Types of Monotonic Language Learning and
Their Characterization

Steffen Lange*
TH Leipzig
FB Mathematik und Informatik
PF 66
0-7030 Leipzig
steffen@informatik.th-leipzig.de

Abstract

The present paper deals with strong—monoto-
nic, monotonic and weak—monotonic language
learning from positive data as well as from pos-
itive and negative examples. The three no-
tions of monotonicity reflect different formal-
izations of the requirement that the learner has
to produce always better and better general-
izations when fed more and more data on the
concept to be learnt. We characterize strong—
monotonic, monotonic, weak—monotonic and
finite language learning from positive data
in terms of recursively generable finite sets,
thereby solving a problem of Angluin (1980).
Moreover, we study monotonic inference with
iteratively working learning devices which are
of special interest in applications. In particu-
lar, it is proved that strong—monotonic infer-
ence can be performed with iteratively learning
devices without limiting the inference capabili-
ties, while monotonic and weak—monotonic in-
ference cannot.

1 Introduction

The process of hypothesizing a general rule from eventu-
ally incomplete data is called inductive inference. Many
philosophers of science have focused their attention on
problems in inductive inference. Some of the principles
developed are very much alive in algorithmic learning
theory, a rapidly emerging science since the seminal pa-
pers of Solomonoff (1964) and of Gold (1967). The to-
day state of the art is excellently surveyed in Angluin

and Smith (1983, 1987).

*Most of this work has been performed while the author
was visiting TH Darmstadt.

Thomas Zeugmann
TH Darmstadt
Institut fur Theoretische Informatik
Alexanderstr. 10
W-6100 Darmstadt

zeugmann@iti.informatik.th-darmstadt.de

The present paper deals with formal language learning.
In this field many interesting and sometimes surpris-
ing results have been obtained within the last decades
(cf. e.g. Osherson, Stob and Weinstein (1986), Case
(1988), Fulk (1990)). The general situation investigated
in language learning can be described as follows: Given
more and more eventually incomplete information con-
cerning the language to be learnt, the inference device
has to produce, from time to time, a hypothesis about
the phenomenon to be inferred. The information given
may contain only positive examples, i.e., exactly all the
strings contained in the language to be recognized, as
well as both positive and negative examples, i.e., the
learner 1s fed with arbitrary strings over the underly-
ing alphabet which are classified with respect to their
containment to the unknown language. The sequence of
hypotheses has to converge to a hypothesis correctly de-
scribing the object to be learnt. Monotonicity require-
ments have been introduced by Jantke (1991A, 1991B)
and Wiehagen (1991). In Lange and Zeugmann (1991,
1992) we have dealt with monotonic language learning
of indexed families. The main underlying question can
be posed as follows: Would it be possible to infer the
unknown language in a way such that only better and
better hypotheses are output? The strongest interpre-
tation of this requirement means that we are forced to
produce an augmenting chain of languages, i.e., L; C L;
iff L; is guessed later than L; (cf. Definition 3 (A)).

Wiehagen (1991) proposed to interpret ”better” with
respect to the language I having to be learnt, i.e., now
we require L; N L C L; N L iff L; appears later in the
sequence of guesses than L; does (cf. Definition 3 (B)).
That means, a new hypothesis is never allowed to de-
stroy something what a previously generated guess al-
ready correctly reflects.

The third version of monotonicity, which we call weak—
monotonicity, is derived from non-monotonic logics and
adopts the concept of cumulativity. Hence, we only re-
quire L; C L; as long as there are no data fed to the
inference device after having produced L; that contra-

dict L; (cf. Definition 3 (C)).

In all what follows we restrict ourselves to deal exclu-
sively with the learnability of indexed families of non—
empty uniformly recursive languages. This case is of

special interest with respect to potential applications.
The first problem arising naturally is to relate all types
of monotonic language learning one to the other as well
as to previously studied modes of inference. This ques-
tion has been completely answered in Lange and Zeug-
mann (1991, 1992). In particular, weak—-monotonically
working learning devices are exactly as powerful as con-
servatively working ones. A learning algorithm is said
to be conservative iff it only performs justified mind
changes. That means, the learner may change its guess
only in case if the former hypothesis ”provably misclas-
sifies” some word with respect to the data seen so far.
Considering learning from positive and negative exam-
ples in the setting of indexed families it is not hard to
prove that conservativeness does not restrict the infer-
ence capabilities. Surprisingly enough, in the general
setting of learning recursive functions the situation is
totally different (cf. Freivalds, Kinber and Wiehagen
(1992)). Looking at learning from positive data the
main problem consists in detecting or avoiding guesses
that are supersets, i.e., overgeneralizations, of the lan-
guage to be inferred. Obviously, conservative learners
are never allowed to output an overgeneralized hypothe-
sis. This restriction directly yields a limitation of learn-
ing power (cf. Angluin (1980)). Moreover, Angluin
(1980) proved a characterization theorem for inference
from positive data that turned out to be very useful
in applications. However, it remained open whether
learning from positive data that avoids overgeneraliza-
tion may be characterized, too. We solve this problem
in characterizing all types of monotonic language learn-
ing as well as of finite inference of recursive languages
in terms of recursively generable families of recursive,
non—empty and finite sets. Very recently, Kapur and
Bilardi(1992) also established a characterization of con-
servative learning. However, their characterization dif-
fers at least conceptually from ours. In order to see
what the difference is we need the following notion. Let
A be a finite set and let £ be an indexed family of lan-
guages. A language L € L is said to be a least upper
bound of A iff A C L and any language L € £ contain-
ing A is not a proper subset of L. Kapur and Bilardi
(1992) showed that conservative learning is equivalent
to the existence of a recursive enumeration of pairs of fi-
nite sets and total learning algorithms such that in each
pair the algorithm accepts a language of the family £
being a least upper bound of the corresponding finite
set, and for each L € L there is at least a corresponding
pair. Consequently, their characterization is conceptu-
ally based on the judicious use of a function computing
least upper bounds. Our approach is in some sense con-
versely in that we construct a suitable enumeration L
of £ and for for every language L € L a recursive and
finite set such that L is a least upper bound of it.

The second part of the paper deals with monotonic in-
ference that is performed by iteratively working ma-
chines (cf. Wiehagen (1976)). With respect to poten-
tial applications iterative learning is highly desirable,
since in order to compute the next guess it uses only

the last hypothesis and the next string of the language
to be learnt. Hence that model of learning takes into
account the limitation of space in all realistic computa-
tions. Recently, several iterative language learning al-
gorithms have been published (cf. e.g. Porat and Feld-
man (1988), Lange and Wiehagen (1991)). As it turned
out, in general machines working both, iteratively and
monotonically are less powerful than monotonic ones.
However, strong—monotonic inference from positive data
can always be achieved by iteratively working machines.

2 Preliminaries

By N ={1,2,3, ...} we denote the set of all natural num-
bers. In the sequel we assume familarity with formal
language theory (cf. e.g. Bucher and Maurer (1984)).
By X we denote any fixed finite alphabet of symbols.
Let ¥* be the free monoid over ¥. The length of a
string w € ©* is denoted by |w|. Any subset L C X* is
called a language. By co— L we denote the complement
of L,ie., co— L = X"\ L. Let L be a language and
t = 51,52, 83, ... a sequence of strings from X* such that
range(t) = {sy | k € N} = L. Then t is said to be
a text for L or, synonymously, a positive presentation.
Furthermore, let i = (s1,b1),(s2,b2),... be a sequence
of elements of ¥* x {4+, —} such that range(i) = {si |
ke N} =X, it = {Sk | (skibk) = (8k1+))k € ‘/V} =L
and i~ = {sg | (s,br) = (sx,—),k € N} = co— L.
Then we refer to ¢ as an informant. If L is classified
via an informant then we also say that L is represented
by positive and negative data. Moreover, let ¢, i be a
text and an informant, respectively, and let be a num-
ber. Then ., i, denote the initial segment of ¢ and 7 of
length z, respectively, e.g., i3 = (s1,b1),(s2,b2), (s3, b3).
Let t be a text and let z € N. Then we set tf = {s, |
k < z}. Furthermore, by ¢} and i, we denote the sets
{Sk | (Sk1+) € iak < I} and {Sk | (Ski_) € iak < 1‘},
respectively.

Following Angluin (1980) we restrict ourselves to deal
exclusively with indexed families of recursive languages
defined as follows:
A sequence Ly, Lg, L3, ... is said to be an indezed family
L of recursive languages provided all L; are non—empty
and there is a recursive function f such that for all num-
bers j and all strings w € ¥* we have
. 1, if wel;

FGw) = { 0 , otherwise.J
As an example we consider the set £ of all context—
sensitive languages over ¥. Then £ may be regarded
as an indexed family of recursive languages (cf. Bucher
and Maurer (1984)). In the sequel we often denote an
indexed family and its range by the same symbol L.
What is meant will be clear from the context.

