. Let t be a text and let M be an IIM.
The sequence (M(ty))y∈IN of M ’s hypotheses converges to a number j iff all but
finitely many terms of it are equal to j.

Now, we are ready to define learning in the limit.
Definition 1 ([6, 10]). Let C ∈ IC, let c be a concept, let H = (hj)j∈IN be a
hypothesis space, and let a ∈ IN ∪ {∗}.

An IIM M LimaTxtH–identifies c iff, for every t ∈ Text(c), there is a j ∈ IN
with hj =a c such that the sequence (M(ty))y∈IN converges to j.

M LimaTxtH–identifies C iff, for all c′ ∈ C, M LimaTxtH–identifies c′.
LimaTxt denotes the collection of all indexable classes C′ for which there

are a hypothesis space H′ = (h′j)j∈IN and an IIM M such that M LimaTxtH′–
identifies C′.

Subsequently, we write LimTxt instead of Lim0Txt . We adopt this convention
to all learning types defined below.

In general, it is not decidable whether or not an IIM has already converged on
a text t for the target concept c. Adding this requirement to the above definition
results in finite learning (cf. [10]). The resulting learning type is denoted by
FinaTxt , where again a ∈ IN ∪ {∗}.

Next, we define conservative IIMs. Intuitively speaking, conservative IIMs
maintain their actual hypothesis at least as long as they have not seen data
contradicting it.
Definition 2 ([2]). Let C ∈ IC, let c be a concept, let H = (hj)j∈IN be a hypoth-
esis space, and let a ∈ IN ∪ {∗}.

An IIM M ConsvaTxtH–identifies c iff M LimaTxtH–identifies c and, for
every t ∈ Text(c) and for any two consecutive hypotheses k = M(ty) and j =
M(ty+1), if k ∈ IN and k 6= j, then content(ty+1) 6⊆ hk.

M ConsvaTxtH–identifies C iff, for all c′ ∈ C, M ConsvaTxtH–identifies c′.
For every a ∈ IN ∪ {∗}, the resulting learning type ConsvaTxt is defined

analogously to Definition 1.



Next, we define set-driven learning. Intuitively speaking, the output of a set-
driven IIM depends exclusively on the content of its input, thereby ignoring the
order as well as the frequency in which the examples occur.
Definition 3 ([18]). Let C ∈ IC, let c be a concept, let H = (hj)j∈IN be a
hypothesis space, and let a ∈ IN ∪ {∗}.

An IIM M SdraTxtH–identifies c iff M LimaTxtH–identifies c and, for every
t, t′ ∈ Text(C) and for all n, m ∈ IN, if content(tn) = content(t′m) then M(tn) =
M(t′m).

M SdraTxtH–identifies C iff, for all c′ ∈ C, M SdraTxtH–identifies c′.
For every a ∈ IN ∪ {∗}, the resulting learning type SdraTxt is defined analo-

gously to Definition 1.
At the end of this subsection, we provide a formal definition of behaviorally

correct learning.
Definition 4 ([4, 6]). Let C ∈ IC, let c be a concept, let H = (hj)j∈IN be a
hypothesis space, and let a ∈ IN ∪ {∗}.

An IIM M BcaTxtH–identifies c iff, for every t ∈ Text(c) and for all but
finitely many y ∈ IN, hM(ty) =a c.

M BcaTxtH–identifies C iff, for all c′ ∈ C, M BcaTxtH–identifies c′.
For every a ∈ IN ∪ {∗}, the resulting learning type BcaTxt is defined analo-

gously to Definition 1.

2.3 Incremental concept learning

Now, we formally define the different models of incremental learning. An or-
dinary IIM M has always access to the whole history of the learning process,
i.e., it computes its actual guess on the basis of the whole initial segment of
the text t seen so far. In contrast, an iterative IIM is only allowed to use its
last guess and the next element in t. Conceptually, an iterative IIM M defines
a sequence (Mn)n∈IN of machines each of which takes as its input the output of
its predecessor.
Definition 5 ([19]). Let C ∈ IC, let c be a concept, let H = (hj)j∈IN be a
hypothesis space, and let a ∈ IN ∪ {∗}.

