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Abstract

We study the learnability of indexed fami-
lies £ = (Lj)jew of uniformly recursive lan-
guages under certain monotonicity constraints.
Thereby we distinguish between ezact learn-
ability (£ has to be learnt with respect to the
space L of hypotheses), class preserving learn-
ing (£ has to be inferred with respect to some
space G of hypotheses having the same range as
L), and class comprising inference (£ has to be
learnt with respect to some space G of hypothe-
ses that has a range comprising range(L)).

In particular, it is proved that, whenever
monotonicity requirements are involved, then
exact learning is almost always weaker than
class preserving inference which itself turns out
to be almost always weaker than class compris-
ing learning. Next, we provide additionally in-
sight into the problem under what conditions,
for example, exact and class preserving learn-
ing procedures are of equal power. Finally, we
deal with the question what kind of languages
has to be added to the space of hypotheses in
order to obtain superior learning algorithms.

1. Introduction

Gold (1967)-style formal language learning has at-
tracted a lot of attention during the last decades (cf.
e.g. Osherson, Stob and Weinstein (1986) and the refer-
ences therein). Starting with Angluin’s (1980) pioneer-
ing paper many researches have focused their attention
on the learnability of indexed families of uniformly re-
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cursive languages (cf. e.g. Shinohara, 1986, 1990, Ka-
pur, 1992 Kapur and Bilardi, 1992, Lange and Zeug-
mann, 1992, 1993a, 1993b, Mukouchi, 1992a, 1992b).
Looking at potential applications this paradigm is of
special interest. Therefore we continue along this line.

The general situation investigated in language learn-
ing can be described as follows: Given more and more
information concerning the language to be learnt, the
inference device has to produce, from time to time, a hy-
pothesis about the object to be inferred. The set of all
admissible hypotheses is called space of hypotheses, or,
synonymously, hypothesis space. The information given
may contain only positive ezamples, i.e., eventually all
the strings contained in the language to be learnt, as
well as both positive and negative examples. In all what
follows we deal exclusively with learning from positive
data. Furthermore, the sequence of hypotheses has to
converge to a hypothesis that correctly describes the
target object. If there is a learning algorithm behaving
as described, then the languages it learns are said to be
learnable in the limit (cf. Gold, 1967). Moreover, there
are many possible requirements to the sequence of all
created hypotheses. In this paper we study the power
of learning algorithms that, when receiving more and
more information about the target language, do pro-
duce ezclusively better and better generalizations and
specializations, respectively. In its strongest formal-
ization we require the learning algorithm to create a
sequence of hypotheses describing an augmenting (de-
scending) chain of languages, ie., Ly C L; (L; 2 L;j)
iff L; is later guessed than L; (cf. Definition 3, (A),
(B)). Following Jantke (1991) and Kapur (1992) we call
these modes of inference strong-monotonic and dual
strong-monotonic. Weakening the latter demands has
led to the notion of weak—monotonic and dual weak-
monotonic learning. Here an inference machine is oblig-
ated to behave itself strong-monotonically (dual strong-
monotonically) as long as it receives data not contradict-
ing its actual hypothesis. If it gets data that provably
misclassify its last hypothesis, then it is allowed to out-
put any new guess (cf. Definition 3, (C), (D)).

Our main goal consists in investigating the learning
power in dependence on the choice of the space of hy-
potheses. For the sake of presentation we introduce some
notations. An indezed family £ = (L;);jew is a recursive



enumeration of non-empty languages such that mem-
bership in L; is uniformly decidable for all j € IN. If
an indexed family £ can be learnt with respect to £ it-
self, then £ is said to be ezactly learnable. That means,
the learning algorithm uses £ as hypothesis space. Fur-
thermore, £ is learnable by a class preserving learning
algorithm M if there is a space § = ((G;)jen of hy-
potheses such that any (; describes a language from £
and M infers £ with respect to G. Now any produced
hypothesis is required to describe a language belonging
to £ but we are free to use a possibly different enu-
meration of £ and possibly different descriptions of any
L € L. Finally, we consider class comprising learn-
ing. In this setting a learning algorithm is allowed to
use any hypothesis space G = (Gj)jemw such that any
L € [ possesses a description G; but G may addition-
ally contain elements G not describing any language
from £. Since membership in £ is uniformly decidable,
we restrict ourselves to consider exclusively spaces of
hypotheses having a uniformly decidable membership
problem.

Historically, most authors have investigated exact
learnability. Moreover, many investigations in other do-
mains of algorithmic learning theory deal with exact
learning too (cf. e.g. Natarajan, 1991). And indeed, as
long as one considers learning in the limit without any
additional demand, every indexed family being learn-
able class comprisingly may be learnt exactly too (cf.
Lange and Zeugmann, 1993b, 1993c). However, when
dealing with characterizations it turned out to be very
helpful to construct class preserving spaces of hypothe-
ses (cf. Kapur and Bilardi, 1992), Lange and Zeug-
mann, 1992). Consequently, it is only natural to ask
whether or not class preserving learning algorithms are
more powerful than exact ones. Dealing with a mea-
sure of efficiency we found that an appropriate choice of
the hypothesis space may eventually increase the learn-
ing power (cf. Lange and Zeugmann, 1993b, 1993c).
Furthermore, studying the capabilities of learning algo-
rithms in dependence on the hypothesis space has yield
very interesting results concerning probabilistic learning
models (cf. eg. Anthony and Gibbs, 1992, Freivalds, Kin-
ber and Wiehagen, 1988). Therefore, it is worth to
study this phenomenon in some more detail.

