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Abstract

Learning by erasing means the process of eliminating potential hy-
potheses from further consideration thereby converging to the least hy-
pothesis never eliminated and this one must be a solution to the actual
learning problem.

The present paper deals with learnability by erasing of indexed families
of languages from both positive data as well as positive and negative data.
This refers to the following scenario. A family £ of target languages and
a hypothesis space for it are specified. The learner is fed eventually all
positive examples (all labeled examples) of an unknown target language L
chosen from L. The target language L is learned by erasing if the learner
erases some set of possible hypotheses and the least hypothesis never erased
correctly describes L.

The capabilities of learning by erasing are investigated in dependence
on the requirement of what sets of hypotheses have to be or may be erased,
and in dependence of the choice of the hypothesis space.

Class preserving learning by erasing (£ has to be learned w.r.t. some
suitably chosen enumeration of all and only the languages from L), class
comprising learning by erasing (£ has to be learned w.r.t. some hypothesis
space containing at least all the languages from £), and absolute learning
by erasing (£ has to be learned w.r.t. all class preserving hypothesis spaces
for £) are distinguished.

For all these models of learning by erasing necessary and sufficient con-
ditions for learnability are presented. A complete picture of all separations
and coincidences of the learning by erasing models is derived. Learning
by erasing is compared with standard models of language learning such
as learning in the limit, finite learning and conservative learning The ex-
act location of these types within the hierarchy of the learning by erasing
models is established.

*A full version of this paper appeared as Learning by Erasing, RIFIS Technical Report
RIFIS-TR-CS-122, RIFIS, Kyushu University 33, February 13, 1996; http://www.i.kyushu-
u.ac.jp/ thomas/treport.html



1. Introduction

Learning by erasing means the process of eliminating potential hypotheses
from further consideration thereby stabilizing to a correct hypothesis for the
actual learning problem which will be never eliminated. This approach is moti-
vated by similarities to human learning and human problem solving. In solving a
problem we often find out several “non-solutions” to that problem first, contra-
dicting the data we have or explaining them unsatisfactorily. We exclude these
non-solutions from further consideration and keep only a more or less explicitly
given remaining set of potential solutions. Often, at any time of the solving pro-
cess, we have an actual “favored candidate” among all the remaining candidates
which, though, up to now cannot be proved to be really a solution and which
may change from time to time, too. Then the following can happen. Eventually
we find a solution to the problem, can prove its correctness and hence success-
fully stop the solving process. Or, our “favored candidate” will be stable from
some point on, it is really a solution, but we are not absolutely sure of that. The
latter case is a version of successful learning in the limit, which is what we do in
building theories or in writing computer programs.

Our main intention is a rigorous study of learning by erasing in the limit. A
special case of our approach, the so-called co-learning, was introduced by Frei-
valds et al. [4], and further studied in [5] for learning r.e. classes of recursive
functions. In that case the learner has to eliminate all but one correct hypothe-
sis. Kummer [9] used this approach for showing that an r.e. class of recursive
functions is co-learnable with respect to all of its numberings iff all of these num-
berings are equivalent, thus giving a learning-theoretic solution to a longstanding
problem of recursion-theoretic numbering theory. We relax the all-but-one ap-
proach by giving the learner more freedom on which sets are allowed to erase
eventually. We consider the following possibilities: e-ARB — an arbitrary set of
hypotheses may be erased, e-MIN — exactly all hypotheses less than the least
correct one have to be erased, e-SUB — only incorrect hypotheses may be erased,
e-EQ — exactly all incorrect hypotheses have to be erased, e-SUPER — all in-
correct hypotheses have to be erased and an arbitrary set of correct hypotheses
may be erased, too, e-ALL — all but one hypotheses have to be erased.