As in Gold (1967) we define an inductive inference ma-
chine (abbr. TIM) to be an algorithmic device which
works as follows: The ITM takes as its input larger and
larger initial segments of a text ¢ (an informant ¢) and it
either requires the next input string, or it first outputs a

hypothesis, i.e., a number encoding a certain computer
program, and then it requires the next input string (cf.

e.g. Angluin (1980)).

At this point we have to clarify what space of hypothe-
ses we should choose, thereby also specifying the goal of
the learning process. Gold (1967) and Wiehagen (1977)
pointed out that there is a difference in what can be in-
ferred in dependence on whether we want to synthesize
in the limit grammars (i.e., procedures generating lan-
guages) or decision procedures, i.e., programs of charac-
teristic functions. Case and Lynes (1982) investigated
this phenomenon in detail. As it turns out, IIMs syn-
thesizing grammars can be more powerful than those
ones which are requested to output decision procedures.
However, in the context of identification of indexed fam-
ilies both concepts are of equal power. Nevertheless,
we decided to require the IIMs to output grammars.
This decision has been caused by the fact that there
is a big difference between the possible monotonicity
requirements. A straightforward adaptation of the ap-
proaches made in inductive inference of recursive func-
tions directly yields analogous requirements with re-
spect to the corresponding characteristic functions of
the languages to be inferred. On the other hand, it is
only natural to interpret monotonicity with respect to
the language to be learnt, i.e., to require containement
of languages as described in the introduction. As it
turned out, the latter approach increases considerably
the power of monotonic language learning. Further-
more, since we exclusively deal with indexed families
L = (Lj)jen of recursive languages we almost always
take as space of hypotheses an enumerable family of
grammars (G1,G9,G3, ... over the terminal alphabet X
satisfying £ = {L(G;) | j € N}. Moreover, we require
that membership in L(G;) is uniformly decidable for all
Jj € N and all strings w € X*. As it turns out, it is
sometimes very important to choose the space of hy-
potheses appropriately in order to achieve the desired
learning goal. Then the IIM outputs numbers j which
we interpret as Gj.

A sequence (j;)ren of numbers is said to be convergent
in the limit if and only if there is a number j such that
je = j for almost all numbers z.

Definition 1, (Gold (1967)) Let £ be an indezed
family of languages, L € L, and let (Gj)jen be a
space of hypotheses. An IIM M LIM —TXT (LIM —
IN F)~identifies L on a text t (an informant 1) iff it
almost always outputs a hypothesis and the sequence
(M(ts))een (M(iy))zen) converges in the limit to a
number j such that L = L(Gj).

Moreover, M LIM — TXT (LIM — INF)-identifies
L,iff M LIM —TXT (LIM —INF)-identifies L on
every text (informant) for L. We set:
LIM - TXT(M) = {L € L | M LIM — TXT -
identifies L} and define LIM —INF(M) analogously.
Finally, let LIM — TXT (LIM — INF) denote the
collection of all families L of indexed families of recur-
siwve languages for which there is an IIM M such that
L CLIM—TXT(M) (CCLIM —INF(M)).

Definition 1 could be easily generalized to arbitrary fam-
ilies of recursively enumerable languages (cf. Osher-
son et al. (1986)). Nevertheless, we exclusively con-
sider the restricted case defined above, since our mo-
tivating examples are all indexed families of recursive
languages. Note that, in general, it is not decidable
whether or not M has already inferred L. In case M
produces only a single and correct guess after having
been fed an initial segment of a text ¢ (or informant %)
and stops then, we say that M finitely infers L on ¢ (on
i). M FIN —TXT (FIN — INF)-infers L iff it fi-
nitely infers L on every text (informant).

The resulting identification type is denoted by FIN —
TXT (FIN—INF).

Next we want to formally define strong—monotonic,
monotonic and weak—monotonic inference. But before
doing this, first we define consistent identification. Con-
sistently working learning devices have been introduced
by Barzdin (1974). Intuitively, consistency means that
the ITM has to reflect correctly the information it has
been already fed with.

Definition 2, Barzdin ((1974)) An IIM M CONS —
TXT (CONS — INF)-identifies L on a text t (an
informant 1) iff

(1) M LIM —=TXT (LIM — INF)-identifics L on t
(on 1)

(2) Whenever M on t, (i,) produces a hypothesis jy
then range(t,) C L(G;,) (it C L(Gj,) and i C
co— L(Gj,))-

M CONS —TXT (CONS — IN F)-identifies L iff M
CONS —TXT (CONS — INF)-identifies L on every
text t (informant i).

By CONS — TXT(M) (CONS — INF(M)) we de-
note the set of all languages which M does CONS —
TXT (CONS — INF)-identify. CONS — TXT and
CONS — INF are analogously defined as above.

Definition 3, Jantke ((1991A), Wiehagen (1991))
An IIM M 1s said to identify a language L from text
(informant)

(A) strong—monotonically
(B) monotonically
(C) weak-monotonically

uf
M LIM —TXT (LIM — INF)-identifies L and for

any text t (informant 1) of L as well as for any two
consecutive hypotheses jy, jo+r which M has produced
when fed t, and toyy (ie and ipqy), for some k > 1,k €
N, the following conditions are satisfied:

(A) L(Gj,) C L(Gj,y)

(B) L(Gj,)NL C L(Gj,,,)NL

(C) if texr C L(Gj,) then L(Gj,) C L(Gj.) (if
i:’+k C L(Gy,) and ipyr C cCO— L(Gj,), then
L(Gj,) € L(Gj,.))-

We denote by SMON -TXT, SMON—-INF, MON —
TXT, MON—-INF, WMON-TXT, WMON—-INF
the family of all thoses sets £ of indexed families of
languages for which there is an IIM inferring it strong—
monotonically, monotonically, and weak—monotonically
from text ¢ or informant ¢, respectively.

Note that even SMON — TXT contains interesting
"natural” families of formal languagues (cf. Lange and
Zeugmann (1991, 1992)). Finally in this section we de-
fine conservatively working ITMs.

Definition 4, (Angluin (1980A))

An IIM M CONSERVATIVE-TXT (CONSERVA-
TIVE-INF)-identifies L on text t (on informant i), iff
for every text t (informant i) the following conditions
are satisfied:

(1) L e LIM = TXT(M) (L€ LIM —INF(M))

(2) If M on inputt, makes the guess j, and then makes
the guess jpi+r # Jo at some subsequent step, then
L(G}j,) must fail to contain some string from t, .y,
(L(G;,) must fail either to contain some string w €

i:’+k or it generates some string w € z;_l_k)

CONSERVATIVE-TXT(M) and CONSERVATIVE -
INF(M) as well as the collections of sets CONSERVA-
TIVE-TXT and CONSERVATIVE-INF are defined in

an analogous manner as above.

Intuitively speaking, a conservatively working ITM per-
forms ezclusively justified mind changes. Note that
WMON —TXT = CONSERVATIVE-TXT as well as
WMON — INF = CONSERVATIVE-INF.

FIN-INF

N //n
e

SMON-TXT C SMON-INF

FIN-TXT C

MON-TXT C MON-INF

N //n
f

WMON-TXT C WMON-INF
N
|
LIM-TXT C LIM-INF

(* # denotes incomparability of sets. *) Finally, the
figure above summarizes the known results concerning
monotonic inference (cf. Lange and Zeugmann (1991,

1992)).

3 Characterization Theorems

In this section we give characterizations of strong—
monotonic, monotonic and weak—monotonic inference
from positive data as well as for FIN —TX7T. Charac-
terizations play an important role in inductive inference
in that they lead to a deeper insight into the problem
how algorithms performing the inference process may
work (cf. e.g. Wiehagen (1977, 1991), Angluin (1980),
Freivalds et al. (1992)). Our first theorem character-
izes WMON — TXT in terms of recursively generable
finite tell-tales. A family of finite sets (7});en is said
to be recursively generable, iff there is a total effective
procedure g which, on input j, generates all elements
of T; and stops. If the computation of g(j) stops and
there is no output, then 7} is considered to be empty.
Finally, for notational convenience we use L(G) to de-
note {L(G;) | j € N} for any space G = (Gj)jen of
hypotheses.

Theorem 1. Let L be an indezxed family of recursive
languages. Then: L € WMON — TXT if and only

if there are a space of hypotheses G = (Gj)jeN and a

recursively generable family (T});en of finite and non—
empty sets such that

(1) range(L) = L(G)
(2) Forall j €N, T; C L(Gj).