First, we present results demonstrating the superi-
ority of class comprising to class preserving monotonic
learning algorithms that are themselves superior to ex-
act ones. These separations have been obtained by de-
veloping a new powerful proof technique. Establishing
the announced separations using standard proof tech-
niques would require to diagonalize against all spaces
of hypotheses and all learning algorithms. Instead,
we have elaborated an effective reduction of the halt-
ing problem to monotonic learning problems. This ap-
proach yields easy to describe indexed families witness-
ing the desired separations.

Next, we ask why, for example, class preserving in-
ference procedures are sometimes more powerful than
exact learning algorithms. Obviously, as long as there
is an effective compiler from the space G of hypothe-

ses into the indexed family £, both modes of inference
are of equal power. Looking at learning in the limit,
Gold (1967) proved that even limiting recursive com-
pilers do suffice. What we would like to present are
characterization results stating that exact learning is of
the same power than class preserving inference if and
only if there are limiting recursive compilers satisfying
appropriate monotonicity requirements (cf. Theorem 4
and 5). Hence, our separations prove the non-existence
of such compilers.

Finally, we present results comparing class com-
prising and exact inference procedures. These results
strongly recommend the designer of learning algorithms
to carefully choose the enumeration as well as the de-
scription of the languages to be inferred in order to
obtain exact learning procedures of maximal power
(cf. Theorem 5 and 7). These results have been ob-
tained using non—trivial generalizations of our theorems
that characterize monotonic inference in terms of fi-
nitely generable recursive sets (cf. Lange and Zeug-
mann, 1992).

The paper is structured as follows. Section 2 presents
preliminaries. Separations are established in Section 3.
Results dealing with the announced characterizations
in terms of limiting recursive compilers are presented
in Section 4. The construction of description languages
yielding superior learning algorithms is given in Section
5. Conclusions and open problems are outlined in Sec-
tion 6, while Section 7 comprises all references.

2. Preliminaries

By IN = {1,2,3, ...} we denote the set of all natural
numbers. In the sequel we assume familiarity with for-
mal language theory. By X we denote any fixed finite
alphabet of symbols. Let X* be the free monoid over
3. Any subset L C X* is called a language. By co— L
we denote the complement of L. Let L be a language
and t = s1, 89, 83, ... an infinite sequence of strings from
¥* such that range(t) = {sy | k € IN} = L. Then t is
said to be a tezxt for L or, synonymously, a positive pre-
sentation. Let L be a language. By text(L) we denote
the set of all positive presentations of L. Moreover, let
t be a text and let  be a number. Then #,, denote the
initial segment of ¢ of length . Let ¢ be a text and let
z € IN. Weset t} := {sp | k < z}.

Next, we introduce the notion of canonical text that
turned out to be very helpful in proving several theo-
rems. Let L be any non-empty recursive language, and
let sq,s9,s3, ... be the lexicographically ordered text of
3*. The canonical text of L is obtained as fopllows.
Test sequentially whether s, € L for z = 1,2, 3, ... until
the first z is found such that s, € L. Since L # @ there
must be at least one z fulfilling the test. Set t; = s,.
We proceed inductively:

tx52+z+1; if Sy4ar41 S L

tot1 = tgs, otherwise, where s is the

last string in ¢,.



In the sequel we deal with the learnability of indexed

families of uniformly recursive languages defined as fol-
lows (cf. Angluin, 1980):
A sequence L1, Ly, L3, ... 1s said to be an indezed famaly
L of uniformly recursive languages provided all L; are
non—empty and there is a recursive function f such that
for all numbers j and all strings s € ©* we have

fl,9) = { 0, otherwise.

In all what follows we refer to indexed families of uni-
formly recursive languages as indexed families for short.
Moreover, we often denote an indexed family and its
range by the same symbol £. What is meant will be
clear from the context.

As in Gold (1967) we define an inductive inference
machine (abbr. TIM) to be an algorithmic device which
works as follows: The TIM takes as its input larger and
larger initial segments of a text ¢ and it either requires
the next input string, or it first outputs a hypothesis,
i.e., a number encoding a certain computer program,
and then it requires the next input string.

At this point we have to clarify what spaces of
hypotheses we should choose. We require the induc-
tive inference machines to output grammars, since this
learning goal fits well with the intuitive idea of lan-
guage learning. Furthermore, since we exclusively deal
with indexed families £ = (L;j);jen we always take as
space of hypotheses an enumerable family of grammars
G1,Gs,Gs, ... over the terminal alphabet ¥ satisfying
L C{L(G;) | j € IN}. Moreover, we require that mem-
bership in L(G}) is uniformly decidable for all j € IN
and all strings s € ¥*. The IIM outputs numbers j
which we interpret as Gj.

A sequence (Jr)semv of numbers is said to be conver-
gent in the limit iff there is a number j such that j, = j
for almost all numbers z.

Definition 1. (Gold, 1967)

Let L be an indexed family of languages, L € L, and
let G = (Gj)jew be a space of hypotheses. An IIM
M LIM —identifies L on a text t with respect to G iff
1t almost always outputs a hypothesis and the sequence
(M(tz))remN converges in the limit to a number j such
that L = L(GJ)

Furthermore, M LIM —identifies L, iff M LIM-
identifies L on every text t € text(L). We set:
LIM(M)={L€eL|M LIM — identifies L}.

Finally, let LIM denote the collection of all families
L of indezed famalies for which there is an ITM M such
that L C LIM(M).

Note that, in general it is undecidable whether or
not an ITM has already successfully finished its learning
task. If this decidability is additionally required, then
we obtain finite learning.

Definition 2. (Gold, 1967)
Let L be an indexed family of languages, L € L

and let G = (Gj)jew be a space of hypotheses. An
IIM M FIN —identifies L on text t with respect to G

off it outputs only a single and correct hypothesis j, i.e.,
L = L(Gy), and stops.