Our objects to be learned are indexed families of recursive languages. We
consider learning from text (positive data, only) and learning from informant
(positive and negative data). We distinguish between class preserving learning
(the hypothesis spaces exactly enumerate the family to be learned), class com-
prising learning (the hypothesis spaces enumerate a superset of the family to
be learned), and absolute learning (the families have to be learned with respect
to all class preserving hypothesis spaces). Note that the e-ALL-case above was
already studied in [6]. Our results can be classified along the lines of charac-
terizations, comparisons inside, and comparisons with known types of language
learning.

Characterizations. For all types of learning by erasing we present char-



acterizations. In several cases the corresponding characteristic condition is a
purely structural one, i.e., the language family may not contain any language
together with a proper sublanguage. In other cases, for example for e-SUB, the
characterization comes to the ”granularity” of deriving characteristic learnabil-
ity conditions for any given pair of a language family and a hypothesis space
for it. Such granularity results were already derived in language learning the-
ory (cf., e.g., [1], [2], [8], [16], [17]). However, our characterizations do work
without the explicit use of so-called “telltales” which were commonly used in
all previous characterizations in language learning. Surprisingly, up to now no
such granularity results are known in Gold’s [7] paradigm of learning recursive
functions.

Comparisons inside. We derive a complete picture containing all separa-
tions and coincidences of the learning by erasing models defined. This picture
is of a pretty regular structure. Several of these results follow from the charac-
terizations above.

Comparisons with known types of language learning. We compare
all models of learning by erasing with “standard” types of learning indexed
families such as learning in the limit, finite learning and conservative learning,
and determine the exact location of these learning types in the hierarchy of the
learning by erasing models.

2. Notations and Definitions

Unspecified notations follow [13]. Let IN = {0,1,2,...} be the set of natural
numbers. We set Nt = IN \ {0}. By (-,-):IN x N — IN we denote Cantor’s
pairing function. We use P™ and R" to denote the set of all n-ary partial
recursive and total recursive functions over IN, respectively. The class of all
{0, 1} valued functions f € R™ is denoted by Rg ;. For n = 1 we omit the upper
index.

Every function ¢ € P? is called a numbering. Let 1) € P2, then we write
v; instead of Azy(j,z). By ¢ € P? we denote any fixed Gddel numbering
of P, and by ® € P? any associated complexity measure (cf. [3]). Let ¢ €
RZ ., then by L(¢);) we denote the language generated by 1;, i.e., L(1;) =
{:cl Y;(x) =1, x € IN}, and by co-L(v;) its complement, i.e., IN\ L(1);). We call
L = (L(v;))jen an indexed family (cf. [1]). We restrict ourselves to consider
exclusively indexed families of non-empty languages. An indexed family £ is
said to be inclusion-free iff L ¢ L for all L, L € range(L). Every numbering
(NS R%’l is called hypothesis space. A hypothesis space 9 is said to be class
comprising for L iff range(L) C {L(v;)| j € IN}. We call a hypothesis space
P € Rg’l class preserving for L iff range(L) = {L(¢;)| j € IN}. Now, let
L € range(L), and let ¢ be any class comprising hypothesis space for £. Then
we set miny (L) = min{j| L(y;) = L}.

Let L be a language and let ¢t = (s;);en be an infinite sequence of natural
numbers with content(t) = {s;| k € IN} = L; then t is said to be a text for L.



By text(L) we denote the set of all texts for L. Let ¢ be a text, and y € IN;
then ¢, denotes the initial segment of ¢ of length y + 1. Finally, t; denotes the
content of t,, i.e., t] = {s.| 2z <y}.

We define an inductive inference machine (abbr. IIM) to be an algorithmic
device working as follows: The IIM takes as its input incrementally increasing
initial segments of a text and it either requests the next input, or it first outputs
a hypothesis, i.e., a number, and then it requests the next input (cf. [7]). We
interpret the hypotheses output by an IIM with respect to some hypothesis
space Y € R%J. If an IIM outputs j, we interpret it to mean that the IIM is
hypothesizing the language L(v;).