An IIM M ItaTxtH–identifies c iff, for every t = (xn)n∈IN ∈ Text(c), the
following conditions are fulfilled:
(1) for all n ∈ IN, Mn(t) is defined, where M0(t) = M(x0) and Mn+1(t) =

M(Mn(t), xn+1).
(2) the sequence (Mn(t))n∈IN converges to a number j with hj =a c.

M ItaTxtH–identifies C iff, for each c′ ∈ C, M ItaTxtH–identifies c′.
For every a ∈ IN ∪ {∗}, the resulting learning type ItaTxt is defined analo-

gously to Definition 1.
Let M be an iterative IIM as defined in Definition 5 and t be a text.

Then, M∗(tn) denotes the last hypothesis output by M when processing tn,
i.e., M∗(tn) = Mn(t). We adopt this convention to all versions of incremental
learners defined below.



Next, we consider a natural relaxation of iterative learning, named k-bounded
example-memory inference. Now, an IIM M is allowed to memorize at most k
of the elements in t which it has already seen, where k ∈ IN is a priori fixed.
Again, M defines a sequence (Mn)n∈IN of machines each of which takes as input
the output of its predecessor. A k-bounded example-memory IIM outputs a
hypothesis along with the set of memorized data elements.
Definition 6 ([15]). Let C ∈ IC, let c be a concept, let H = (hj)j∈IN be a
hypothesis space, let a ∈ IN ∪ {∗}, and let k ∈ IN.

An IIM M Bema
kTxtH–identifies c iff, for every t = (xn)n∈IN ∈ Text(c), the

following conditions are satisfied:
(1) for all n ∈ IN, Mn(t) is defined, where M0(t) = M(x0) = 〈j0, S0〉 such

that S0 ⊆ {x0} and card(S0) ≤ k and Mn+1(t) = M(Mn(t), xn+1) =
〈jn+1, Sn+1〉 such that Sn+1 ⊆ Sn ∪ {xn+1} and card(Sn+1) ≤ k.

(2) the jn in the sequence (〈jn, Sn〉)n∈IN of M ’s guesses converge to a number j
with hj =a c.
M Bema

kTxtH–identifies C iff, for each c′ ∈ C, M Bema
kTxtH–identifies c′.

For every k ∈ IN and every a ∈ IN∪{∗}, the resulting learning type Bema
kTxt

is defined analogously to Definition 1. By definition, Bema
0Txt = ItaTxt .

Next, we define learning by feedback IIMs. Informally speaking, a feedback
IIM M is an iterative IIM that is additionally allowed to make a particular type
of queries. In each learning stage n + 1, M has access to the actual input xn+1

and its previous guess jn. Moreover, M computes a query from xn+1 and jn

which concerns the history of the learning process. That is, the feedback learner
computes a data element x and receives a “Yes/No” answer A(x) such that
A(x) = 1, if x ∈ content(tn), and A(x) = 0, otherwise. Hence, M can just
ask whether or not the particular data element x has already been presented in
previous learning stages.
Definition 7 ([19]). Let C ∈ IC, let c be a concept, let H = (hj)j∈IN be a
hypothesis space, let a ∈ IN ∪ {∗}, and let Q: IN× X → X be a total computable
function. An IIM M , with a computable query asking function Q, FbaTxtH–
identifies c iff, for every t = (xn)n∈IN ∈ Text(c), the following conditions are
satisfied:
(1) for all n ∈ IN, Mn(t) is defined, where M0(t) = M(x0) as well as Mn+1(t) =

M(Mn(t), A(Q(Mn(t), xn+1)), xn+1).
(2) the sequence (Mn(t))n∈IN converges to a number j with hj =a c provided A

truthfully answers the questions computed by Q.
M FbaTxtH–identifies C iff, for each c′ ∈ C, M FbaTxtH–identifies c′.
For every a ∈ IN ∪ {∗}, the resulting learning type FbaTxt is defined analo-

gously to Definition 1.

3 Learning from positive data only

In this section, we study the power and the limitations of the various models
of learning with anomalies. We relate these models to one another as well as to



the different models of anomaly-free learning. We are mainly interested in the
case that the number of allowed anomalies is finite but not a priori bounded.
Nevertheless, in order to give an impression of how the overall picture changes
when the number of allowed anomalies is a priori bounded, we also present
selected results for this case.