(3) For all j, z € N, if T; C L(G,), then L(G,) ¢
L(Gj)-

Proof. Necessity: Let L € WMON —TXT = CON-
SERVATIVE-TXT. Then there are an IIM M and a
space of hypotheses (Gj)jen such that M infers any
L € [conservatively with respect to (G;)jen. We pro-

ceed in showing how to construct G = (G;);jen. This is
done in two steps. First we construct a space of hy-
potheses G = (Gj)jen as well as a recursively gener-

able family (7j);en of finite but possibly empty sets.
Then we describe a procedure enumerating a certain
subset of é which we call G Let ¢c: N x N — N be
Cantor’s pairing function. We define the space of hy-
potheses (Gj);jen as well as the wanted family (7});en
as follows: On input j compute k,z € N such that
J = c(k,z). Then set G’C(k}z) = (%. Furthermore, for
any language L(Gy) we denote by t* the canonically or-
dered text of L(G}) defined as follows: Let s1,s9,... be
the lexicographically ordered text of ¥*. Test sequen-
tially whether s, € L(Gy) for z = 1,2, 3, ... until the first
z is found such that s, € L(Gy). Since L(Gy) # 0 there
must be at least one z fulfilling the test. Set ¢ = s,.
We proceed inductively:

thss 4ot if S:tet1 € L(Gh)

B)
top1 = ths otherwise, where s

is the last string in t*

xr

We define:

range(t’yc) if y=min{z|z<uz,
fc(k c) = A[(tlzc) =k}
0 otherwise

Obviously, ~C(k,z) is uniformly recursively generable and

finite. The desired space of hypotheses G is obtained
from G by simply striking off all grammars Gc(k «) for

which Tc(k z) = 0. Analogously, (T)jen is obtained

from (T})jen. Obviously, (7});en is a recursively gen-
erable family of finite and non—-empty sets. In order to
save notational convenience we refer to T as to Tc(k (i
L.e., we omit the corresponding bijective mapping ylel

ing the enumeratlon of the sets T from T,. It remains
to show that G = (G})jen and (7});jen do fulfil the an-
nounced properties. Due to our constructlon (2) holds
obviously. In order to prove (1) let L € £. We have to
show that there is at least a j € N such that for j =
c(k,z) we have L = L(CA}'C(;C’,,)). For this purpose, due
to our construction, it suffices to show that fc(k}z) + 0.
Let t© be L’s canonically ordered text. Since M has
to infer L on t¥, there are k, y € N such that for all
z <y, M(tF) # k, A’[(iﬁ) =k and L = L(Gy). Conse-
quently, fc(k’y) = range(tﬁ). Hence, by our convention
More-

over, it immediately follows that L = L(G’c(k,w)) for any
z > y. This proves property (1). Finally, we have to
show (3). It results from the requirement that any con-
servatively working I7M is never allowed to output an
overgeneralized hypothesis, i.e., a guess that generates
a proper superset of the language to be inferred. To
see this, suppose the converse, i.e., there are j, z € N
such that T C L(G,) and L(G.) C L(G). There are
uniquely determlned k,z € N such that j = ek, z).
Let sq,...,

with respect to L(Gc(k7x)). By construction we obtain
M(s1,...,5y) = k. Now we conclude that s;,...,s, is
an 1n1t1al segment of the canonically ordered text for

L(G.), since Tj C L(G.) C L(Gj) = L(Gere). Fi-
nally, M has to infer L(Gz) on its canonically ordered
text too, thus it has to perform a mind change in some
subsequent step which cannot be caused by an inconsis-
tency. This contradiction yields (3).

Sufficiency: It suffices to prove that there is an ITM M
inferring any L € £ on any text with respect to G. So
let L € £ and let ¢ be any text for L, and z € N.

made above, we get that Tc(k,y) = range(tﬁ).

sy be the strings of T; in canonical order

M(ty)="If £ = 1 or M on ty_; does not output a
hypothesis, then goto (B). Otherwise, goto (A).
(A) Let j be the hypothesis produced last by M
when fed with #,,_;. Test whether ¢} C L(Gj).
In case it is, output j and request the next
input. Otherwise, goto (B).
(B) For j = 1,...,z, generate TJ and test whether

Tj Ctt C L(G'j). In case there is at least

a j fulfilling the test, output the minimal one.
Otherwise output nothing and request the next
input.”

Since all of the TJ are uniformly recursively generable
and finite, we see that M is an IIM. Now it suffices
to show that M infers L on ¢ conservatively. By con-
struction the machine M works conservatively, since it
changes its mind only in case it finds an inconsistency
in (A).

Claim 1: M converges on (f;)yen

Let z = pk[L = L(G)]. Consider Tj, ..., T,. Then
there must be an z such that 7, C tf C L(Gz). That
means, at least after having fed ¢, to M, the machine
M outputs an hypothesis. Furthermore, after having
fed ¢, to M, the machine M always outputs an hy-
pothesis and it never outputs a guess j > =z since
z€{k <z | Ty Ctt C L(Gr)}. Moreover, since
M changes its mind if and only if it receives some text
string that misclassifies its current guess, we see that
any rejected hypothesis is never repeated in some sub-
sequent step. Finally, since at least z can never be re-
jected, M has to converge.

Claim 2: Tf M converges, say to j, then L = L(G};).
Suppose the converse, i.e., M converges to j and L #
L(Gj).)

Case 1: L\ L(G;)# 0

Consequently, there is at least one string s € L\ L(G'j)
that has to appear sometime in ¢, say in ¢, for some r.
Thus, t} ¢ L(G;). Hence, after having fed with ¢, our
IIM M never outputs j, a contradiction.

Case 2: L(G’j) \L#£0D

Then we may restrict ourselves to the case L C L(G'j),

since otherwise we are again in case 1. On the other
hand, due to the definition of M there should be an
r € N such that M in (B) verifies 7; C t} C L(G}),
since otherwise it cannot output j at least once. More-
over, since I = I(G,) and ¢t C L(G,) for any r € N,
we conclude TJ - L(G’z). Hence L = L(G’z) ¢ L(Gj)
by property (3), a contradiction.
q.e.d.

Next we characterize SMON —TXT as well as FIN —
TXT. As it turned out, the same proof technique pre-
sented above applies mutatis mutandis to obtain the
following two theorems.

Theorem 2. Let L be an indezxed family of recursive
languages. Then: L € SMON — TXT if and only if
there are a space of hypotheses G=(G i)jen and a re-

cursively generable family (T;)jen of finite and non—
empty sets such that

(1) range(L) = L(G)

(2) T; C L(G}) for all j € N.

(3) Forall j, z € N, if T; C L(G,), then L(Gj) C
L(G,).

Proof. Necessity: Let £ € SMON — TXT(M). The

recursively generable family (7});en of finite and non-
empty sets is anologously defined as in in the proof of
Theorem 1. Using the same arguments as above one
immediately obtains property (1) and (2). In order
to prove (3) let 7; C L(G.). We have to show that
L(G;) C L(G.). Let k, = be the uniquely determined
numbers with j = e(k,z). Furthermore, let si,...,s,

be the strings of T in canonical order with respect to
L(G’C(k,,)) such that M(sy,...,sy) = k for the first time.
Since TJ C L(G.) we see that 51, ..., 8y is also an ini-
tial segment of some text for L(G). Consequently,

51,...,5y may be extended to a text for L(G,) . Fi-
nally, since M has to infer L(G’z) too, there should be

an n € N and a finite extension ¢ of strings of L(G.)
such that M (sy,...,sy,0) = n and L(G'Z) =L(G,). M
works strong—monotonically and hence, by the transi-
tivity of C, we obtain L(Gj) C L(G.).

Sufficiency: Tt suffices to show that there is an ITM M
that identifies £ with respect to G. Let L € L, let t be
any text for L, and let # € N. The wanted IIM M is
defined as follows:

M(t;) = ”Generate T; and test whether 7; C t+ C

L(Gj) for j = 1,...,z. In case there is at least a
j fulfilling the test, output the minimal one and
request the next input.

Otherwise output nothing and request the next input.”

We have to show that M infers £ strong—monotonically.

Since all of the T] are uniformly recursively generable
and finite we see that M is an ITM . First we show that
M identifies L on t. Let k = pz[L = L(G,)]. We claim
that M converges to k. Consider Ti,...,Ty. Then there
must be an z such that T} Ctf C L(Gk). Thus, at
least after having fed ¢, to M the machine must output
a guess. Moreover, since for all » € N we additionally
have T}, C t;’_i_r C L(G’k), we may conclude that after
having fed ¢, to M, it never produces a hypothesis j >
k. Suppose M converges to j < k. Due to the choice of
k we know L(G;) # L(Gy) = L.

Case 1. L C L(G;)

By construction, if M outputs j at all, then there should
be an n € N such that T] Cctt C L(G’j). Moreover,
since ¢ is a text for L = L(G}), we furthermore know
that ¢+ C L(Gk) for all n € N. Hence TJ C L(Gk).
Now we can apply property (3) and obtain L(Gj) C
L(G%) = L, a contradiction. Moreover, a closer look to

the latter argument shows that M can never output an
overgeneralized hypothesis.