Next we define an erasing learning machine (abbr. ELM) to be an algo-
rithmic device working exactly as an IIM. However, there is a major difference in
the semantics of the output of an IIM and an ELM, respectively. Let ¢ € Rg’l
be any hypothesis space, and let ¢t be a text. Suppose an ELM M has been
successively fed t, and it has output numbers jo,...,j.. Then we interpret
j =min(IN\ {jo,-..,J:}) as M’s actual guess. Intuitively, if an ELM outputs
a number i, then it definitely deletes i from its list of potential hypotheses.

Let M be an IIM or an ELM, let ¢ be a text, and y € IN. Then we use M (t,)
to denote the last number that has been output by M when successively fed
ty. We define convergence of IIMs as usual. The sequence (M(t,))yen is said
to converge to a number j iff either (M (t,))yen is infinite and all but finitely
many terms of it are equal to j, or (M(ty))yemw is non-empty and finite, and its
last term is j. An ELM M is said to stabilize to a number j on a text t iff its
sequence of actual guesses converges to j, i.e., j = min(IN \ {M(¢,)]| y € IN}).

Now we are ready to define learning and learning by erasing.

Definition 1 ([7]). Let L be an indexed family, let L be a language, and
let ¢ € R%’l be a hypothesis space. An IIM M CLIM-infers L from text
w.r.t. Y iff for every text t for L, there exists a j € IN such that the sequence
(M (ty))yew converges to j and L = L(1);).

M CLIM -infers L w.r.t. ¢ iff, for each L € range(L), M CLIM —infers L
w.r.t. .

Finally, let CLIM denote the collection of all indexed families L for which
there are an IIM M and o hypothesis space v such that M CLIM —infers L
w.r.t. .

By the definition of convergence, only finitely many data of L were seen by
the IIM up to the (unknown) point of convergence, whenever it infers L. Hence,
some form of learning must have taken place. Thus, the terms infer, learn, and
identify are used interchangeably.

In Definition 1, LIM stands for “limit.” The prefix C is used to indicate class
comprising learning, i.e., the fact that £ may be learned with respect to some
class comprising hypothesis space ¢ for £. Restricting CLIM to class preserving
hypothesis spaces results in class preserving inference and is denoted by LIM.
Finally, we use the prefix A to express the fact that £ has to be inferred with



respect to all class preserving hypothesis spaces for it, and we refer to this learn-
ing model as to absolute learning. We adopt this convention in the definitions
of the learning types below.

The following proposition clarifies the relations between absolute, class pre-
serving and class comprising learning in the limit.

Proposition 1 ([16]). ALIM = LIM = CLIM.

In general, it is not decidable whether or not an IIM M has already converged
on a text t for the target language L. Adding this requirement to Definition 1
results in finite learning. We denote the resulting learning type by CFIN. If
an indexed family £ can be CFIN-learned with respect to some hypothesis space
1) for it, then it can be finitely inferred with respect to every class preserving
hypothesis space for £ (cf. Proposition 2).

Proposition 2 ([17]). AFIN = FIN = CFIN.

Now, we define conservative IIMs. Intuitively, conservative IIMs maintain
their actual hypothesis at least as long as they have received data that “provably
misclassify” it.

Definition 2 ([1]). Let £ be an indexed family, let L be a language, and let
P € R(Z),l be a hypothesis space. An IIM M CCONSV—infers L from text
w.r.t. ¥ iff

(1) M CLIM—infers L w.r.t. 9,

(2) for every text t € text(L) and for all y,k € IN, if M(ty) # M(ty4r) then

tyer € LWue,)-

M CCONSV —infers L w.r.t. ¥ iff, for each L € range(L), M CCONSV -
infers L w.r.t. ¢. The resulting learning type CCONSYV is defined analogously
as above.

Conservative learning is sensitive to the particular choice of the hypothesis
space.

Proposition 3 ([16]). ACONSV Cc CONSV C CCONSV C ALIM.
Next, we define learning by erasing.