Furthermore, M FIN —identifies L, iff M FIN-
identifies L on every t € text(L). We set:
FIN(M)={L € L | M FIN—identifies L} and define
the resulting learning type FIN to be the collection of
all finitely inferable indezed families.

The next definition formalizes the notions of mono-
tonicity that we have informally introduced in the in-
troduction.

Definition 3. (Jantke, 1991, Kapur, 1992)

Let L be an indezed family of languages, L € L and
let G = (Gj)jew be a space of hypotheses. An IIM M
1s said to identify a language L from text

(A) strong—monotonically
(B) dual strong-monotonically
(C) weak-monotonically
(D) dual weak-monotonically
f
M LIM-identifies L and for any text t € text(L) as
well as for any two consecutive hypotheses jp, Jutk

which M has produced when fed t, and ty4y for some
k> 1,k € N, the following conditions are satisfied:

(A) L(Gy,) C L(Gjy)
(B) co— L(G;,) Cco— L(Gj,.,)

otk
(C) ftorr © L(Gj,) then L(Gj,) C L(Gj,y)
(D) iftegr C L(Gj,) then co— L(Gj,) C co— L(Gj,,,)-

By SMON, SMON?, WMON, and WMON? we
denote the family of all sets £ of indexed families for
which there is an IIM inferring it strong—monotonically,
dual strong—monotonically, weak—monotonically, and
dual weak—monotonically, respectively.

Note that weak-monotonic inference equals conser-
vative learning originally introduced by Angluin (1980)
(cf. Lange and Zeugmann, 1993a).

For any mode of inference defined above we use the
prefix E to denote exact learning, i.e., the fact that £
has to be inferred with respect to £ itself. For example,
ELIM denotes exact learnability in the limit. More-
over, we use the prefix C' to mark class comprising infer-
ence, i.e., the fact that £ may be learnt with respect to
any space of hypotheses comprising range(£). To have
an example, CSMON? denotes the collection of all in-
dexed families that can be class comprisingly learnt by
a dual strong-monotonically working IIM. If no prefix
is used, then we always mean class preserving learning,
i.e., learning with respect to a space G = (G;)jen of
hypotheses such that range(£) = {L(Gj) | j € IN}.

In the next section we compare the learning power

of the introduced modes of inference in dependence on
the space of hypotheses.



3. Separations

The starting point of our investigations has been An-
gluin’s (1980) theorem stating EWMON C ELIM. In
essence, this theorem asserts that an IIM sometimes has
to reject a guess without having received data contradict-
ing 1t. A careful analysis of her proof even showed that
any indexed family £ € ELIM \ EWMON cannot be
learnt by an ITM that works semantically finite. An IIM
is said to work semantically finite when learning £ with
respect to G = (G;)jew if and only if for all L € £ any
any text ¢ € text(L) the following condition is satis-
fied: Let j be the hypothesis the sequence (M(%;))rem
converges to and let z be the least number such that
M(t,) = j. Then, L(Guq,)) # L(Gj) for all y < 2.
That means, a semantically finite working ITM is never
allowed to reject a guess which is correct for the lan-
guage to be learnt.

Hence, it is only natural to ask why FEWMON C
ELIM. Looking at inductive inference of recursive
functions we have, roughly speaking, the following situ-
ation. Any IIM M inferring in the limit some class U of
recursive functions may be replaced by a semantically fi-
nite working ITM M that learns U as well. This result is
achieved by constructing a suitable space of hypotheses
comprising U which respect to which the desired ITM M
may infer U semantically finite (cf. Wiehagen, 1991).

Hence, we first conjectured that EWMON C ELIM
might be caused by the requirement to learn exactly.
Subsequently, we observed that ELIM = LIM =
CLIM as well as EWMON C WMON (cf. Lange and
Zeugmann, 1993b, 1993c). Next we have shown that
CSMON \ WMON # @ but, however, CWMON C
LIM. In particular, the latter statement shows that,
when learning from positive data, non—semantically fi-
nite working IIMs are sometimes inevitable. Moreover,
the results mentioned stimulated us to investigate the
power of learning in dependence on the space of hy-
potheses in detail. We have obtained the following fig-
ure.

Theorem 1.

ELIM = LIM = CLIM
U U I
EWMONY c WMON* c CWMON?
U U U
EWMON < WMON c CWMON
u U u
ESMON Cc SMON C CSMON
U U U
EFIN = FIN = CFIN
Il Il N
ESMON? = SMON¢ c CSMON¢®

Proof. All improper inclusions immediately follow
from the definitions of the corresponding identification
types. The equality of ELIM, LIM and C'LIM has
been proved in Lange and Zeugmann (1993c). For the
proof of EFIN = FIN = C'FIN the reader is referred
to Lange and Zeugmann (1993d).

Now we show EWMON1 ECWMON # (. This
implies \AWMON C AWMON?, for any A € {E,¢,C},
where € denotes the empty string.

Let ¢1, @2, @3, ... be any fixed acceptable program-
ming system for the partial recursive functions over
IN, and let ®;, &5, ®j3,.. be any associated com-
plexity measure (cf. Machtey and Young, 1978). By
¢:IN x IN — IN we denote Cantor’s pairing function.

The desired indexed family L., 4 is defined as follows.
For all k£ € IN we set L.;,1) = {a*b" | n € IN}. For all
k € IN and all j > 1 we distinguish the following cases:

Case 1: = ®y(k) <j
Then we set L. ) = Le(r,1)-
Case 2: ®p(k)<j

Let d = 2 - @y (k) — j. Now, we set:
I {a*b™ |m < d}, ifd>1
o(hd) = {a*b}, otherwise.