3.1 Gold-style learning with anomalies

Proposition 1 summarizes the known relations between the considered models
of anomaly-free learning from text.
Proposition 1 ([10, 14, 16]).
FinTxt ⊂ ConsvTxt = SdrTxt ⊂ LimTxt = BcTxt ⊂ IC.

In the setting of learning recursive functions the first observation made when
comparing learning in the limit with anomalies to behaviorally correct inference
was the error correcting power of Bc-learners, i.e., Ex∗ ⊆ Bc (cf., e.g., [4, 7]).
Interestingly enough, this result did not translate into the setting of learning
recursively enumerable languages from positive data (cf. [6]). But still, a certain
error correcting power is preserved in this setting, since LimaTxt ⊆ BcbTxt
provided a ≤ 2b (cf. [6]).

When comparing learning with and without anomalies in our setting of learn-
ing indexable classes, it turns out that even finite learners may become more
powerful than Bc-learners.
Theorem 1. Fin1Txt \ BcTxt 6= ∅.

However, the opposite is also true. For instance, PAT , the well-known class
of all pattern languages (cf. [2]), witnesses the even stronger result:
Theorem 2. ConsvTxt \ Fin∗Txt 6= ∅.

As we will see, the relation between the standard learning models changes
considerably, if it is no longer required that the learner must almost always out-
put hypotheses that describe the target concept correctly. The following picture
displays the established coincidences and differences by relating the models of
learning with anomalies to one another and by ranking them in the hierarchy of
the models of anomaly-free learning.

Fin∗Txt ⊂ Consv∗Txt = Sdr∗Txt = Lim∗Txt ⊂ Bc∗Txt ⊂ IC
∪ ∪ ∪ ∪ ∪

FinTxt ⊂ ConsvTxt = SdrTxt ⊂ LimTxt = BcTxt

To achieve the overall picture, we establish characterizations of all models of
learning with a finite but not a priori bounded number of anomalies. On the
one hand, we present characterizations in terms of finite tell-tale sets. On the
other hand, we prove that some of the learning models coincide.
Proposition 2 ([17]). For all C ∈ IC and all a ∈ IN ∪ {∗}: C ∈ LimaTxt iff
there is an indexing (cj)j∈IN of C and a recursively enumerable family (Tj)j∈IN

of finite sets such that



(1) for all j ∈ IN, Tj ⊆ cj,
(2) for all j, k ∈ IN, if Tj ⊆ ck ⊆ cj, then ck =a cj.

The characterization of Fin∗Txt is similar to the known characterization of
FinTxt (cf. [13]).

Theorem 3. For all C ∈ IC: C ∈ Fin∗Txt iff there is an indexing (cj)j∈IN of C
and a recursively generable family (Tj)j∈IN of finite sets such that
(1) for all j ∈ IN, Tj ⊆ cj,
(2) for all j, k ∈ IN, if Tj ⊆ ck, then ck =∗ cj.

In contrast to Proposition 1, when a finite number of errors in the final
hypothesis is allowed, conservative IIMs become exactly as powerful as uncon-
strained IIMs.

Theorem 4. Lim∗Txt = Consv∗Txt.

Proof. Let C ∈ Lim∗Txt , let H = (hj)j∈IN be a hypothesis space, and let M
be an IIM that Lim∗TxtH–identifies C. Moreover, assume that M never outputs
“?.” The conservative IIM M ′ uses the following hypothesis space H′. For all
j ∈ IN and x ∈ X , we let h′j,x = hj \ {x}. Moreover, we let H′ be the canonical
enumeration of all those concepts h′j,x.

Let c ∈ C, let t = (xj)j∈IN be a text for c, and let y ∈ IN. On input ty, M ′

determines j = M(ty), and outputs the canonical index of h′j,x0
in H′.

It is straightforward to verify that M is a conservative IIM that witnesses
C ∈ Lim∗Txt . 2

As it turns out, when learning with anomalies is considered, set-driven learn-
ers become exactly as powerful as unconstrainted IIMs, again nicely contrasting
Proposition 1.

Theorem 5. Sdr∗Txt = Lim∗Txt.

However, there is a difference between conservative inference and set-driven
learning, on the one hand, and learning in the limit, on the other hand, which
we want to point out next. While learning in the limit is invariant to the choice
of the hypothesis space (cf. [17]), conservative inference and set-driven learning,
respectively, is not. Moreover, in order to design a superior conservative and a
set-driven learner, respectively, it is sometimes inevitable to select a hypothesis
space that contains concepts which are not subject to learning.