Definition 3. Let £ be an indexed family, let L be a language, and let
P € R%J be a hypothesis space. An ELM M e-CARB—infers L from text
w.r.t. P iff for every text t for L, there exists a j € IN with L = L(1;) such
that M on t stabilizes to j.

M e-CARB—infers L w.r.t. ¢ iff, for each L € range(L), M e-CARB—infers
L w.r.t. .

Finally, let e-CARB denote the collection of all indexed families L for which
there are an ELM M and o hypothesis space ¢ such that M e-CARB-infers L
w.r.t. .

Definition 4. Let £ be an indexed family, let L be a language, and let
NS Rg,l be a hypothesis space. An ELM M 1is said to

(A) e-CSUB—identify L from text w.r.t. ¥
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M e-CARB-infers L from text w.r.t. ¥ and the following conditions are sat-
isfied

(A) {M(ty)| y e N} C {j| L(¥;) # L, j € N}, i.e., M is only allowed to
erase hypotheses that are incorrect for L;

(B) {M(t,)| y € N} = {j| L(¢;) # L, j € N}, i.e., M has to erase ezactly
all hypotheses that are incorrect for L;

(C) {M(ty)| y e N} D {jl| L(¥;) # L, j € IN}, i.e., M has to erase all
hypotheses that are incorrect for L but it may additionally erase correct
hypotheses for L;

(D) card(IN\{M(t,)| y € N}) =1, i.e., M has to erase all but one hypothesis;

(E) {M(ty)| y € N} ={j| j < miny(L), j € N}, i.e., M has to erase ezactly
all hypotheses prior to the least correct index for L.

We denote by e-CSUB, e-CEQ, e-CSUPER, e-CALL, and e-CMIN the col-
lection of all those indexed families £ for which there are a hypothesis space ¥
and an ELM M inferring every language of it in the sense of e-CSUB, e-CEQ,
e-CSUPER, e-CALL, and e-CMIN w.r.t. 9, respectively.

All the types above have in common that at any step of the learning process
the “favored candidate” will always be the least hypothesis not yet eliminated.
This approach is justified by the following observations. First, by the principle
of Occam’s razor simple hypotheses should be “favored.” Next, in case that even
in the limit “many” hypotheses remain uncancelled, we get a distinguished final
hypothesis, and thus one can decide from outside whether or not the learning
process was successful. And finally, in case the learning machine eventually finds
a provably correct hypothesis, then it can eliminate all the other hypotheses up
to that one (or even all but that one) thereby making that hypothesis the least
uncancelled one. Note that e-ALL coincides with co-learning from positive data
as defined in [6]. Thus, all our definitions may be regarded as natural variations
of this learning type.

e-CEQ—identify L from text w.r.t. ¥
e-CSUPER—identify L from text w.r.t. ¢
e-CALL—identify L from text w.r.t. ¢
e-CMIN—identify L from text w.r.t. ¢

A~~~

)
)
)
)

—~

3. Learning from Text

In this section, we compare the learning capabilities of all learning by erasing
models from positive data to one another as well as to finite inference, learning
in the limit and conservative identification from text. We analyze the power of
learning by erasing in dependence on the set of admissible hypothesis spaces.
Figure 1 displays the achieved separations and coincidences of the learning by



erasing models and the ordinary learning types defined. Each learning type is
represented as a vertex in a directed graph. A directed edge (or path) from
vertex A to vertex B indicates that A is a proper subset of B, and no edge (or
path) between these vertices imply that A and B are incomparable. Finally, LT
stands for ARB, SUB, EQ and SUPER, respectively.

LIM = e-ARB = e-SUPER = e-ALL

CCONSV

‘ e-CSUB
CONSV

e-SUB

|

FIN— e-AALL — e-CEQ = e-ALT

Figure 1. Learning by erasing versus ordinary inference

The results displayed above are obtained via the following theorems. First,
we consider class preserving hypothesis spaces. Our first theorem points to
similarities and differences of the learning by erasing models defined above.