Loewd = (Lc(k,j))j,kelN is an indexed family of recur-
sive languages, since the predicate “®;(y) < 2z” is uni-
formly decidable in 7, y, and z.

Claim A. L.yqa § CWMON

Since the halting problem is undecidable, Claim A
follows by contraposition of the following lemma.

Lemma. If there exists an IIM M with L.nq C
CWMON (M), then one can effectively construct an al-
gorithm deciding for all k € IN whether or not oy (k)
converges.

Proof. Let M be any IIM weak-monotonically in-
ferring L.q w.r.t. some hypothesis space G comprising
Lewd. We define an algorithm A that solves the halting
problem. On input k& € IN the algorithm A executes the
following instructions:

(A1) For z = 1,2, ... generate successively the canonical
text ¢ of L(x,1) until M on input ¢, outputs for the

first time a hypothesis j such that ¢ U {a*b**+1} C
L(Gy).

(A2) Test whether ®1(k) < z. In case, it is, output
“or (k) converges”.
Otherwise output “py(k) diverges.”

Since M has to infer L. 1) in particular from ¢, there
has to be a least z such M on input ¢, computes a hy-
pothesis j satisfying tF U {a*b**1} C L(G;). Moreover,
the test whether or not t¥ U {a*b**'} C L(G;) can
be effectively performed, since membership in L(G;) is
uniformly decidable. By the definition of a complex-
ity measure, instruction (A2) is effectively executable.
Hence, A is an algorithm.

It remains to show that ¢ (k) diverges, if = @ (k) <
z. Suppose the converse; then there exists a y > z
with ®¢(k) = y. In accordance with the definition of
Lewd, there is an I € Leya, namely L =t such that
L C L(Gj). Since t} = L, we know that ¢, is also an
initial segment of a text ¢ for L. Hence, M does not
work weak-monotonically when inferring L on £. This



contradicts our assumption that L.,q € CWMON(M).
Hence, the lemma is proved.

Claim B. Lopq € EWMON?
We have to show that there is an IIM A that infers
Lewa dual strong—monotonically w.r.t. Leyq itself.

Let L € Ly, let t € text(L), and let € IN. We
define:

M(ty) = “Determine the unique k such that ¢; = akpm
for some m € IN. Test whether or not ®(k) < z.
In case it is, goto (A). Otherwise, output ¢(k, 1).

(A) Test whether or not a¥6®(®)+™ c ¢+ for some
m € IN. In case it is, output ¢(k,1). Other-
wise, goto (B).

(B) Determine the maximal m € IN such that
a*b™ € tf. Output c(k,2 - ®x(k) — m).”

By construction, M performs at most one mind
change which is not caused by an inconsistency when
inferring L from text ¢. This is, if ever, a mind change
from L, 1) to one of its finite sublanguages contained
n Lewd. Afl remaining mind changes are justified ones.
Therefore, M works dual weak—-monotonically. More-
over, for any k € IN there are at most finitely many
different finite languages L.(; ;) C L,1). Hence, M
converges to a correct hypothesis for L. This proves
Claim B.

EWMON? C ELIM as well as CWMON® = LIM
has been shown in Lange, Zeugmann and Kapur (1992).
The family witnessing ELIM \ EWMON¢? # {) can also
be used to prove EWMON? C WMON4, (cf. Lange
and Zeugmann, 1993d). The inclusion WMON? C
LIM is due to E.B. Kinber (1993).

Since CSMON \ WMON # 0 (cf. assertion (1)
of Theorem 3 below), one directly obtains WMON C
CWMON and SMON C CSMON. Similarly,
SMON \ EWMON # § (cf. assertion (3) of Theorem
3) implies EWMON C WMON as well as ESMON C
SMON. Furthermore, since EWMON\CSMON #(
(cf. assertion (2) of Theorem 3), we have ASMON C
AWMON, for any A € {E,¢,C}.

Moreover, assertion (4) of Theorem 3 yields CFIN C
CSMON, CFIN C CSMON, and SMON? C
CSMON?. FIN = SMON¢ has been shown in Lange,
Zeugmann and Kapur (1992). Finally, ESMON \
FIN # () may be demonstrated using the indexed fam-
ily £ = (Lg)gemw, where Ly = {a” | n < k}. This

completes the proof of Theorem 1. qed

In Lange and Zeugmann (1993a) we have shown
that strong—monotonic inference from positive and neg-
ative data is always less powerful than weak—monotonic
learning from text. On the other hand, SMON \
EWMON # ¢ and CSMON \ WMON # ( as we shall
see below. Consequently, it is only natural to ask what
the relation between CSMON? and CWMON is. We
have been a bit surprised to obtain the next theorem.

CSMON? C EWMON

Theorem 2.

Proof. We start with the following lemma.

Lemma. Let £ = (L;)jen be an indezed family. If
L € CSMON?, then either Lj = Ly or Ly # L; for all
J, ke IN.

Proof. Suppose the converse, i.e., there is an in-
dexed family £ € CSMON? such that L; C Ly for
some j, k € IN. Let M denote any IIM inferring £
dual strong-monotonically w.r.t. to a hypothesis space
G comprising £. Moreover, let t € text(L;). Since M
has to infer L; from ¢, there has to be an € IN such
that M(ty4,) = j, for all » € IN and L(Gj,) = L;.
Since L; C Ly, ty can be extended to a text t for L.
It is easy to see that M fails to infer Lj from ¢ dual
strong-monotonically. This proves the lemma.

Claim A. CSMON? C EWMON.
Let £ € CSMON®?. The wanted TTM M is defined

as follows. Let L € £, let t € tezt(L), and let z € IN*.
We set:

M(ty) = “Search the least index j < z with ¢t C L;.
Output it. In case t} ¢ L; for all j < z output
nothing and request the next input.”

