
Learning One-Variable Pattern Languages in Linear Average Time

Rüdiger Reischuk∗
Med. Universität zu Lübeck

Institut für Theoretische Informatik
Wallstraße 40

23560 Lübeck, Germany
reischuk@informatik.mu-luebeck.de

Thomas Zeugmann
Department of Informatics

Kyushu University
Kasuga 816-8580

Japan
thomas@i.kyushu-u.ac.jp

Abstract

A new algorithm for learning one-variable pat-
tern languages is proposed and analyzed with
respect to its average-case behavior. We con-
sider the total learning time that takes into ac-
count all operations till an algorithm has con-
verged to a correct hypothesis. For the expec-
tation it is shown that for almost all meaning-
ful distributions defining how the pattern vari-
able is replaced by a string to generate random
examples of the target pattern language this
algorithm converges within a constant number
of rounds with a total learning time that is lin-
ear in the pattern length. Thus, the algorithm
is average-case optimal in a strong sense.
Though one-variable pattern languages cannot
be inferred finitely, our approach can also be
considered as probabilistic finite learning with
high confidence.

1 INTRODUCTION

The formal definition of patterns and pattern languages
goes back to Angluin [1]. Since then, pattern languages
and variations thereof have been widely investigated
(cf., e.g., [12, 13, 15].

As far as learning theory is concerned, pattern lan-
guages are a prominent example of nonregular languages
that can be learned in the limit from positive data. The
corresponding learning model goes back to Gold [5]. Let
L be any language; then a text for L is any infinite se-
quence of strings containing eventually all strings of L ,

∗This work was performed while this author was visiting
the Department of Informatics at Kyushu University and
was supported by the Japan Society for the Promotion of
Science under Grant JSPS 29716102.

and nothing else. The information given to the learner
are successively growing initial segments of a text. Proc-
essing these segments, the learner has to output hy-
potheses about L . The hypotheses are chosen from
a prespecified set called hypothesis space. The sequence
of hypotheses has to converge to a correct description
of the target language.

Looking at applications of limit learners, efficiency
becomes a central issue. But defining an appropriate
measure of efficiency for learning in the limit is a difficult
problem (cf. [10]). Various authors have studied the
efficiency of learning in terms of the update time needed
for computing a new single hypothesis. But what counts
in applications is the overall time needed by a learner
until convergence, i.e., the total learning time. Since the
total learning time is unbounded in the worst-case, we
study the expected total learning time. Next, we shortly
summarize what has been known in this regard.

Angluin [1] provides a learner for the class of all pat-
tern languages that is based on the notion of descrip-
tive patterns. Here a pattern π is said to be descriptive
(for the set S of strings contained in the input pro-
vided so far) if π can generate all strings contained in
S and no other pattern having this property generates
a proper subset of the language generated by π . Since
no efficient algorithm is known for computing descrip-
tive patterns, and finding a descriptive pattern of maxi-
mum length is NP -hard, its update time is practically
infeasible.

Therefore, one has considered restricted versions of
pattern language learning in which the number k of dif-
ferent variables is fixed, in particular the case of a sin-
gle variable. Angluin [1] gives a learner for one-variable
pattern languages with update time O(`4 log `) , where
` is the sum of the length of all examples seen so far.
Nothing is known concerning the expected total learning
time of her algorithm.

Erlebach et al. [3, 4] have presented a one-variable
pattern learner achieving an average total learning time
O(|π|2 log |π|) , where |π| is the length of the target
pattern. This result is also based on finding descriptive
patterns quickly. While this approach has the advantage
that the descriptiveness of every hypothesis output is
guaranteed, it may have the disadvantage of preventing
the learner to achieve a better expected total learning

time. Thus, we ask whether there is a one-variable pat-
tern language learner achieving a subquadratic expected
total learning time. Clearly, the best one can get is a
linear average total learning time. If this is really pos-
sible, then such a learner seems to be more appropri-
ate for potential application than previously obtained
ones, even if there are no guaranteed properties con-
cerning the intermediately calculated hypotheses. Such
a learner would have already finished his learning task
with high probability before any of the known learner
has computed a single guess.

What we like to present in this paper is such a one-
variable pattern learner. Moreover, we prove that our
learner achieves an expected linear total learning time
for a very large class of distributions with respect to
which the input examples are drawn.

2 PRELIMINARIES

Let N = {0, 1, 2, . . .} be the set of all natural numbers,
and let N+ = N \ {0} . For all real numbers y we
define byc , the floor function, to be the greatest integer
less than or equal to y . Let Σ be an alphabet with
s := |Σ| ≥ 2 . By Σ∗ we denote the free monoid over
Σ , and we set Σ+ = Σ∗ \ {ε} , where ε is the empty
string. Let x be a symbol with x /∈ Σ . Every string
over (Σ ∪ {x})+ is called a one-variable pattern. We
refer to x as the pattern variable. Pat denotes the set
of all one-variable patterns. We write #(π, x) for the
number of occurrences of the pattern variable x in π .