Theorem 1. (1) FIN C e-EQ C e-SUB C CONSV,
(2) For oll LT € {ARB, SUPER, ALL}, e-LT = LIM.

Theorem 1 and Proposition 3 together allow the following corollary summa-
rizing the inclusions and equalities known so far.

Corollary 2. (1) e-EQ C e-SUB C e-ALL = e-SUPER = e-ARB.
(2) For oll LT € {SUPER, ALL, ARB}, e-LT = e-CLT = LIM.

Next, we study the relations between class preserving and class comprising
learning for the remaining learning types. By Corollary 2, it remains to investi-
gate the learning power of e-CSUB and e-CEQ. The following theorem provides
the desired complete picture.

Theorem 3. (1) e-EQ = e-CEQ,
(2) e-SUB C e-CSUB C LIM,
(3) e-CSUB # CCONSV.

A closer look at the proof of the latter theorem clarifies that every inclusion-
free indexed family is e-E@Q—identifiable with respect to every class preserving



hypothesis space. Consequently, by Assertion (1) of Theorem 3 we immediately
arrive at the following corollary.

Corollary 4. e-AEQ = e-EQ = e-CEQ.

Finally, we clarify the power as well as the limitations of absolute learning
for the remaining learning models. Putting it all together we thus obtain all the
relations displayed in Figure 1.

Theorem 5. (1) For all LT € {ARB, SUB, SUPER}, e-ALT = e-EQ,
(2) FIN C e-AALL C e-EQ.

4. Learning from Informant

Now, we study learning by erasing from informant. Thus, we have to intro-
duce some more notations and definitions. Let L be a language, and let ¢ =
((s5,b5))je be any sequence of elements of IN x {+, —} such that content(i) =
{sk| k € N} = N, it = {sg| (sk,bx) = (sk,+),k € N} = L and i~ =
{sk| (sk,bx) = (sk,—),k € IN} = co-L. Then we refer to i as an infor-
mant. By info(L) we denote the set of all informants for L. We use i, to
denote the initial segment of i of length z + 1, and define i} = {si| (sk,+) €
i,k < z} and i = {sx| (sk,—) € i,k < z}. CLIM.INF and FIN.INF
are defined analogously as their text counterparts by replacing everywhere text
by informant. Finally, we extend all definitions of learning by erasing in the
same way, and denote the resulting learning types by e-CLT.INF for all LT €
{ARB, SUB, EQ, SUPER, MIN}.

Freivalds et al. [4] originally introduced both the learning types e-ALL.INF
and implicitely e-AALL.INF, and referred to them as to co-learning (abbr.
co-FIN). Furthermore, they considered the co—learnability of arbitrary recur-
sively enumerable classes of total recursive functions. This contrasts our sce-
nario, since we exclusively study the learnability of {0, 1} valued functions. Nev-
ertheless, their results easily translate into our setting. The following proposition
displays the results obtained.

Proposition 4 ([4]). FIN.INF C e-AALL.INF C e-ALL.INF = LIM.INF.

Taking into account that CLIM .INF = ALIM .INF, one easily verifies that
e-ALL.INF = e-CALL.INF. Moreover, Freivalds et al. [5] could improve Propo-
sition 4 to FIN.INF C co-FIN by using a deep result by Selivanov [15]. Note,
however, that the separating function class is not {0, 1} valued. The latter result
raises two questions. First, which indexed families belong to e-AALL.INF,| and
second, whether or not e-AALL.INF \ FIN.INF # (), too.

The first question has been completely answered in [9] as the next proposition
shows.

Proposition 5 ([9]). Let L be any indezed family. Then L € e-AALL.INF if
and only if every class preserving hypothesis space for L has a recursive equality
problem.



Kummer [9] proved that every £ € e-AALL.INF must be discrete. An indexed
family £ = (L(¢;)) e is called discrete iff for every k € IN, there is a finite
function d;, C ¢y, such that for all j € IN, if 0, C ¢; then ¢y, = ¢p;. We refer to d;,
as to a separating function for ¢. £ = (L(v;));en is said to be effectively
discrete iff there exists an algorithm computing for every k£ € IN a separating
function Jy for 9.