By construction, M performs exclusively justified
mind changes. Let z = pj[L = L;]. By the lemma
above we may conclude that that L, \ Ly # 0 for all
k < z. Consequently, for all £ < z there has to be an z,
such that tjk ¢ Ly. Therefore, M rejects any hypothe-
sis k with k < z and converges to z. This proves Claim

A.

Claim B. EWMON \ CSMON? £ .
Consider the indexed family £ with Ly = {a” | n < k}.
It is straightforward to show £ € ESMON, and hence
L € EWMON. On the other hand, by the lemma above

one immediately gets £ & CSMON?Y. qed

Theorem 3.
(1) WMON # CSMON
(2) EWMON # CSMON
(3) EWMON # SMON
(4) CSMON® # CSMON

Proof. We start with assertion (4). Within the proof
of Theorem 2 we have already shown that ESMON \
CSMON? # (. This directly implies CSMON \
CSMON® # (. Hence, it suffices to define an in-

dexed family L..q such that L., € CSMON¢?, but
Losa @& CSMON.

We use the notations introduced in the proof of The-
orem 1.

The desired indexed family is defined as follows. For
all k € IN we set Ly,1y) = {a¥b” | n € IN}. For all
k € IN and all j > 1 we (3istinguish the following cases:

Case 1: =~ ®p(k)<j
We set: Lc(k,j) = Lc(k,l)

Case 2: ®p(k) <j
Let d = 2- @ (k) — j. Then, we set:



I {a*b™ |m < d}u{bFal},if d > 1
(ki) = {a*b} U {b*al}, otherwise

Lesqg = (Lc(k,j))j,kelN is an indexed family of recur-
sive languages, since the predicate “®;(y) < z” is uni-
formly decidable in 7, y, and z.

Claim A. L.qa ¢ CSMON

The claim is proved by reducing the halting problem
to Losqg € CSMON. We omit the details.

Claim B. L.,qa € CSMON*?

We have to show that there is an appropriate space
of hypotheses G = (G} ) e comprising L.,4 and an IIM
M inferring £ dual strong—monotonically w.r.t. G.

We define the wanted space of hypotheses G as fol-
lows. For all k, j € IN, we set L(Gx,1)) =
and L(Gc(k,j+1)) = Lc(k,j)~

Since L.sq i1s an indexed family, it is easy to verify
that membership is uniformly decidable for G. By con-
struction, G = (G;)jen comprises L.,q. For the proof
of Lesa € CSMON? w.r.t. G the reader is referred to
Lange and Zeugmann (1993d).

The proof idea used above applies mutatis mutandis
to obtain the remaining separations. Next to, we sepa-

rate SMON and FWMON which completes the proof
of assertion (3).

jEJJNLC(k,j)

The desired indexed family L., is defined as follows.
For all k € IN, we set L, 1) = {a*b" | n € IN}. For all
k € IN and all j > 1, we distinguish the following cases:

Case 1: = ®p(k) <
We set: Lc(k,j) = Lc(k,1)
Case 2: ®p(k) <j
Then, we set: Ly iy = {a*b™ | m < @y(k)}

The proof of L. € SMON\EWMON may be found
in Lange and Zeugmann (1993d).

In order to prove assertion (1) and assertion (2), it
remains to show CSMON \ WMON # (. This can be
done using the following indexed family L:smon. For all
k € IN we set L. 1) = {a*b” | n € IN}. For all k € IN
and all j > 1 we distinguish the following cases:

Case 1: —®y(k) > j
We set: Lc(k,]) = Lc(k,l)
Case 2: ®p(k) <j
Let d = j — ®¢ (k). Then, we set:
Lok jy = {a"™ | m < @y (k)}U{a"pPr(+200Hm) |
m € IN}
We omit the details.
q.e.d.

As we have seen, a new proof technique has been ap-
plied to obtain most of the stated separations. In par-
ticular, we have effectively reduced the halting problem
to several monotonic learning problems. These reduc-
tions imply that the considered learning problems are

at least as hard the halting problem. This insight de-
serves some attention. Gold (1967) showed that that
no IIM can learn the class R of all recursive functions
in the limit. On the other hand, the degree of the
algorithmic unsolvability of R € LIM is strictly less
than the degree of the halting problem (cf., Adleman
and Blum, 1991). This puts the constraint to learn
monotonically w.r.t. a particular hypothesis space into
a new perspective. An algorithmically solvable learning
problem (e.g. £ € CSMON) may become algorithmi-
cally unsolvable, if an at first glance natural demand is
added (e.g. to learn exactly), even if the monotonicity
requirement is slightly weakened (cf., e.g. assertion (2)
of Theorem 3). Moreover, the degree of unsolvability
may be at least as high as that of the halting problem,
and is, therefore, strictly higher than that of learning
all recursive functions. As far as we know, there is only
one paper stating an analogous result in the setting of
inductive inference of recursive functions, 1.e., Freivalds,

Kinber and Wiehagen (1992).

In the next section we provide some more insight into
the problem why the choice of the space of hypothe-
ses does considerably influence the power of monotonic
learning algorithms.

4. Limiting Recursive Compil-
ers

This section is devoted to the problem why an in-
dexed family that can be learnt with respect to some
space G = (G})jew of hypotheses might become non—

inferable with respect to other spaces G = (G})jemn of
hypotheses. A first hint how to answer this question has
already been given by Gold (1967). Namely, he proved
that, whenever there is a limiting recursive compiler (cf.