Theorem 6.
(1) There is an indexable class C ∈ Consv∗Txt such that, for all class preserving
hypothesis spaces H for C, there is no IIM M that Consv∗TxtH–identifies C.
(2) There is an indexable class C ∈ Sdr∗Txt such that, for all class preserving
hypothesis spaces H for C, there is no IIM M that Sdr∗TxtH–identifies C.

For conservative learning and set-driven inference without anomalies, the
analogue of Theorem 6 holds, as well (cf. [14, 16]).

Next, we study behaviorally correct identification. As we will see, finite tell-
tale sets form a conceptual basis that is also well-suited to characterize the



collection of all Bc∗Txt–identifiable indexable classes. Surprisingly, the existence
of the corresponding tell-tale sets is still sufficient.

Theorem 7. For all C ∈ IC: C ∈ Bc∗Txt iff there is an indexing (cj)j∈IN of C
and a family (Tj)j∈IN of finite sets such that
(1) for all j ∈ IN, Tj ⊆ cj,
(2) for all j, k ∈ IN, if Tj ⊆ ck ⊆ cj, then ck =∗ cj.

Proof. Due to the space constraint we sketch the sufficiency part, only. First,
we define an appropriate hypothesis space H = (h〈j,k〉)j,k∈IN. Let (Fj)j∈IN be an
effective enumeration of all finite subsets of X and let (wj)j∈IN be the lexico-
graphically ordered enumeration of all elements in X .

We subsequently use the following notions and notations. For all c ⊆ X and
all z ∈ IN, we let cz = {wr | r ≤ z, wr ∈ c}. Moreover, for all j, k, z ∈ IN, we
let S(j,k,z) be the set of all indices r ≤ k that meet (i) Fj ⊆ cr and (ii), for all
r′ < r with cr′ ⊇ Fj , cz

r ⊂ cz
r′ .

Now, we are ready to define the required hypothesis space H. For all j, k ∈ IN
we define the characteristic function of h〈j,k〉 as follows. If S(j,k,z) = ∅, we set
h〈j,k〉(wz) = −. If S(j,k,z) 6= ∅, we let n = max S(j,k,z) and set h〈j,k〉(wz) =
cn(wz).

Since membership is uniformly decidable in (cj)j∈IN, we know that H consti-
tutes an admissible hypothesis space.

The required IIM M is defined as follows. Let c ∈ C, t ∈ Text(c), and y ∈ IN.
IIM M : “On input ty proceed as follows:

Determine j ∈ IN with Fj = content(ty) and output 〈j, y〉.”
Due to lack of space, the verification of M ’c correctness is omitted. 2

Note that Baliga et al. [3] have recently shown that the same characterizing
condition completely describes the collection of all indexable classes that are
Bc∗Txt–identifiable with respect to arbitrary hypothesis spaces (including hy-
pothesis space not having a decidable membership problem). Hence, our result
refines the result from [3] in that it shows that, in order to Bc∗Txt–identify an
indexable class, it is always possible to select a hypothesis space with uniformly
decidable membership. However, as we see next, it is inevitable to select the
actual hypothesis space appropriately.

Theorem 8. There is an indexable class C ∈ Bc∗Txt such that, for all class
preserving hypothesis spaces H for C, there is no IIM M that Bc∗TxtH–learns C.

In contrast, BcTxt is invariant to the choice of the hypothesis space.
To be complete, note that it is folklore that there are indexable classes which

are not Bc∗Txt-identifiable. Furthermore, applying the stated characterizations
of the learning types Fin∗Txt , Lim∗Txt , and Bc∗Txt , the following hierarchy can
be shown.

Theorem 9. Fin∗Txt ⊂ Lim∗Txt ⊂ Bc∗Txt ⊂ IC.
At the end of this subsection, we turn our attention to the case that the

number of allowed anomalies is a priori bounded. On the one hand, Case and
Lynes’ [6] result that Lim2aTxt ⊆ BcaTxt nicely translates into our setting.



Surprisingly, the opposite is also true, i.e., every IIM that BcaTxt–identifies a
target indexable class can be simulated by a learner that Lim2aTxt–identifies
the same class, as expressed by the following theorem.
Theorem 10. For all a ∈ IN: BcaTxt = Lim2aTxt.