Our next theorem completely answers the second question posed above. Again,
the proof is based on Selivanov’s [15] result.

Theorem 6. e-AALL\ FIN.INF # ).

Thus, it remains to clarify the relations with respect to inclusion between the
remaining learning by erasing models. This is done by the following theorem.

Theorem 7. For all LT € {ARB, SUB, EQ, SUPER, MIN},
e-ALT.INF = e-LT.INF = e-CLT.INF = LIM .INF.

So far we have studied separately learning from text and from informant.
Now we focus our attention to the interplay between information presentation
and learnability constraints. The first known result along this line of research is
provided by the next proposition.

Proposition 6 ([16]). FIN.INF C CONSV.

Since FIN.INF C e-AALL.INF, the question arises whether or not Propo-
sition 6 generalizes to e-AALL.INF C CONSV or at least to e-AALL.INF C
LIM. For answering it, we establish a consequence of Kummer’s [9] characteri-
zation of e-AALL.INF.

Theorem 8. Let L be any indexed family. If L is discrete, then L € LIM.
Corollary 9. e-AALL.INF C LIM.

By Corollary 2 we may easily conclude:

Corollary 10. For all LT € {ARB, SUPER, ALL}, e-AALL.INF C e-LT.

The following theorem enables us to clarify the relation between the remaining
models of learning by erasing from text and informant, respectively.

Theorem 11. (1) FIN.INF \ e-CSUB # 0),
(2) e-EQ \ e-AALL.INF # .
Taking into account that LIM C LIM.INF (cf. [7]), we directly arrive at the
following corollary displaying the consequences of the latter theorem.

Corollary 12. For all LT € {ARB, SUB, EQ, SUPER, ALL} and for all
A€ {A, e, C}, e-ALT C e-A\LT.INF.

Putting it all together, we obtain the following Figure 2 summarizing the
established relations of learning by erasing from text and informant, respec-
tively. The semantics of Figure 2 is analogous to that of Figure 1. Let LT €
{ARB, SUPER, SUB, EQ, MIN}.



LIM.INF = e-ALT.INF = e-ALL.INF

LIM = e-ARB = e-SUPER = e-ALL

e-CSUB
e-AALL.INF - e-SUB
FIN.INF e AALL
FIN

Figure 2. Relations between learning by erasing from text and
informant

5. Characterizations

In this section we present characterizations of all the learning by erasing mod-
els. These characterizations may help to gain a better understanding of what the
defined learning models have in common and what their differences are. Our first
result characterizes e-ARB, e-EQ, e-SUB and e-SUPER in purely structural
terms.

Theorem 13. Let £ be any indexed family. £ € e-EQ if and only if L is
inclusion-free.

Taking Corollary 4 and Theorem 5 into consideration we may easily conclude:

Corollary 14. Let LT € {ARB, SUB, EQ, SUPER}, and let L be an
indexed family. £ € e-ALT if and only if C is inclusion-free.

For characterizing e-AALL we have to combine the structural approach with
the numbering theoretical one used by Kummer [9].

Theorem 15. Let L be any indexed family. £ € e-AALL if and only if L is
inclusion-free, and every class preserving hypothesis space for L has a recursive
equality problem.

Next, we characterize e-CSUB and e-SUB. Now we derive necessary and
sufficient conditions for any given pair of an indexed family and a hypothesis
space for it. Again, the characterization is mainly based on the structural prop-
erties of the relevant hypothesis spaces. However, we have to add a recursive



component to these structural properties. Within the next definition we provide
the necessary framework for establishing the desired characterization theorems.

Definition 5. Let L be any indexed family, let L € range(L), and let ¢ be
any class comprising hypothesis space for L. Then we set:

(1) Bad(L,v) = {j| L C L(vj) and j < miny(L) for some L € range(L)},
(2) Comp(L,) = {j| L(¥;) ¢ range(L)}.