Case 2. L\ L(G;) #0

Again, suppose that M converges to j < k. Let s €
L\ L(Gj). Thus there must be an n € N such that
s € t}. Consequently, after having seen at least ¢}, the
machine M cannot output j.

Summarizing we obtain that M converges to k. It re-
main to show that M works strong-monotonically. Sup-
pose, M outputs y and changes its mind to z in some
subsequent step. By construction we have: Ty ctt C
L(G'y) for some n € N and T, C th., C T,, for some
r > 0. But now, T, C th., C L(G.), and again we con-
clude from property (3) that L(G,) C L(G,). Hence M
works indeed strong-monotonically on .
q.e.d.

The latter theorems have some interesting consequences
which shall discuss below. Now we present the an-
nounced characterization of FIN — T XT and postpone
that one for MON — T XT for a moment, since it de-
serves special attention. Note that an analogous the-

orem has been obtained independently by Mukouchi
(1991).

However, even the next theorem has some special fea-
tures distinguishing it from the characterizations al-
ready given. As pointed out above, dealing with charac-
terizations has been motivated by the aim to elaborate a
unifying approach to monotonic inference. Concerning
WMON — TXT as well as SMON — TXT this goal
has been completely met by showing that there is es-
sentially one algorithm, i.e., that one described in the
proof of Theorem 1 and Theorem 2, respectively, which
can perform the desired inference task, if the space of
hypotheses is appropriately chosen. As the results of
Angluin (1980) show, this choice is inevitable. The next
theorem yields even a stronger implication. Namely, it
shows, if there is a space of hypotheses at all such that
L € FIN —TXT with respect to this space, then one
can always use £ itself as space of hypotheses, thereby
again applying essentially one and the same inference
procedure.

Theorem 3. Let L be an indexed family of recursive
languages. Then: L € FIN —TXT if and only of there
is a recursively generable family (Tj);en of finite non-
empty sets such that

(1) T; CL; forallj€N.
(2) Forallk, jEN, if T}, C Lj, then Lj = L.

Finally in this section we characterize MON —-TXT. As
it turned out, characterizing M ON—T X T is much more
complicated. Intuitively this is caused by the following
observations. One has to construct a recursively gener-
able family of finite tell-tales that should contain both,
information concerning the corresponding language as
well as concerning possible intersections of this language
L with languages L’ which may be taken as candidate
hypotheses. However, these intersections may yield lan-
guages outside the indexed family. Moreover, as long
as the output of the ITM M performing the monoto-
nic inference really depends on the range, the order and
length of the textsegment fed to M one has to deal with
a non—recurstve component. The non—recursiveness di-
rectly results from the requirement that M has to infer
each L € £ from any text, i.e., one has to find suitable
approximations of the uncountable many non-recursive

texts. Nevertheless, at first glance there might be some
hope. Osherson, Stob and Weinstein (1986) defined set—
driven as well as rearrangement—independent ITMs. An
ITM M is set—driven (rearrangement—independent) iff
its output depends only on the range of its input (only
on the range and length of its input). However, set—
driveness is a very restrictive requirement (cf. Osher-
son et al. (1986), Fulk (1990)). On the other hand,
Fulk (1990) proved that any I7AM M may be replaced
by an IIM M’ which is rearrangement—independent.
Unfortunately, M’ does not preserve any of the types
of monotonicity. Nevertheless, strong—monotonic in-
ference may always be performed by an ITM working
rearrangement—independent as the proof of Theorem 2
shows. Surprisingly enough, the ITM described in the
proof of Theorem 1 is not rearrangement—independent.
But it possesses another favorable property, i.e., the hy-
potheses it converges to is the first correct one in the
sequence of all created guesses. IIMs fulfilling this
property are said to work semantically finite. While
the ITM described in the demonstration of Theorem
2 does not necessarily work semantically finite, it may,
however, be replaced by an ITM M’ that works strong—
monotonically, rearrangement—-independent and seman-
tically finite. In fact, M’ works exactly as M does but
it uses a different space of hypotheses. A closer look to
property (3) yields the following surprising consequence.
If£ e SMON—TXT, then there is a recursive enumer-
ation of £, i.e., that one constructed in the proof, such
that for any k, 7 € N it is uniformly decidable whether
or not L(Gy) C L(Gj). Hence, equality of languages
is uniformly decidable. Thus, one may construct the
wanted space of hypotheses containing each language of
L exactly ones.

On the other hand, it remained open whether the
II'M presented in the proof of Theorem 1 may be re-
placed by an ITM that works semantically finite and
rearrangement—independent. We conjecture it cannot.
So it seems that rearrangement—independence gets lost
somewhere in the hierarchy of monotonic inference.
We conjecture that monotonic inference from positive
data performed by rearrangement—independent ITMs
is less powerful than ordinary monotonic learning from
text. Summarizing the discussion above, in characteriz-
ing MON — TXT we have to overcome the difficulties
pointed out in a different way. Wiehagen (1992) pro-
posed to construct for every language L and for every
text ¢ of L a family of characteristic finite sets and ob-
tained a characterization theorem that is close to his
characterization of monotonic inference of total recur-
sive functions (cf. Wiehagen (1991)). However, con-
ceptually it totally differs from the theorems presented
above.

What we now present is a characterization of MON —
TXT in terms of recursively generable finite sets as
above. Additionally we have been forced to define an
easy computable relation < C N x N that can be used
to distinguish appropriate chains of tell-tales with the
help of which an ITM M may compute its hypotheses.

Now we are ready to present the wanted characteriza-
tion.

Theorem 4. Let L be an indexed family of recursive
languages. Then: L € MON —TXT if and only if there
are a space of hyptheses G = (Gj)jeN, a computable
relation < over N, and a recursively generable family

(Tj)jen of finite and non-empty sets such that

(1) range(L) = L(Q)

(2) Forall L€ L and all k € N,
(i) Tr C L(Gh).
(i) if Ty C L, then L ¢ L(Gy).

(3) Fm: alL el qnd any k € N, and all finite A C L,
if Ty C L, L(Gr) # L, then there is a j such that
k<j, ACT; CL(Gj)=L.

(4) Forall L€ L and allk, j € N,

(i) if k < j, then Ty C Tj.
(ii) ifk < j, T; C L, then L(Gy)NL C L(G;)N L.

(5) Forall L € L, there is no infinite sequence (k;)jen

such that for allj € N, k; < kjq1 and Uj Ty, = L.

Proof. Necessity: We start by defining the rela-
tion <. For this purpose some additional notation
is needed. Let N* be the set of all finite sequences
over N, and for @« € N* let |a| denote the length
of a. Whenever appropriate we interpret a number
k as bijective encoding of a 4-tupel (n,«, 3,v), where
n € N, a, f, v € N*. Let k, j € N. Then
k=<jiff k = (n,e,8,7), 7 = (m,aé,fnr,vxk), where
o] = 8] = |y| as well as |§] = |n7| = |k|. More-
Over’ k ~ j iﬁ‘ k = (n’a,/))37)1 j = (m7 aé)/BnT’
where |a| = |3] = |y| as well as |§|] = |n7| = |k| and
range(r) = {n}. Finally, k < j iff k < j and not k ~ j.
Note that < is a transitive relation.

Let M be an IIM inferring £ without loss of gen-
erality monotonically, conservatively and consistently
with respect to some space G = (Gj)jen of hypothe-
ses (cf. Lange and Zeugmann (1992)). Furthermore,
for technical convenience M initially always outputs 0,
where Lo = (. For all n € N, a,3,7y € N* we define
G(n,a,8,y) = Gn, and set Gy = . Moreover, we define

Tn,a,p,y) as follows:

(i) If not (|a| = 3] = |y]), then Tin a5, = 0.

(i) I (la] = 8] = 7)), B = Bnp, n ¢ range(B), then
T(n,a,ﬁ,'y) = @ if range(p) 7£ {'Il}

(i) Otherwise let & = y1, ...y, 8 = Ony, ..oy, ¥ =
z1, -.-z» and do the following:

Generate the canonical text &,, of L(Gp,) of
length y; and compute visible(é,,) = {7 |
|7| < |6n,], range(r) C range(on,)}. If
|visible(6p,)] < z1, then f(n,a,ﬁ;y) = 0.
Else test whether the z1th element o,, (with

respect to the lexicographical ordering) of

visible(6,,) when fed successively to A ex-

actly yields the sequence Ony of hypotheses. If

not, then T(n’aﬁﬁ) =@, and stop. .

In case it does, generate the canonical text

Gn, of L(Gp,) of lenght y; + ya. Compute

visible(oy,), and test whether |visible(ap,)| <

z9. In case it is, set Tma’ﬁﬁ = @ and stop.