Proof. Let a ∈ IN. As mentioned above, Lim2aTxt ⊆ BcaTxt can be shown by
adapting the corresponding ideas from [6] (see also [11], for the relevant details).

Next, we verify that BcaTxt ⊆ Lim2aTxt . Let C ∈ BcaTxt , let H be a hypoth-
esis space, and let M be an IIM that BcaTxtH–identifies C. Since membership is
uniformly decidable in H, the set {(j, k) | hj 6=2a hk} is recursively enumerable.
Hence, without loss of generality, we may assume that there is a total recursive
function f : IN → IN× IN such that {f(n) | n ∈ IN} = {(j, k) | hj 6=2a hk}.

The required IIM M ′ also uses the hypothesis space H. Let c ∈ C, t ∈ Text(c),
and y ∈ IN.

IIM M ′: “On input ty proceed as follows:
If y = 0, set z = 0, determine j0 = M(t0), and output j0. If y ≥ 1, determine
j = M ′(ty−1). For all s = z, . . . , y, determine js = M(ts), and test whether
or not (j, js) ∈ {f(n) | n ≤ y}. In case there is no such pair, then output j.
Otherwise, set z = y and output jy.”

Since M BcaTxtH–identifies c from t, there has to be a least y such that, for
all y′ ≥ y, hM(ty′ ) =a c, and therefore, for all y′, y′′ ≥ y, hM(ty′ ) =2a hM(ty′′ ).
Hence, M ′ converges on t to a hypothesis j that meets hj =2a c. 2

Applying Theorem 2, we may conclude:
Corollary 11. For all C ∈ IC and all a ∈ IN: C ∈ BcaTxt iff there is an indexing
(cj)j∈IN of C and a recursively enumerable family (Tj)j∈IN of finite sets such that
(1) for all j ∈ IN, Tj ⊆ cj, and
(2) for all j, k ∈ IN, if Tj ⊆ ck and ck ⊆ cj, then ck =2a cj.

The latter corollary nicely contrasts the results in [3]. When arbitrary hy-
pothesis spaces are admissible (including hypothesis space not having a decidable
membership problem), there is no need to add any recursive component, i.e., the
existence of the corresponding tell-tale sets is again sufficient.

Moreover, the relation between set-driven learners and conservative inference
changes completely, if the number of allowed anomalies is a priori bounded.
Theorem 12. Consv1Txt \

⋃
a∈IN SdraTxt 6= ∅.

Theorem 13. For all a ∈ IN: SdraTxt ⊂ ConsvaTxt.
The relation between conservative learners and unconstrained IIMs is also

affected, if the number of allowed anomalies is a priori bounded.
Theorem 14. For all a ∈ IN: LimaTxt ⊂ Consva+1Txt ⊂ Lima+1Txt.

Proof. Let a ∈ IN. By definition, we get Consva+1Txt ⊆ Lima+1Txt . More-
over, Consva+1Txt \ LimaTxt 6= ∅ follows via Theorem 15 below. Furthermore,
Lima+1Txt \ Consva+1Txt 6= ∅ can be shown by diagonalization.

It remains to show that LimaTxt ⊆ Consva+1Txt . To see this, recall the
definition of the conservative IIM M ′ from the demonstration of Theorem 4. It



is easy to see that the final hypothesis of M ′ differs at most at one data point
from the final hypothesis of the unconstrained IIM M which M ′ simulates. 2

Finally, when learning with an a priori bounded number of allowed anomalies
is considered, the existence of infinite hierarchies of more and more powerful
Fin-learners, Consv -learners, Lim-learners, and Bc-learners, parameterized in
the number of allowed anomalies, can be shown. The following theorem provides
the missing piece to establish these infinite hierarchies.
Theorem 15. For all a ∈ IN: Fin2a+1Txt \ BcaTxt 6= ∅.

3.2 Incremental learning with anomalies

Proposition 3 summarizes the known results concerning incremental learning.
Proposition 3 ([15]).
(1) ItTxt ⊂ FbTxt.
(2) ItTxt ⊂ Bem1Txt.
(3) For all k ∈ IN, BemkTxt ⊂ Bemk+1Txt.
(4) Bem1Txt \ FbTxt 6= ∅.
(5) FbTxt \

⋃
k∈IN BemkTxt 6= ∅.