Theorem 16. Let L be an indexed family. £ € e-CSUB if and only if there
are a class comprising hypothesis space ¥ for L and a recursively enumerable set
W such that Bad(L,v9) CW C Comp(L, ).

Proof. Necessity: Let £ € e-CSUB. Hence, there are a class comprising
hypothesis space 9 for £ and an ELM M that witnesses £ € e-CSUB with
respect to 1. We use M to define f € P such that W = range(f). For every
k € IN, let t* denote the canonical text for the language L(vy) (cf. [17]). For
every k, x € IN, we set:

_ [ M), if content(ty) C L(¥ar(u)),
F({k,z)) = { not defined, otherwise. =

Using the convention that, if M on input t* does not output any hypothesis
then f((k,z)) is also not defined, we obviously have f € P. Next we show
Bad(L,y) CW C Comp(L, ).

Claim A. W C Comp(L, ).

If W = 0, we are done. Now, let z = f((k,z)) for some k, + € IN. By
definition of f, we have M (%) = z and content(t¥) C L(x.). Suppose, L(¢,) €
range(L). Since content(tf) C L(v,), tk is an initial segment of some text ¢ for
L(1.). Thus M, when fed the text  for L(¢),) € range(L), outputs the correct
1—index z for L(¢;), a contradiction.

Claim B. Bad (L)) CW.

Suppose the converse, i.e., there is a z € Bad(L,1) \ W. Hence, z < miny(L)
for some L € range(L) with L C L(¢,). We distinguish the following cases.

Case 1. L(v,) € range(L): Consider M when fed any text ¢ for L. Because of
z < minyg (L), M eventually outputs z, say on input ¢, since otherwise it would
stabilize on t to some z' < z with L(¢,/) # L. However, since L C L(v,), the
initial segment t, may be extended to a text for L(¢,) on which M outputs z.
This is a contradiction to M e-CSUB—-infers £ with respect to .

Case 2. L(v,) ¢ range(L): Let k be any 1—index for L. Consider M when
fed the canonical text t* for L. Since M e-CSUB-infers L from text, M must
stabilize on tF to min,(L). Because of 2 < miny(L), there has to be an z € IN
with M (tk) = 2. Thus, f((k,z)) = z, and hence z € W, again a contradiction.
Claim B follows, and we are done.

Sufficiency: Let £ be any indexed family, let ¢ be a class comprising hypothe-
sis space for £, and let W be a recursively enumerable set with Bad(L, ) C
W C Comp(L,v). Let £ € IN be such that W = range(p;), and let W* be the



elements of W, if any, enumerated after z steps of computation of ¢,. We define
an ELM M that witnesses £ € e-CSUB with respect to 9. So, let L € range(L),
t € text(L), and let z € IN.

ELM M: “On input t, proceed as follows:

If x = 0, initialize ToEraseq = . Output nothing and request the next

input.

Otherwise, test whether or not ToErase,—; = ). In case it is, goto (Al).

Otherwise, goto (A2).

(A1) Determine the least index k that satisfies both ¢} C L(v) and k ¢
We. Update ToErase, = {j| j < k}, output nothing, and request
the next input.

(A2) Determine j = min(ToErase,_1). Update ToErase, = ToErase,_1 \
{j}, output j, and request the next input.”

Since t € text(L) for some L € range(L), the unbounded search performed
within Instruction (A1) terminates for every € IN, and thus, M is an ELM.
Let k = miny (L). We show that M eventually outputs all natural numbers
but k.

Claim A. k ¢ ToErase, for all x € IN.

Suppose the converse. Hence, there exists a least # € IN such that ke
ToErase,. By definition, M includes k into ToErase, iff either ¢t} ¢ L(v;)
or an index k < k has been found that meets p(k,k) = 1. Since L(y;) = L,
tf € L(1;) cannot be observed. Moreover, p(k,k) = 1 implies L(yy) = L
contradicting that k is the least 1y—index for L. The claim follows.