Definition 4 below) jfrom G into G, then any ITM infer-
ring a class £ of languages with respect to G can easily
be converted into one that learns £ with respect to G
Considering indexed families being learnable with re-
spect to some space G of hypotheses, we could prove
that there is always a limiting recursive compiler from
G into L. The same is, mutatis mutandis, true for finite
learning, i.e., there is always a recursive compiler from
G into L. However, if some monotonicity requirement is
involved, then the situation considerably changes. The
reason for that phenomenon is as follows. A limiting re-
cursive compiler in general does not preserve any of the
introduced monotonicity demands. But even if it does,
it is a highly non—trivial task to convert an IIM that,
for example, class preservingly learns an indexed family
L with respect to some appropriate chosen space G of
hypotheses into an IIM exactly learning £. The latter
difficulty is caused by the fact that one has to combine
two limiting processes into one. We have solved this
problem by using a suitable modification of our charac-
terization theorems (cf. Lange and Zeugmann, 1992).

For the sake of presentation we give only two of
the theorems obtained, since they already do suffice to
convey the spirit of the insight achievable. We start
with the formal definition of limiting recursive compil-



ers. For notational convenience we use L(G) to denote
{L(Gj) | j € IN}for any space G = (G} );emw of hypothe-
ses.

Definition 4. Let G = (Gj)jen and G = ( i)jeN
be two spaces of hypotheses such that L(G) = L(G). A
recursive function f : INXIN — IN s said to be a imiting
recursive comptler from G into G iff k := limy_.o f(j, 2)
exists and satisfies L(G;) = L(Gy) for all j € IN.

Next to we introduce limiting recursive compilers ful-
filling certain monotonicity demands.

Definition 5. Let G = (Gj)jew and G = ( )JE]N
be two spaces of hypotheses such that L(G) = L(g). A
limiting recursive compiler f from G into G is said to be

(A) strong-monotonic

(B} weak-monotonic
uf
(A) for all j,z € IN we have L(G'f(jyx)) C L(Gf(jyx.l_l))

(B) for all jyx € IN we have, if k = limy—.oo f(j,2),
then L(Gf(j,:v)) z L(Gk)

Now we are ready to present the announced charac-
terizations comparing the power of exact and class pre-
serving learning algorithms under certain monotonicity
constraints.

Theorem 4. Let L be an indexed family and let
G = (Gj)jew be a space of hypotheses such that L €
SMON w.r.t. G. Then we have:

L € ESMON if and only if there is a strong-
monotonic limiting recursive compiler from G into L.

Proof. Necessity. Let £ € ESMON. Then there is
an IIM M such that £ C ESMON(M) with respect
to £. We define the desired limiting recursive compiler
from G = (Gj)jew into £ as follows. Let j,z € IN and
let # be the canonlcal text of L(Gj). We set:

f(j,*) = “Compute the sequence (M(t))),en up to
length z. Let j, be the last element of this se-
quence. Set f(j,z) = jy.”

It is straightforward to verify that f is strong-mono-
tonic limiting recursive compiler from G into L.

Sufficiency. Let £ C SMON(M) w.r.t. G and let f
be a strong—monotonic limiting recursive compiler from
G into L. We have to define an IIM such that £ C
ESMON(M). The main difficulty we have to deal with
is the combination of two limiting recursive processes
into one yielding an ITM strong—monotonically inferring
Lw.r.t. L. Let t be any text of any language L € L. Fur-
thermore, let j, = AM( z) and jeyr = M(t“_,) Then,
of course, we have L(G;,) C L(Gj,,,). But it is by no
means obvious whether or not L;(;_ .y C L, ., m) or
how to choose z and m such that the resulting hypothe-
ses do fulfil the desired monotonicity demands. How-
ever, a suitable modification of our characterization of
SMON in terms of finite tell-tales offers a possibility to

handle the inclusion problem recursively. Therefore, we
continue with the following lemmata.

Lemma 1. There 1s a recursively generable family
(ij)j,yelN of finite sets defined with respect to the hy-
pothesis space G such that the following conditions are
fulfilled:

(1) for all L € L there is a j with L = L(G;) and
Ty #+ 0 for almost all y € IN,

(2) for all j,y € IN we have: T] C L(Gj) and TJy +0
mmplies T;Hl = TJy,

(3) for all j,y,z € IN we have: O # TJy C L, and
0 #T; C L(G.) implies L(Gj) C L, and L(G;) C
L(G;), respectively.

We define the wanted sets TJy as follows. Let j,y €
IN; then we set:

Val t, if z=min{z |z <y,
7 (th) = 4),
0, otherwise.

where M denotes the ITM that strong—monotonically
infers £ w.rt. G. Using mutatis mutandis the same
arguments as in the proof of Theorem 2 in Lange and
Zeugmann (1992) one easily verifies that assertion (1),

(2) and (3) are satisfied.

This proves Lemma 1.

Lemma 2. Let (T;’)jyyem be the family of recursively
generable finite sets from Lemma 1. Then there is an
IIM M satisfying the following properties:

(1) £ C SMON(M),
(2) for all L € £ and all t € Text(L) we have: z =

limy_, oo M(tx) implies TY # 0 for almost all y €
IN.

We define the desired IIM M as follows:

M(t;) = “For j = 1,...,z, generate T7 and test for all
non-empty T whether or not T” C tf C L(Gy).
In case there 1s at least a j fulﬁlhng the test , output
the minimal one and request the next mput

Otherwise output nothing and request the next in-
put.”

It remains to show that assertion (1) and (2) are
satisfied.

Claim. M infers £ wrt. G.
Let k = pz[L = L(G,) and TY # @ for almost all y].

Assertion (1) of Lemma 1 ensures the existence of such
a k. Furthermore, by assertion (2) of Lemma 1 there is a
_ Tgo+r

Yo satisfying TP = ... = TY° = and 0 # Tlgc!0+1 =

for all » € IN.