For if not, test whether the zoth element oy,

(with respect to the lexicographical ordering)

of visible(6,,) does fulfil the following proper-

ties:

(a) op, is a prefix of ¢, , and

(b) When fed successively with o,, the ma-
chine M exactly produces the sequence
Onins of guesses.

In case it does not, set ﬂn,a,ﬁ,y) = () and stop.

Otherwise continue analogously.

Finally, if T(s o p~) has not been defined til

now, generate the canonical text &, of L(Gj)

of length y1 + ...+ y, and compute visible(5y,).

If |visible(6,)| < z,, then set T(n,a“@;y) =0.

Else let o, be the z,th element of visible(d,)

with respect to the lexicographical ordering.

Test whether

(a) on, is a prefix of o,

(b) When fed successively with o, the ma-
chine M exactly produces the sequence
Onins...n.n of guesses.

In case the test is not completely fulfilled set

T(n’aﬁﬁ) = (. Otherwise set T‘(n}aﬁ;\/) =

range(o,).

Obviously, f(n’aﬁﬁ) is uniformly recursively generable
= (Gj)jen
are again obtained by simply striking off all T} that are

and finite. The families (TJ)jen as well as ¢ =

empty as well as the corresponding Gj.

It remains to show that property (1) to (5) are satis-
fied. In order to prove (1), let L € £, and let n € N be
chosen such that M on L’s canonical text ¢* converges
to n. Furthermore, let y = pz[M(tL) = n]. We pro-
ceed in showing that there are a, 3,4 € N* such that
T(ma,ﬁ},y) # (. The latter statement yields (1), since we

may conclude that L(G(n,a,6,y)) = L(Grn) = L. We de-
fine 3 to be the sequence Onins...n, of M’s hypotheses
when successively fed with tﬁ where the last element n
is deleted.

Let 0o, C0n, C ... Copn, C tﬁ be the corresponding
initial textsegments on which M produces its hypothe-
ses. (* C denotes prefix relation of finite sequences *)
Since M works consistently, we obtain J+_ C L(Gn;)
for j = 1,...,7. Compute the canonical text tal, 15k, ...
of L(Gp,) of lenght a; = |o,, |+, ¢ = 0,1, ... until the
least ¢ with ¢, € visible(t}}!) has been found. Then let
z1 be the lexicographical number of 7, with respect to
visible(t}1), and set y; = a;. Next generate the canon-
ical text 22, 22, ... of L(Gy,) of lenght a; = |op,| + 4

ayr Yagr e

until o, € visible(t3?) for the first time. Then define
29 to be the leX1cograph1cal number of o,, with respect
to visible(t;?), and set ys = a; — y1, a.s.0.

Finally, suppose y1, ..., y, as well as zq, ..., z, are already

defined. Set y,41 = maz{y, y1 + ... + yr}. Define
. . L .

Zp41 to be lex1cograph1cal number of ¢,/ with respect

to vzszble(The o = y1...4r41, B = Ony...n, and

Yr +1)' i
v = 21...2p41 directly yield T(, o 54) # (. This proves

part (1).

Assertion (1) of (2) follows directly from the construction
described above. The second part of property (2) is an
immediate consequence of the conservativeness of M (cf.
proof of Theorem 1).

The technique applied above to prove (1) applies mu-
tatis mutandis to obtain (3). Hence we describe only
the modification that has to be made. Let A C L and
let ¢ = s1...s;, be the sequence of A’s strings written
in lexicographical order. Moreover, let Ty C L and
L(Gk) # L. Then there are n € N, «a,3,7 € N* with
|| = |8] = |7] such that k¥ = (n,«,3,7). Further-
more, let a« = y1..9, B =0n1..np_y, Y= 21..20, ¢ =
y1+ ...+ yr, and let wy...w, be the uniquely determined
sequence of all elements of T}, on which, when fed suc-
cessively to M, the machine M produces 3 as its se-

quence of hypotheses. Since T}, C L but L + L(G’) =

(G(n,a,,@,«,)) we conclude that M has not yet converged
on this particular initial segment w;...w, of some text
for L. Next we consider M’s behavior when fed with
wy...wy0. There are two cases to distinguish,i.e., either
the computation of M(w;...w,0) ends in M’s request
state, or it yields a guess. However, in both cases we
extend wi...wyo with a sufficiently long initial segment

L of I’s canonical text until M outputs a hypothesis
t%at is correct for L. Finally, j is obtained analogously
as in the proof of property (1) where the construction
is performed with respect to wy.. wqatL instead of tL

Obviously, k < j, A C T] and L(G]) = L. Hence (3) is
proved.

The part (i) of property (4) is an immediate conse-
quence of our construction. For showing (ii) recall the
definition of the relation <. Since k& < j there are
n,mé€ N, «,3,7,6, 7,k € N* such that k = (n, o, 3,7)
and j = (m,aé,pnr,vk). Due to the definition of TJ
we obtain an initial textsegment ¢ for L on which M,
when successively fed with, sometime outputs n, and in
some subsequent step m. Taking into account that A
works monotonically we obtain L(G,)NL C L(Gp)NL
Finally, in accordance with our construction we know
that L(Gr) = L(G(napq)) = L(Gn) and L(Gj) =
L((A}(mya&ﬁm,w)) = L(Gp). Hence, part (ii) of prop-
erty (4) follows.

We continue in proving (5). Again, recall the defi-
nition of the relation <. As above, if k; < kjqq,
then there are n,m € N, «,f3,v,6,7,6 € N* such
that k; = (n,0,8,7) and kj;1 = (m,ad, fnt,vk).

Moreover, since not k; ~ k;j;1, we additionally have
range(r) # {n}. Now suppose there is an infinite se-
quence (k;)jen such that k; < kjyq1 and Uj Tkj = L.
That means, in the limit we get a text ¢ of L on which
M changes its mind infinitely often, a contradiction.
Hence, (5) is proved.

Sufficiency: Again, it suffices to describe an ITM M
that infers £ with respect to G. Let L € £, let ¢ be any
text for L, and let € N. We define the desired ITM
M as follows:

M(ty) = "If £ = 1 or M when fed successively with
ty—1 does not produce any guess, then goto (A).
Else goto (B).

(A) Search for the least j < z for which TJ Ctf.
In case it is found, output j and request next
input. Otherwise, request next input.

(B) Let k be the hypothesis produced last by M
on input ¢;_1, and let yx be the corresponding
y used to find k | where yp = 0, if k is M’s first
guess.

(i) Test whether t} C L(Gh).

In case it is, output k and request next in-
put. Otherwise, goto (ii).

(i1) Search for the least j < z satisfying k < j,
and there is a y; such that y; < y; as well
as t;'j C T] C tf. In case it is found, out-
put j and request next input. Otherwise,
request next input and output nothing.”

Since all of the T] are uniformly recursively generable
and finite and since < is computable, we directly obtain
that M is an IIM. We proceed in showing that M
identifies L monotonically on .

Claim 1: If M converges, say to j, then L = L(G'j)
First observe that TJ C L, since otherwise j cannot
be any of M’s guesses. By (2) assertion (ii) we obtain
that L ¢ L(Gj). On the other hand, L\ L(G;) # 0
would force M to reject j (cf. (B), test (ii)). Hence,
L = L(Gy).

Claim 2: M works monotonically
This is an immediate consequence of property (4) and
the definition of M.

Claim 3: M converges on ?.

In accordance with (2), assertion (i), one can show anal-
ogously as in the proof of Theorem 2 that M outputs
at least once a hypothesis. Moreover, as long as this
guess is consistent with the data fed to M in subse-
quent steps, this guess is repeated. In case M finds an
inconsistency property (3) ensures that A/ always out-
puts a new guess in some subsequent step. However,
there might be competive candidates forcing M to out-
put a new guess before even touching the announced j.
As long as this happens only finitely often, M clearly
converges, since a correct guess is never rejected. Now
suppose that M changes its mind infinitely often. In

accordance with M’s definition then there is an infi-
nite sequence (k;);jen of all the guesses of M such that

kj < kj41 for all j and J; Tkj = L. Hence property (5)
is contradicted. This proves the theorem.
q.ed

Note that the above characterizations could be general-
ized to all types of monotonic learning and finite infer-
ence on informant. This is done in a subsequent paper.
In the next section we consider a problem which is im-
portant with respect to potential applications of learn-
ing algorithms. We ask whether the inference process
can be performed with 77 Ms that only use the last guess
and the next string of the text resp. informant of the
language to be learnt as their input.

4 Monotonic Inference with Iteratively
Working ITM

Conceptionally, an iteratively working ITM M defines
a sequence (M,)n,en of machines each of which takes as
its input the output of its predecessor. Hence, the ITM
M has always to produce a hypothesis, i.e., it is always
in the ”or—case”.