Since M is exclusively outputting numbers j € ToFErase, for some x € IN,

the index k is never deleted. It remains to show that M eventually outputs all
1—indices that are different from k.

Claim B. M, when successively fed t, outputs all k € IN \ {k}.
We distinguish the following cases.

Case 1. L(vyy) # L: Since 1 is class preserving and L is inclusion-free, we
know that L\ L(¢y) # (0. Because of ¢ € text(L), there must be a minimal y such
that t;H ¢ L(yy) for all £ € IN. Thus, if ToErase, 1 = () then k € ToErase,.
Otherwise, there must be an r € IN such that k¥ € ToErase,,. Consequently, k
is output eventually.

Case 2. L(1y) = L: Since k is the least ¢—index of L, the inclusion-freeness
of £ implies L(v;) \ L(v;) # 0 for all j < k. Hence, there exists a y € IN
such that t; Z L(y;) for all j < k. Therefore, for all z > y the unbounded
search in Instruction (A1) terminates at k. Moreover, since L(yy) = L we

have p(k,k) = 1. Consequently, there must be an # > max{y,k} such that
k € ToErase,. Consequently, k is again eventually output.

Thus, Claim B follows, and the theorem is proved. q.e.d.



Theorem 17. Let L be any indexed family. £ € e-SUB if and only if there
is a class preserving hypothesis space v for L such that Bad(L,v) = .

A closer look at the proofs above shows that, given any text ¢ for any lan-
guage L in the target class, the ELMs precisely erase all hypotheses less than
the least correct one for L. Thus, we directly obtain all the remaining charac-
terizations for learning by erasing.

Theorem 18. For all A € {¢, A, C}, e-AMIN = e-\SUB.

Finally, since e-EQ = e-ASUB = e-AMIN, we obtain the missing character-
izations for the learning types e-AMIN, e-MIN and e-CMIN by Theorems 13,
17 and 16, respectively.

6. Conclusions

We defined various models of learning by erasing and related their learning
power to one another as well as to learning in the limit, conservative identifica-
tion, and finite inference. All but the e-E(Q learning model are sensitive with
respect to the particular choice of the hypothesis space, thus nicely contrasting
learning in the limit and finite learning. Moreover, the e-SUB model is even
very dependent on the set of admissible hypothesis spaces.

A further interesting aspect is provided by Theorem 1 and Corollary 2. These
results show that the process of elimination cannot be restricted to incorrect hy-
potheses for achieving its full learning power. On the other hand, all learning by
erasing models that are allowed to erase correct hypotheses, too, are as powerful
as learning in the limit provided the hypothesis space is appropriately chosen
(cf. Theorem 1). Thus, in order to decide whether or not a particular indexed
family can be e-LT-learned, LT € {ARB, SUPER, ALL}, one can apply any
of the known criteria for LIM —inferability (cf., e.g., [1], [14]). These differences
almost vanish if absolute learning is considered. Then we have a somehow oppo-
site effect, i.e., erasing all but one guess is most restrictive with respect to the
resulting learning capabilities.

The phenomena described above find their natural explanation in our char-
acterization theorems. All models e-ALT of absolute learning by erasing are
constraint by the structural properties of the indexed families to be learned, i.e.,
they must be inclusion-free (LT € {ARB, SUB, EQ, SUPER, ALL}), and
in case of e-AALL, additionally, all hypothesis spaces must be equivalent with
respect to reducibility.

Finally, in Section 4 we studied the problem whether or not information
presentation may be traded versus learnability. The results obtained put the
strength of e-A ALL.INF learning into the right perspective (cf. Figure 2). How-
ever, it remained open whether or not e-AALL.INF C LIM can be sharpened
to e-AALL.INF C CCONSV. Note that Theorem 8 cannot be sharpened to
discreteness implies conservative learnability (cf. [10]).
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