The overall picture remains unchanged for incremental learning with a finite
number of allowed anomalies.

More specifically, iterative learners that have the freedom to store one addi-
tional example may outperform feedback learners that are allowed to make up
to finitely many errors in their final hypothesis.
Theorem 16. Bem1Txt \ Fb∗Txt 6= ∅.

Proof. The separating class C is defined as follows. C contains c0 = {a}+ and,
for all j ≥ 1, cj = {a` | 1 ≤ ` ≤ 2j} ∪ {b}+. Moreover, for all j, k,m ≥ 1, C
contains the concept c′j,k,m = {a` | 1 ≤ ` ≤ 2j} ∪ {a2〈j,k〉+1} ∪ {b` | 1 ≤ ` ≤ m}.

Claim 1. C ∈ Bem1Txt .
The required IIM M updates its example-memory as follows. As long as no

element from {b}+ occurs, M memorizes the maximal element from {a}+ seen
so far. Otherwise, it memorizes the maximal element from {b}+ that has been
presented so far. In addition, M updates its hypotheses in accordance with the
following cases.

Case 1. M has never received an element from {b}+.
Then, M guesses c0.
Case 2. M receives an element x from {b}+ for the first time.
Let x = bm. If M has memorized an element of type a2j , M guesses cj . If

it has memorized an element of type a2〈j,k〉+1, M guess c′j,k,m. If x is the first
element presented at all, M simply guesses c1.

Case 3. Otherwise.
Let x be the new element presented, let c′ be M ’s actual guess, and let bm

be the element memorized by M .
First, if x ∈ {b}+ and c′ is of type c′j,k,m, M guesses c′j,k,m′ , where m′ =

max {m, |x|}. If x ∈ {b}+ and c′ is of type cj , M guesses c′.



Second, if x ∈ {a}+ and x ∈ c′, M guesses c′. If x ∈ {a}+, x /∈ c′, and x
is of type a2j , M guesses cj . Otherwise, i.e., x ∈ {a}+, x /∈ c′, and x is of type
a2〈j,k〉+1, M guesses c′j,k,m

The verification of M ’s correctness is straightforward.
Claim 2. C /∈ Fb∗Txt .
Suppose to the contrary that there is a feedback learner M ′ that witnesses

C ∈ Lim∗Txt . Hence, there is a locking sequence σ for c0, i.e., σ is a finite
sequence with content(σ) ⊆ c0 and, for all finite sequences ρ with content(ρ) ⊆
c0, M ′

∗(σ � ρ) = M ′
∗(σ).

Let j be the least index with content(σ) ⊆ cj . Consider M when fed the
text t = σ � a, . . . , a2j � b � b, b2 � b, b2, b3 � · · · � b, b2, . . . , bn � · · · for cj . Since M ′

learns cj , M ′ converges on t. Hence, there is a y such that (i) the last element
in ty equals b and (ii), for all r ∈ IN, M ′

∗(ty) = M ′
∗(ty+r).

Finally, fix τ such that ty = σ � a, . . . , a2j � τ . Let k,m be the least indices
such that content(ty) ⊆ c′j,k,m and a2〈j,k〉+1 is an element from c0 which M ′

has never asked for when processing ty. Consider M ′ when fed the text t′ =
σ � a, . . . , a2j � a2〈j,k〉+1 � τ � b, b, . . . for c′j,k,m. By the choice of σ und y, M ′

converges on t and t′ to the same hypothesis. (To see this note that the b’s at
the end of t′ guarantee that M ′ almost always ask the same question as in case it
is fed ty, thereby, due to choice of a2〈j,k〉+1, always receiving the same answer.)
Since cj 6=∗ c′j,k,m, M ′ cannot learn both concepts, a contradiction. 2

The opposite holds, as well. Feedback queries may compensate the ability of
a bounded-example memory learner to memorize any a priori fixed number of
examples and to make finitely many errors in its final hypothesis.

Theorem 17. FbTxt \
⋃

k∈IN Bem∗
kTxt 6= ∅

Proof. We define the separating class C as follows. We set C =
⋃

k∈IN Ck,
where, for all k ∈ IN, the subclass Ck is defined as follows.