The latter observation also holds for all j for which
there is a y such that T;y # (. Consequently, any re-
jected hypothesis is never repeated in some subsequent
step. The remaining part of (1) may be analogously



shown as in the proof of Theorem 2 in Lange and Zeug-

mann (1992).

Assertion (2) is an immediate consequence of M’s
definition and the observation made in proving the claim
above.

This proves Lemma 2.

We continue with the definition of the desired TIM
M. Let L € L, t € tezt(L) and z € IN. Moreover, let
(T})j ye be the recursively generable family of Lemma

1, and let M be chosen in accordance with Lemma 2.

We set:

M(ty) = “If # = 0 or M, when having successively fed
with ¢,_; does not output any guess, then goto (A).
Else goto (B). _ ~
(A) Simulate M on input ¢,. If M, when fed suc-

cessively with ¢,, does not produce any hy-
pothesis, then output nothing and request the
next input.

Otherwise, let j = M(t;). Set FLAG(z) = j,
output f(j,z) and request the next input.

(* By definition of M we have TF£0. %)

(B) Simulate M on input t,. If M on ¢, requires
the next input without producing a hypothe-
sis, then set FLAG(z) = FLAG(z—1), output
F(FLAG(z),z) and request the next input.
Else let k = Nf(tz).

(* By definition of M we have TZ # (). *)

If k = FLAG(z — 1), then set FLAG(z) =
FLAG(z — 1), output f(FLAG(z),z) and re-
quest the next input.

If ¥ # FLAG(z — 1), then test whether

Tprace-1) S Lfke):
U T ac@ory € Litka), set FLAG(z) =

FLAG(z — 1), output f(FLAG(z),z) and re-
quest the next input.

Finally, if TI{ZLAG(I_D C Lj(k,z), then set
FLAG(z) = k, output f(FLAG(z),z) and re-

quest the next input.

It remains to show that £L C ESMON(M).
Claim 1. M works strong-monotonically.

Since f is a strong—monotonic limiting recursive com-
piler from G into £, the following condition is satis-
fied. If L(Gj) = L, then Ly ) C L for all z € IN.
This can be seen as follows. Let k = limy_, f(j, 2).
In particular, f is a limiting recursive compiler, and
hence, L(G;) = Ly = L. Moreover, f works strong-
monotonically. Therefore we get

Lie) C LGa+1) C - C Liim,_ o f(J,2) = Lp =
L = L(Gj).

This observation directly yields that M works
strong-monotonically, if FLAG(z) = FLAG(z —1).

Now, let FLAG(z) # FLAG(z — 1). If M outputs
its first guess, then 77 # 0. Due to assertion (2) of
Lemma 1 we get zj+r # ( for all r € IN. If M, after
having read ¢, changes its mind, say from j to k, then we

additionally know that Ty # (. Moreover, by assertion
(2) of Lemma 1 again we obtain 7y 7" # () for all r € IN.
Hence, the condition T},LAG(I_I) # () is always satisfied.

Therefore, we have the following situation: k£ = A}(tx),
k # FLAG(z — 1) and 0 # Trrac@—1) € Loy =
Li(FraG(x)e)-

By construction as well as in accordance with the
definition of f and the observation made above we get:

LiFrracz-1):-1) € L(Grrag—1))-

Hence, the assumptions of assertion (3) of Lemma 1 are

fulfilled. Thus,
T;"LAG(:L'—I) g Lf(k,:v) 1mphes L(GFLAG(:U—l)) g Lf(k,:v)

Taking these facts altogether, we obtain that
Lyrracz-1),2-1) € Lfkx) = Lf(FrLaG(z)s). Hence,
M works strong-monotonically.

Claim 2. M infers L from ¢.

By assumption, z = limx_,oojljf(tx) exists and satis-
fies L = L(G,). By assertion (2) of Lemma 2 there is a
yo such that TY # ( for all y > yo. In particular, f is
a limiting recursive compiler from G into £. Hence, for
all j with L = L(Gj) there exists n = limy_. f(j, z)
and it satisfies L, = L(G;) = L.

Taking the latter facts into account we see that M
has to output sometimes a first hypothesis f(j, z). If j =
z, then all subsequent hypotheses have the form f(j, z+
r), r € IN, and M converges to a correct hypothesis.

Now, let j # z. Then the IIM M has not yet con-
verged. Consequently, it suffices to show that M(t;) =
f(z,z) for almost all z € IN. If 2 > yo, then 77 # 0.
Moreover, L = Ly, ») for almost all z € IN. As we have
seen above, L(Grrag(z—1)) C L, and by assertion (2) of
Lemma 1 we addltlo.nally kn.ow that T;LAG(Z_I) C L.
Therefore, M sometimes verifies T}LAG@_I) C Lizz)
and it sets FLAG(x) = z. Since M cannot reject z, the
IIM M cannot change its FLAG in some subsequent
step. Hence, M converges to a correct hypothesis for L.

q.e.d.

Theorem 5. Let £ be an indezed family and let
G = (Gj)jen be a space of hypotheses such that L €
WMON w.r.t. G. Then we have:

L € EWMON 1if and only if there is a limiting re-
cursive weak-monotonic compiler from G into L.

In particular, the latter theorems and Theorem 1 to-
gether prove the non—exzistence of limiting recursive mo-
notonic compilers between some recursively enumerable
families of uniformly recursive languages.