Definition 5, Wiehagen (1976) An IIM M IT —
TXT (IT — INF)—identifies L on a textt = (sj)jen
(an informant i = ((w;, b;))jen) tff

(1) For all n € N, My(t) (Mn(7)) is defined,
where My(t) = M(s1) (Mi(i) = M((w1,b1)))
and Mup1(t) == M(M,(t),sn41) (Mpy1(d) =
M(Mu(2), (W1, bnt1)))-

(2) The sequence (M, (t))nen ((Mn(i))nen) converges
in the limit to a number j such that L = L(G}).

M IT — TXT (IT — INF)-identifies L iff M IT —
TXT (IT — INF)-identifies L on every text t (infor-
mant 1). The resulting identification types IT — TXT
and IT — INF are analogously defined as above.

The combination of iterative and monotonic inference 1s
denoted by X MON — TXT (XMON — INF), where
X e {S,W,A}.

Since iteratively ITM s are always required to produce
an output, a relaxation with respect to the space of
hypotheses G = (G});en is appropriate, i.e., we weaken
the condition £ = {L(G;)|j€ N} to LC{L(Gj)|j €
N}. However, we further require that membership in
L(Gj) is uniformly decidable. The next theorem relates
iterative inference on informant to monotonic ones.

Theorem 5.

(1) IT—INFC WMON — INF

(2) IT — INF#MON — INF

(3) WMON — IT—INF C WMON — INF
(4) MON —IT — INF C MON —INF

Proof. The proof of the theorem is done via the follow-
ing lemmata.

Lemma A. MON — INF\IT —INF #{

Proof (Lemma A). Let (I;)jen be a canonical bijective
and computable enumeration of all finite sets of natural
numbers. We define the wanted indexed family £ over
the alphabet {a,b} as follows: L = {a}*, Ly = {b}*,
and for all j € N we set Ljyo = L(I;) = L1 U (La \
{6" | n € I;}). Then we define £ = {L;4»|j€ N} U
{L1,Ls}. Obviously, £ is an indexed family of non—
empty uniformly recursive languages.

Claim 1: £ € MON — INF

Let L € £, and let ¢ be any informant for L. For tech-
nical convenience, let Loy = (. The wanted ITM M
inferring £ with respect to £ is informally defined as
follows:

Initially it outputs 0. This guess is repeated until M
receives the first string (w,+). Now we distinguish two
cases:

Case 1: w € {a}*

Then M outputs 1. As long as M obtains (w,+) €
{a}* x {+,—1}, it repeats its guess. If in i, appears the
first (w,+) € {b}* x {+,—}, then M computes I =
{k | b* € 47} as well as I’s index in the enumeration
(I;)jen, say j, and outputs j+2. As long as this guess is
consistent with the data fed to M in subsequent stages,
it repeats its hypothesis. Note that, by definition of L,
there may only occur inconsistencies with negative data.
If an inconsistency is detected, say on ¢;4, for some r €
N, then M again computes I = {k | b* € i7, .} as well
as I's index j in the enumeration (I;);jen. Moreover,
it outputs j' + 2. The latter guess is repeated as long as
it is consistent. Otherwise, the construction is iterated.

Case 2: w € {b}*

Then M outputs 2. Next M proceeds as follows. As
long as M only receives negative data over {a}* or posi-
tively marked strings over {b}*, it repeats its guess. If in
i, appears the first time a string (w, —) € {b}* x {+, -1},
then it computes I = {k | b* € 47} and I’s number in
the enumeration (;);en, say j, and outputs j+2. Sub-
sequently it behaves exactly as in case 1.

Note that there are no more cases to deal with, since
LN ({a,b}*\ ({a}*u{b}*)) =0 forall L € L. It can be
straightforwardly shown that A infers £ monotonically.
We omit the details.

Claim 2: L ¢ IT —INF

Suppose the converse, i.e., there is an ITM inferring
iteratively each I € £ on any informant for L. We
construct a language L = L(I) for some finite set I as
well as an informant 7 on which M does not identify
L. This is done in two stages. First we consider M’s
behavior on some arbitrarily fixed informant 2 for L.
Next we choose an appropriate set I, as well as the
corresponding language L,,. Then we investigate M’s
behavior on an informant 7 for L., that coincides on
a sufficiently large initial segment with ¢. Finally, we
add some appropriate chosen number to I, yielding the
desired I. The informant i’ on which we fool M contains
then the information concerning the added number at

a place on which M ignores it. Hence, M is fooled.
Formally the proof is performed as follows.

We say that M stabilizes itself on j, at point on an
informant ¢ iff M, _1(3) # ju, and M (jz, (Weigr, bpyr)) =
Jo for all » > 0. Since M is supposed to identify L, on
1, 1t has to stabilize on a correct hypothesis j,, at some
point z;. Consequently, in particular we have

(A) M(jo,, (w,b)) = ju, for all (w,b) € i, w ¢

range(iz,).

At this point we mainly use the fact that M works it-
eratively. Remember that L; = {a}*. Consequently,
from j;, the machine M cannot derive any information
concerning i, . Next we consider I, = {n |b" €1 }.

Case 1: I;, = 0
Then we may choose any z > z1 for which I, = {n |
b € i, } # . Therefore we are, without loss of gener-
ality, in case 2.

Case 2: I,, # 0

Consider an informant i for L,, = L(I,,) satisfying
iy, = ip,. By assumption M has to infer L, on 1,
too. Consequently, there has to be an z5 > #; at which
M stabilizes on a correct hypothesis j,, for L, i.e., in
particular we have:

(B) M(jz,,(w,b)) = jg, for all (w,b) € E) w ¢

range(isz,).

Let w = b with w ¢ range(i,,) be arbitrarily fixed.
i From (A)

we immediately obtain that M(j,,,(w,—)) = jz,, since
(w,—) somewhere in ¢ and w ¢ range(iy,). Finally, let
I =1, U{n}. Obviously, I # I, and therefore we have
Ly, 42 # L := L(I). We define the wanted informant ¢/
as follows: Let i(z) denote the zth member of sequence
1. We set:

i(z) , if z<=
", =) , if z=z+1
i(z=1) , if z>z+1

ll(z) =

Therefore, in accordance with the latter observation and
by construction we obtain that j;, = M(jz,,1(z1)) =
M (jo,,7(21)) = M(jo,, (21 + 1)), and hence by (B)
M (jo,, 7' (21 + 14 k) = M(jp,,2(21 + k)) for all & > 1.
Consequently, M on i’ converges to j.,, a contradiction.
This proves the lemma.

Lemma B. IT—TXT\ MON —INF #{

Proof (Lemma B). The lemma can be proved using the
following indexed family £;;: Let L; := {a}* and for
k>1set Lp:={a* |z < k}U{b* |z >k} as well as
Lyj ={a® | z < k}U{¥F |k <z<jlu{a® |z >
jYu{ci} for all k,j € N with k < j, and k,j > 1. Ly
is defined to be the collection of all Ly, Ly ;.

Claim A: L;; ¢ MON — INF

Suppose the converse, i.e., assume L;; € MON —

INF(M) for some ITM M. Let i be any informant
for {a}*. Since L; € L;; there must be an z such that
Je = M(iy) and L(G;,) = Li. Next we successively
enlarge i, by (b%,+), where z > y = maz{|w| | w €
if Uiz } + 1. Consequently, all i, are initial segments
of an informant for L,. Hence there must be a num-
ber k such that M on 4,4, outputs a grammar j,j
being correct for L,. But now we may enlarge iz4+x in a
canonical manner to an informant i;,, for L, , where
m = maz{|w| |w € i:+k Uiz} + 1. Tt is easy to see
that M either does not work monotonically on if,, or
it does not infer L, ,,. This proves the claim.

Claim B: £;; € IT—-TXT

Let L € £;; and let ¢ be any text for L. The wanted I1M
inferring £;; with respect to £;; is informally defined as
follows. Initially M outputs 1. This guess is repeated
until M receives the first time a string s = b*. Since
M actually gets its last guess j and a string, it can
obviously check whether 7 = 1. Then M outputs z. As
long as M’s subsequent inputs are strings over {a}, the
guess z remains unchanged. If s = b* is fed to M, it
tests whether or not 4* € L,. In case it is, M outputs
z. Otherwise, the new hypothesis is k. If M receives
s = ¢™ as input, it changes its mind to (z,m) or (k, m),
respectively. Subsequently M behaves as follows. If the
input is a string over {a}, it repeats its input guess.
In case it receives a string &', it tests whether or not
b € L, m, where (z,m) is the hypothesis fed to M. If
it is, the guess (z,m) is repeated. Otherwise, it changes
its mind to (I, m), a.s.o.

A straightforward argumentation shows that £;; € IT—
TXT(M). We omit the details. This proves Lemma B.