Let (Fj)j∈IN be a repetition-free enumeration of all finite sets of natural
numbers. By convention, let F0 = ∅. Moreover, we let P0 = {b}+ and Pj+1 =
Pj \ {bnpj | n ≥ 1}, where, for all j ∈ IN, pj is the j + 1-st prime number.

Let k ∈ IN. Then, Ck contains the concept c0 = {a}+ as well as, for all
j, m ≥ 1 and all l0, . . . , lk with j < l0 < · · · < lk, the concept c(j,m,l0,...,lk) =
{a` | 1 ≤ ` ≤ j} ∪ {al0 , . . . , alk} ∪ {bj+1 | j ∈ Fm} ∪ P〈l0,...,lk〉 ∪ {dj}.

By definition, C contains exclusively infinite concepts, and thus C ∈ FbTxt
(cf. [8], for the relevant details).

For proving C /∈
⋃

k∈IN Bem∗
kTxt , it suffices to show that, for every k ∈ IN,

Ck /∈ Bem∗
kTxt . The corresponding verification is part of the demonstration of

Theorem 18 below. 2

Our next result illustrates the error-correcting power of bounded example-
memories. As it turns out, every additional example which an incremental learner
can memorize may help to correct up to finitely many errors.

Theorem 18. For all k ∈ IN, Bemk+1Txt \ Bem∗
kTxt 6= ∅.

Proof. Let k ∈ IN. We claim that Ck (cf. the demonstration of Theorem 17
above) separates the learning types Bemk+1Txt and Bem∗

kTxt .



Claim 1. Ck ∈ Bemk+1Txt .
The required bounded example-memory learner M behaves as follows. As a

rule, M memorizes the k + 1 longest elements from {a}+ which it has seen so
far. Moreover, M updates its hypotheses in accordance with the following cases.

Case 1. M has never received an element from {d}+.
Then, M outputs an index for the concept c0 that allows M to determine all

elements from {b}+ that have been presented so far.
Case 2. M receives an element x from {d}+ for the first time.
Let x = dj and let S′ be the set of all elements from {b}+ seen so far. M

outputs an index for the concept {a` | 1 ≤ ` ≤ j} ∪ {dj} ∪ S′ that allows M to
determine the elements in S′.

Case 3. Otherwise.
We distinguish the following subcases.
Case 3.1. M has memorized k + 1 elements s with |s| > j.
Let x be the new element presented, let S = {al0 , . . . , alk} be the set of

elements memorized by M , and let S′ be the set of elements from {b+} that are
encoded in M ’s last hypothesis. If x ∈ {b}+ \ P〈l0,...,lk〉, we let S′ = S′ ∪ {x}.
Otherwise, S′ remains unchanged. Moreover, M outputs an index for the concept
{a` | 1 ≤ ` ≤ j} ∪ S ∪ S′ ∪ P〈l0,...,lk〉 ∪ {dj} that allows M to recompute the
elements in S′.

Case 3.2. Not Case 3.1.
As above, M outputs an index of the concept {a` | 1 ≤ ` ≤ j} ∪ {dj} ∪ S′

that allows M to determine the elements in S′, where S′ is again the set of all
elements from {b}+ seen so far.

The verification of M ’s correctness is straightforward.
Claim 2. Ck /∈ Bem∗

kTxt .
Suppose to the contrary that there is a k-bounded example-memory learner

M ′ that witnesses C ∈ Lim∗Txt . Hence, there is a locking sequence σ for c0,
i.e., σ is a finite sequence with content(σ) ⊆ c0 and, for all finite sequences ρ
with content(ρ) ⊆ c0, π1(M ′

∗(σ � ρ)) = π1(M ′
∗(σ)).4 Now let j = max {|x| | x ∈

content(σ)}. Similarly as in the demonstration of Theorem 6 in [15], one may
use counting arguments to show that there are indices l0, l

′
0, . . . , lk, l′k such that

Conditions (a) to (d) are fulfilled, where
(a) j < l0 < l1 < · · · < lk.
(b) j < l′0 < l′1 < · · · < l′k.
(c) {l0, l1, . . . , lk} 6= {l′0, l′1, . . . , l′k}.
(d) M ′

∗(σ � al0 , . . . , alk) = M ′
∗(σ � al′0 , . . . , al′k).