5. Class Comprising and Exact
Learning
As we have seen in Section 3, when dealing with mo-

notonic inference, class comprising learning is almost
always more powerful than class preserving inference



which itself is superior to exact learning. In particu-
lar, the results obtained give strong evidence that ex-
clusively changing the descriptions for the objects to be
learnt as well as their enumeration does not suffice to
get learning algorithms of maximal power. Therefore,
we are interested in knowing what kind of languages has
to be supplemented to the spaces of hypotheses in order
to design superior inference procedures. Moreover, we
ask whether or not these added languages may be learnt
themselves as well. As the following theorems show, the
answer to these questions strongly depends on the type
of monotonicity requirement involved. A careful analy-
sis of our proof that CWMON? = LIM yields the first
somehow unexpected result.

Theorem 6. For all indezed families £ we have:

If L € CWMON?, then there is a hypothesis
space G = (G;)jew comprising L such that L(G) €
EWMON?A.

One possibility to prove the above theorem consists
in choosing G = (Gj)jemw as the canonical enumeration
of all finite intersections of elements of £. Hence, this
construction may be performed independently of the
IIMs witnessing £ € CWMON?4.

Looking at dual strong-monotonic inference, the sit-
uation completely changes. In this setting, one is re-
quired to add grammars to the space of hypotheses that
describe languages being not learnable themselves. This
is stated by the next theorem.

Theorem 7. Let L be any indezed family satisfy-
ing LE CSMON®\ SMON?®. Then there is no space
G = (Gj)jen~ of hypotheses such that L C L(G), and
L(G) € SMON®.

Proof. Suppose the converse, i.e., there is a space
G = (Gj)jen~ of hypotheses such that (L(Gj))jemw €
ESMON? wer.t. (L(Gy))jen. By assumption, £ €
CSMONI\SMON?, and hence, £ C {L(G;) | j € N}.
Moreover, due to Theorem 1 we know that FIN =
ESMON?. Therefore, (L(G}))jenw € ESMON® im-
plies (L(Gj))jemw € FIN. Furthermore, by Theo-
rem 1 we know that FIN = EFIN. Consequently,
there is an IIM M that finitely infers (L(G;))jem
w.r.t. (L(Gj))jew. On the other hand, £ C {L(Gj) |
j € IN}. Hence, M finitely infers £, too. Applying The-
orem 1 once again, we conclude £ € SMON¢?. This

contradicts the assumption.
q.e.d.

The next theorem has some special features distin-
guishing it from the previous ones. As we have seen, in
case one is dealing with dual weak—monotonic inference,
there is a unique and simple way to complete the space
of hypotheses appropriately. On the other hand, the
requirement to work dual strong—monotonically does
not allow at all a completion of the space of hypothe-
ses such that the whole space becomes learnable in the
sense of SMON?. So, what can be asserted concern-
ing weak—-monotonic learning. The answer is twofold.
First, we have been able to prove a theorem yielding
the same statement for CWMON than Theorem 6 does

for CWMON?®. However, the construction of the de-
sired space of hypotheses is much more complicated.
Fortunately, it remains uniform in the IIMs witness-
ing L € CWMON(M). This result has been achieved
by first characterizing CWMON in terms of recursive
and finite tell-tales. The resulting space of hypotheses
G = (Gj)jen is the canonical enumeration of all those
languages L(G;) possessing a non—empty tell-tale. For
the purpose of characterizing CWMON as described
it has been necessary to modify considerably the proof
techniques of Lange and Zeugmann (1992).

Theorem 8. For all indezxed families L we have:

If L € CWMON, then there is a hypothesis
space G = (Gj)jew comprising L such that L(G) €
EWMON. .

The situation concerning C'SMON still remains un-
solved. We shall discuss this and other open problems
in the next section.

6. Conclusions and Open Prob-
lems

Learning by generalization and specialization, re-
spectively, are modes of inference favored in various do-
mains of machine learning. We have studied the ca-
pabilities of such learning algorithms in dependence on
the choice of the space of hypotheses. The results ob-
tained strongly recommend to carefully choose the space
of hypotheses in order to obtain superior learning al-
gorithms. Moreover, we provided additionally insight
into the problem under what circumstances the choice
of the space of hypotheses does considerably influence
the learning power.

Furthermore, we have established conditions under
what circumstances hypothesis spaces are equivalent.
These results may be applied, at least conceptually,
in the design of learning algorithms. Suppose, one
is interested in learning an indexed family £ strong—
monotonically w.r.t. £. Then, Theorem 4 offers the
following possibility to proceed. First, one may define
a class preserving hypothesis space G = (Gj)jew that
possesses several useful properties w.r.t. the design of a
learning algorithm. Applying these properties, it might
be easier to define an IIM learning £ w.r.t. G. Second,
in order to achieve the original learning goal, now it suf-
fices to construct a strong—monotonic limiting recursive
compiler from G into £. The latter task might be easier
than the direct solution of the learning problem. This is
caused by the following observation. When one has to
design a strong—monotonic limiting recursive compiler,
it suffices to deal with one tezt, while the construction
of a learning algorithm has to be done w.r.t. all positive
presentations.

We view these results as a further step toward a vi-
able theory for machine learning.

However, several problems remained open. First, it
would be very interesting to know whether Theorem
8 remains valid if CWMON is replaced by CSMON.
The main difficulty one has to deal with when trying



to solve this problem consists in the unpredictable be-
havior of IIMs on data of languages that belong to the
class comprising space of hypotheses but not to the in-

dexed family of target languages.

des

Next, it would be
irable to extend the achieved results to more sophis-

ticated notions of monotonicity (cf. Kapur, 1992, Lange
and Zeugmann, 1992). Finally, it seems very promising
to combine the approach presented with probabilistic
modes of inference. In the setting of inductive inference
of recursive functions Freivalds, Kinber and Wiehagen
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suc

88) have shown that there are spaces of hypotheses H
h that non—exactly learnable function classes might

become inferable with probability 1 with respect to H.
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