Finally, by Lemma A we immediately get assertion (1),
since WMON —INF = LIM —INF and IT—INF C
WMON — INF by definition. Moreover, since obvi-
ously MON — IT —INF CIT — INF, Lemma A im-
plies assertion (4), and by an analogous argument (3),
too. The remaining assertion (2) is obtained by Lemma
A and Lemma B. Hence the Theorem is proved.
q.e.d.

The relation between SMON —IT—INF and SMON —
INF is not completely solved. Next we deal with itera-
tive learning combined with monotonicity requirements
on positive data. Moreover, we also ask whether one
can trade information presentation versus monotonicity
requirements. The next theorem summarizes the results
obtained.

Theorem 6.

(1) IT-TXT C IT—INF
(2) MON —IT = TXT C MON — TXT

(3) WMON — IT —TXT C WMON — TXT
(4) MON — TXT#IT — TXT

(5) WMON — TXT#IT — TXT

Proof. The first part of assertion (1), i.e., IT—TXT C
IT — INF is obvious. The proper inclusion is shown

using the following indexed family £;,¢ = (L;);en over
the alphabet {a}, where L, = {a}* and L; = {a* | 2 <
j} for j> 1.

Claim 1: Li,y ¢ LIM —TXT

Suppose the converse. Then by Angluin’s character-
ization of LIM — T XT each L; should have a finite
tell-tale. However, a straightforward argument directly
yields that L; cannot possess a finite tell-tale. This
proves the claim.

Since by definition IT —TXT C LIM —TXT, we have
Ling ¢ IT — TXT. After a bit of reflection one sees
that L;,y € IT — INF. This proves assertion (1).

Claim 2: IT—=TXT\WMON —TXT # 0

This claim may be proved using the indexed family An-
gluin (1980) has used to obtain CONSERVATIVE-TXT
C LIM —TXT. We omit the details.

Claim 3: MON — TXT\ IT — TXT % 0

We define an indexed family £,,,, over the alphabet
{a,b,c} as follows. Let Ly = {a}* and Ly, = {a* | z <
kYu{a® | z > nju{b* " }u{c} forallk,n € N, k,n > 1
and k+2 < n. Finally, weset Ly m = Li n \{c}U{a™}
for all k,n € N as above and k¥ < m < n. Then define
Lmon to be the collection of all Ly, Ly, and Ly pm. It
is not hard to prove that L,0n € MON —TXT\ IT —
TXT. This proves claim 3.

Obviously, Claim 1, 2 and 3 directly yield the remaining
assertions.
q.e.d.

Finally, we have been very surprised in obtaining the
following theorem. Theorem 7 gives another charac-
terization of strong—monotonic inference from positive
data.

Theorem 7.
(1) SMON —TXT CIT-TXT

(2) SMON —IT —TXT =SMON —TXT

Proof. First observe that we have already proved
IT —TXT\ SMON — TXT # {, since SMON —
TXT C MON — INF. Therefore it suffices to show
SMON-TXT CIT—-TXT. Let L€ SMON -TXT,
i.e., there are an ITM M as well as a space G = (Gj)jen
of hypotheses such that, without loss of generality,
L€ SMON—-CONS—-TXT(M) with respect to G (cf.
Lange and Zeugmann (1992)). Moreover, M may even
supposed to output always an hypotheses, since we are
allowed to output guesses that not necessarily describe
a language contained in £. We proceed in defining an
IIM M as well as a space G = (GJ)jen of hypotheses.
Thereafter we show that A7 iteratively infers £ with
respect to G. The desired space of hypotheses G is ob-
tained from G by enumerating its closure with respect
to finite unions. M is defined in stages, where stage k
conceptually describes M. Let L € £ and let ¢ be any
arbitrarily fixed text for L.

Stage 0: Let ¢; = s;. Compute j; := M(s1). Output
Jj1, and goto stage 1.

Stage k: M receives as input j_; and the kth element

sy of t. Test whether or not s, € L(Gj,_,).

Case 1: s € L(ij_1)~
Set jr = jr—1, output it, and goto stage k£ + 1.

Case 2: sp & L(Gj,_,)-
Test for all strings w € T* with |w| < |sg]
whether or not w € L(Gj,_,). Let @y,..., 0
be the strings successfully passing the test plus
s, written in lexicographical order. Compute
jk =]W(ﬁ}l) ceey ﬁ)]).
(* By construction we have {d1,..,0} C
L(Gj;,), since M works consistently *)
Finally, compute a canonical number j; for
L(Gj,_,) U L(G;,). Output j; and goto stage

k+1.

We continue in proving £ € IT —TXT(M) with respect
to G. First, M works iteratively by definition. Next,
for all guesses ji output by M we obtain L(é'jk), since
M works strong—monotonically. Moreover, after stage
k it always holds that tk'" C L(G'jk). By construction
we additionally get L(Gj,) C L(éjHr) for any r € N.
Finally, if M produces a guess jj at all such that L =
L(é’jk), then this guess is maintained in any subsequent
stage. Hence showing that M converges on ¢ reduces to

proving that M on t has to output a correct hypothesis
in some stage.

Claim: M converges on t.
We distinguish the following two cases.

Case 1: L is finite.

Since L is finite, by the observations made above, we
immediately obtain that there are only finitely many
stages at which A7 can detect an inconsistency. More-
over, as we pointed out, each string s € L may force
M at most once to perform a mind change. Finally,
since M only outputs guesses that are contained in L,
it sometime reaches a correct hypothesis. This proves
the claim.

Case 2: L is infinite .

Suppose the converse, i.e.; M changes its mind infinitely
often. Consequently, since any mind change is forced
by a detected inconsistency, there should be infinitely
many different strings s € L disproving M’s current
guess. However, this cannot happen as the following
argumentation shows. Let "¢ be L’s lexicographically
ordered text. Since M has to converge on t°"¢ too,
there is a z € N such that M(¢2"%) = j and L = L(G}).
Moreover, taking into account that M works strong—
monotonically, we additionally obtain: Any hypothesis
h = M(t"%) do satisfy L = L(G}3) for any sequence
o of strings from L. Furthermore, since ¢ is a text for
L, there exists an z € N such that range(t2"?) C t}.
Finally, as we have seen above, each string s € L may

force M at most once to perform a mind change. Con-
sequently, at least in stage the machine M outputs a
guess j, such that ¢} C L(G'jx). However, in accordance
with our assumption M receives in some subsequent
stage, say = + r, a string s such that s ¢ L(sz+r_1)~
As mentioned above, L((N}jr_) C L(sz_“_l). Thus s ¢
L(G'jr). Therefore |s| > maz{|lw| | w € range(t2"?)}.
That means, in stage « + r the machine M computes a
sequence 0y, ..., W that has ¢97% as prefix. Now M com-
putes M(iy,...,) = M(t2"%) = h, and as we have
seen above, L = L((3). Hence M’s output at the end
of stage # + r is a correct guess. This proves the claim
as well as assertion (1).

Moreover, a closer look to the proof presented above
yields that we have actually shown SMON — TXT C
SMON — IT — TXT. Since the converse inclusion
is obvious, the latter observation implies assertion (2).
Hence the theorem is proved.

q.e.d.

5 Conclusions and Open Problems

We have characterized strong-monotonic, monotonic as
well as weak monotonic learning from positive data.
In particular, the characterization of WMON — TXT
solved the problem of how to characterize inference al-
gorithms that avoid overgeneralization.

All these characterization theorems lead to a deeper in-
sight into the problem what actually may be inferred
monotonically. Moreover, we obtained a unifying ap-
proach to monotonic language learning in describing
general algorithms that perform any monotonic infer-
ence task. Furthermore, the characterization theorems
may be eventually applied to solve problems that could
not be solved using other approaches. In order to have
an example, let us recall what we have derived from The-
orem 2, i.e.,if L € SMON —TXT, then set inclusion
in £ is decidable (if one chooses an appropriate descrip-
tion of £). On the other hand, Jantke (1991B) proved
that, if set inclusion of pattern languages is decidable,
then the family of all pattern languages may be inferred
strong-monotonically from positive data. However, it
remained open whether the converse is also true. Using
our result, we see it is, i.e., if one can design an algorithm
that learns the family of all pattern languages strong—
monotonically from positive data, then set inclusion of
pattern languages is decidable. Nevertheless, while the
decidability of set inclusion of languages is necessary for
SMON — TXT identification, in general it is not suf-
ficient. In Lange and Zeugmann (1992) we have shown
that there is an indexed family of recursive languages
such that set inclusion is uniformly decidable but which
is not monotonically inferrable, even on informant.