Assume that 〈l0, . . . , lk〉 < 〈l′0, . . . , l′k〉. Let t1 and t′1 be the lexicographically
ordered text for P〈l0,...,lk〉 and P〈l′0,...,l′

k
〉, respectively. Moreover, we set σ′ =

σ � a, a2, . . . , aj . Since M ′ infers c(j,0,l0,...,lk), there is a finite sequence τ with
content(τ) ⊆ P〈l0,...,lk〉 such that, for all finite sequences ρ with content(ρ) ⊆
P〈l0,...,lk〉, π1(M ′

∗(σ
′ � al0 , . . . , alk � dj � τ)) = π1(M ′

∗(σ
′ � al0 , . . . , alk � dj � τ � ρ)).

4 Recall that M outputs pairs 〈j, S〉. By convention, we let π1(〈j, S〉) = j.



Now, fix m′ ∈ IN with Fm′ = {` | b` ∈ content(τ)} and consider M ′ when
successively fed the text t = σ′ � al0 , al1 , . . . , alk � dj � τ � t1 for c(j,0,l0,...,lk) and
the text t′ = σ′ �al′0 , al′1 , . . . , al′k �dj � τ � t′1 for c(j,m′,l′0,...,l′

k
), respectively. By the

choice of σ and τ and since, by definition, P〈l′0,...,l′
k
〉 ⊂ P〈l0,...,lk〉, we may conclude

that M ′ converges to the same hypothesis when fed t and t′, respectively. Since
c(j,0,l0,...,lk) 6=∗ c(j,m′,l′0,...,l′

k
), M ′ cannot learn both concepts, a contradiction. 2

For incremental learning with anomalies, Proposition 3 rewrites as follows.
Corollary 19.
(1) It∗Txt ⊂ Fb∗Txt.
(2) It∗Txt ⊂ Bem∗

1Txt.
(3) For all k ∈ IN, Bem∗

kTxt ⊂ Bem∗
k+1Txt.

(4) Bem∗
1Txt \ Fb∗Txt 6= ∅.

(5) Fb∗Txt \
⋃

k∈IN Bem∗
kTxt 6= ∅.

4 Learning from positive and negative data

In the section, we briefly summarize the results that can be obtained when
studying learning with anomalies from positive and negative data.

Let X be the underlying learning domain, let c ⊆ X be a concept, and
let i = ((xn, bn))n∈IN be any sequence of elements of X × {+,−} such that
content(i) = {xn | n ∈ IN} = X , content+(i) = {xn | n ∈ IN, bn = +} = c and
content−(i) = {xn | n ∈ IN, bn = −} = X \ c = c. Then, we refer to i as an
informant. By Info(c) we denote the set of all informants for c.

For all a ∈ IN ∪ {∗}, the standard learning models FinaInf , ConsvaInf ,
LimaInf and BcaInf are defined analogously as their text counterparts by re-
placing text by informant. Moreover, we extend the definitions of all variants of
iterative learning in the same manner and denote the resulting learning types
by ItaInf , FbaInf , and Bema

kInf , where k ∈ IN.
Since IC = ConsvInf (cf. [10]), we may easily conclude:

Corollary 20.
For all a ∈ IN ∪ {∗}: ConsvInf = ConsvaInf = LimaInf = BcaInf .

Moreover, one can easily show that the known inclusions FinTxt ⊂ FinInf
and FinInf ⊂ ConsvTxt (cf. [13]) rewrite as follows:
Theorem 21. Fin∗Txt ⊂ Fin∗Inf ⊂ Consv∗Txt.

Concerning incremental learning, it has recently be shown that IC = FbInf =
Bem1Inf (cf. [12]). Clearly this allows for the following corollary.
Corollary 22. For all a ∈ IN ∪ {∗}: ConsvInf = FbaInf = Bema

1Inf .
Moreover, it is folklore that IC = It∗Inf . In contrast, if the number of allowed

anomalies is a priori bounded, an infinite hierarchy of more and more powerful
iterative learners can be observed.
Theorem 23. ItInf ⊂ It1Inf ⊂ It2Inf ⊂ · · · ⊂ It∗Inf = ConsvInf .

Finally, it is not hard to verify that the results obtained so far prove the
existence of an infinite hierarchy of more and more powerful finite learners pa-
rameterized in the number of allowed anomalies.
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