However, several problems remained open. One of the
most intriguing questions is whether or not all types
of monotonic inference from positive data may be per-
formed by ITM s that are rearrangement—independent,

or even set—driven. For strong-monotonic inference this
question has been partially answered via the charac-
terization theorem. Unfortunately, for weak-monotonic
and monotonic language learning this approach did not
succeed. Nevertheless, we were able to characterize
rearrangement—independent monotonic inference from
positive data (denoted by MONR — TXT) as follows:

Theorem Let £ be an indexed family of recursive lan-
guages. Then: L € MONR —TXT if and only if there
are a space of hypotheses G = (G)jen and a recursively
generable family (Tj)jeN of finite sets such that

(1) range(L) = L(G)

(2) Forall j € N, Tj C L(G;).

(3) For all j,z € N, if Tj C L(G.), then L(G,) ¢
L(Gy).

(4) For allk, j € N, and for all I, € L, if L(G;) #
L # L(Gy) and Ty, C L(G;)N L as well as Tj C L,
then L(Gr)NL C L(G;)N L.

Obviously we have MONR —TXT C MON — TXT.
Therefore, clarifying whether the inclusion is proper ei-
ther yields a simplified characterization of MON-TXT
or it adds some evidence that Theorem 4 cannot be con-
siderably improved. Note that it is not hard to show
SMON-TXT C MONR—TXT (cf. Lange and Zeug-
mann (1992)).

Next we point out another interesting aspect of An-
gluin’s (1980) as well as of our characterizations. Frei-
valds, Kinber and Wiehagen (1989) introduced infer-
ence from good examples, i.e., instead of successively
inputting the whole graph of a function now an ITM
obtains only a finite set of pairs (argument,value) con-
taining at least the good examples. Then it finitely in-
fers a function iff it outputs a single correct hypothesis.
Surprisingly, finite inference of recursive functions from
good examples is ezactly as powerful as identification
in the limit. The same approach may be undertaken
in language learning (cf. Lange and Wiehagen (1991)).
Now it is not hard to prove that any indexed family £
can be finitely inferred from good examples, where for
each L € £ any superset of any of L’s tell-tales may
serve as good example.

Furthermore, as our results show, all types of monotonic
languague learning have special features distinguishing
them from monotonic inference of recusive functions.
Therefore, it would be very interesting to study mon-
otonic language learning in the general case, i.e., not
restricted to indexed families.

Finally, we have dealt with the problem to perform
strong-monotonic, monotonic and weak—monotonic in-
ference with iteratively working I7Ms. Asit turned out,
strong-monotonic inference from positive data may al-
ways be done with iteratively learning devices without
decreasing the learning capabilities. On the other hand,
monotonic and weak-monotonic inference with itera-

tive 11 M s is less powerful than with ordinary machines.
However, 1t remained open whether strong—monotonic
inference on informant can be performed by iteratively
working machines without limiting the learning power.

A cknowledgement

The authors gratefully acknowledge many enlightening
discussions with Rolf Wiehagen concerning the charac-
terization of learning algorithms.

6 References

[1] Angluin, D.; (1980), Inductive Inference of Formal
Languagues from Positive Data, Information and

Control 45, 117 - 135

[2] Angluin, D. and C.H. Smith, (1983), Inductive In-
ference: Theory and Methods, Computing Surveys
15, 3, 237 - 269

[3] Angluin, D. and C.H. Smith, (1987), Formal Induc-
tive Inference, In Encyclopedia of Artificial Intelli-
gence, St.C. Shapiro (Ed.), Vol. 1, pp. 409 - 418,

Wiley-Interscience Publication, New York

[4] Barzdin, Ya.M., (1974), Inductive Inference of Au-
tomata, Functions and Programs, Proc. Interna-
tional Congress of Math., Vancouver, pp. 455 - 460

[5] Bucher, W. and H. Maurer, (1984), Theoretis-
che Grundlagen der Programmiersprachen, Auto-
maten und Sprachen, Bibliographisches Institut
AG, Wissenschaftsverlag, Zurich

[6] Case, J., (1988), The Power of Vacillation, In Proc.
1st Workshop on Computational Learning Theory,
D. Haussler and L. Pitt (Eds.), pp. 196 -205, Mor-
gan Kaufmann Publishers Inc.

[7] Case, J. and C. Lynes, (1982), Machine Inductive
Inference and Language Identification, Proc. Au-
tomata, Languages and Programming, Ninth Col-
loquim, Aarhus, Denmark, M.Nielsen and E.M.
Schmidt (Eds.), Lecture Notes in Computer Sci-
ence 140, pp. 107 -115, Springer-Verlag

[8] Freivalds, R., Kinber, E. B. and R. Wiehagen,
(1989), Inductive Inference from Good Examples,
Proc. International Workshop on Analogical and
Inductive Inference, October 1989, Reinhardsbrunn
Castle, K.P. Jantke (Ed.), Lecture Notes in Artifi-
cial Intelligence 397, pp.1 - 17, Springer-Verlag

[9] Freivalds, R., Kinber, E. B. and R. Wiehagen,
(1992), Convergently versus Divergently Incorrect
Hypotheses in Inductive Inference, GOSLER Re-
port 02/92, January 1992, Fachbereich Mathematik
und Informatik, TH Leipzig

[10] Fulk, M.,(1990), Prudence and other Restrictions
in Formal Language Learning, Information and
Computation 85, 1 - 11

[11] Gold, M.E., (1967), Language Identification in the
Limit, Information and Control 10, 447 - 474

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Jain, S. and A. Sharma, (1989), Recursion Theo-
retic Characterizations of Language Learning, The
University of Rochester, Dept. of Computer Sci-
ence, TR 281

Jantke, K.P., (1991A), Monotonic and Non-mon-
otonic Inductive Inference, New Generation Com-
puting 8, 349 - 360

Jantke, K.P., (1991B), Monotonic and Non-mon-
otonic Inductive Inference of Functions and Pat-
terns, Proc. First International Workshop on Non-
monotonic and Inductive Logics, December 1990,
Karlsruhe, J.Dix, K.P. Jantke and P.H. Schmitt
(Eds.), Lecture Notes in Artificial Intelligence 543,
pp. 161 - 177, Springer-Verlag

Kapur, S.,(1992), Computational Learning of Lan-
guages, Department of Computer Science, Cornell
University, Ithaca, New York, Ph.D Thesis, TR 91-
1234, January 1992

Kapur, S. and G. Bilardi, (1992), Language Learn-
ing without Overgeneralzation, Proc. 9th Annual
Symposuim on Theoretical Aspects of Computer
Science, Cachan, France, February 13 - 15, A.
Finkel and M. Jantzen (Eds.), Lecture Notes in
Computer Science 577, pp. 245 - 256, Springer-
Verlag

Lange, S. and R. Wiehagen, (1991), Polynomial-
Time Inference of Arbitrary Pattern Languages,
New Generation Computing 8, 361 - 370

Lange, S. and T. Zeugmann, (1991), Monotonic
versus Non-monotonic Language Learning, in Proc.
2nd International Workshop on Nonmonotonic and
Inductive Logic, December 1991, Reinhardsbrunn,
to appear in Lecture Notes in Artificial Intelligence

Lange, S. and T. Zeugmann, (1992), On the Power
of Monotonic Language Learning, GOSLER-Re-
port 05/92, February 1992, Fachbereich Mathe-
matik und Informatik, TH Leipzig

Mukouchi, Y., (1991), Definite Inductive Infer-
ence as a Successful Identification Criterion, Re-
search Institute of Fundamental Information Sci-

ence, Kyushu University 33, Fukuoka, December
24, 91 RIFIS-TR-CS-52

Osherson, D., Stob, M. and S. Weinstein, (1986),
Systems that Learn, An Introduction to Learn-
ing Theory for Cognitive and Computer Scientists,
MIT-Press, Cambridge, Massachusetts

Porat, S. and J.A. Feldman, (1988), Learning Au-
tomata from Ordered Examples, in Proc. First
Workshop on Computational Learning Theory, D.
Haussler and L. Pitt (Eds.), pp. 386 - 396, Morgan
Kaufmann Publ.

Solomonoff, R., (1964), A Formal Theory of Induc-
tive Inference, Information and Control 7, 1 - 22,

234 - 254

Wiehagen, R., (1976), Limes-Erkennung rekursiver
Funktionen durch spezielle Strategien, J. Informa-
tion Processing and Cybernetics (EIK) 12, 93 - 99

[25]

[26]

[27]

Wiehagen, R., (1977), Identification of Formal Lan-
guages, Proc. Mathematical Foundations of Com-
puter Science, Tatranska Lomnica, J. Gruska (Ed.),
Lecture Notes in Computer Science 53, pp. 571 -
579, Springer-Verlag

Wiehagen, R., (1991), A Thesis in Inductive In-
ference, in Proc. First International Workshop
on Nonmonotonic and Inductive Logic, Decem-
ber 1990, Karlsruhe, J.Dix, K.P. Jantke and P.H.
Schmitt (Eds.), Lecture Notes in Artificial Intelli-
gence 543, pp. 184 - 207

Wiehagen, R., (1992), Personal Communication