The length of a string w ∈ Σ∗ and of a pattern
π ∈ Pat is denoted by |w| and |π| , respectively. Let
w be a string with ` = |w| ≥ 1 , and let i ∈ {1, . . . , `} ;
we use w[i] and w[−i] to denote the i -th symbol in w
counted from left to right and right to left, respectively,
i.e.,

w = w[1] w[2] . . . w[`− 1] w[`]
= w[−`] w[−`+ 1] . . . w[−2] w[−1].

For 1 ≤ i ≤ j ≤ ` we denote the substring w[i] . . . w[j]
of w by w[i . . . j] . Let π ∈ Pat and u ∈ Σ+ ; we use
π[x/u] for the string w ∈ Σ+ obtained by substituting
all occurrences of x in π by u . The string u is called a
substitution. For every π ∈ Pat we define the language
generated by pattern π by

L(π) := {y ∈ Σ+ | ∃ u ∈ Σ+, y = π[x/u]}
For discussing our approach to learning all one-variable
pattern languages we let

π = w0x
α1w1x

α2w2 . . . wm−1x
αmwm

be the target pattern throughout this paper. Here the
αi denote positive integers (the multiplicity by which x
appears in a row), and wi ∈ Σ∗ the separating constant
substrings, where for 1 ≤ i < m the wi are assumed
to be nonempty.

The learning problem considered in this paper is ex-
act learning in the limit from positive data. A sequence
(ψi)i∈N+ of patterns is said to converge to a pattern π
if ψi = π for all but finitely many i .

Definition 1. Given a target pattern π, the learner
gets a sequence of example strings X1, X2, . . . from
L(π) . Having received Xg he has to compute as hy-
pothesis a one-variable pattern ψg . The sequence of
guesses ψ1, ψ2, . . . eventually has to converge to a pat-
tern ψ such that L(ψ) = L(π) .

Note that in the case of one-variable pattern lan-
guages this implies that ψ = π . Some more remarks
are mandatory here. Though our definition of learn-
ing resembles that one given in Gold [5], there is also
a major difference. In [5] the sequence (Xi)i∈N+ is re-
quired to exhaust L(π) in the limit, that is to fulfill
{Xi | i ∈ N+} = L(π) . Nevertheless, in real applica-
tions this requirement will be hardly fulfilled. We there-
fore omit this assumption here. Instead, we only require
the sequence (Xi)i∈N to contain “enough” information
to recognize the target pattern π . What is meant by
“enough” will be made precise when discussing the set
of all admissible distributions with respect to which the
example sequences are allowed to be randomly drawn.

We continue with the complexity measure consid-
ered in this paper. The length of the pattern π to be
learned is given by n := nw + nx with nw :=

∑
|wi|

and nx :=
∑
αi . This parameter will be considered

as the size of problem instances, and the complexity
analysis will be done with respect to this value n . We
assume the same model of computation and the same
representation of patterns as Angluin [1], i.e., in partic-
ular a random access machine that performs a reason-
able menu of operations each in unit time on registers of
length O(log n) bits, where n is the input length. The
inputs are read via a serial input device, and reading a
string of length n is assumed to require n steps.

In contrast to previous work [1, 6, 14, 16], we mea-
sure the efficiency of a learning algorithm by estimating
the overall time taken by the learner until convergence.
This time is referred to as the total learning time. We
aim to determine the total learning time in dependence
on the length of the target pattern. Of course, if ex-
amples are provided by an adversary the number of ex-
amples one has to see before being able to converge is
unbounded in general. Thus analyzing the total learn-
ing time in such a worst-case setting will not yield much
insight. But such a scenario is much too pessimistic
for many applications, and therefore, one should con-
sider the average-case behavior. Analyzing the expected
total learning time of limit learners has been initiated
by Zeugmann [17]. Average-case complexity in general
depends very much on the distribution over the input
space. We perform our analysis for a very large class of
distributions. An optimal result of linear expected total
learning is achieved by carefully analyzing the combi-
natorics of words generated by a one-variable pattern.
This linear bound can even be shown to hold with high
probability. Let

µ : Σ+ → [0, 1]

be the probability distribution specifying how given a
pattern π the variable x is replaced to generate ran-
dom examples π[x/Z] from L(π) . Here Z = Zµ is a

random variable with distribution µ .

Range(Z) := {w ∈ Σ+ | µ(w) > 0}

denotes the range of Z , i.e., the set of all substitution
strings that may actually occur. From this we get a
probability distribution

µπ : Σ+ → [0, 1]

for the random strings generated by π based on µ . Let
X = Xπ,µ denote a random variable with distribution
µπ . The random examples are then generated according
to X , thus the relation between X and Z is given by
X = w0 Z

α1 w1 Z
α2 w2 . . . wm−1 Z

αm wm . Note
that µ is fixed, and in particular independent of the
special target pattern to be learned.

What we consider in the following is a large class
D of distributions µ that is defined by requiring only
very simple properties. These properties basically ex-
clude the case where only a small subset of all pos-
sible example strings occur and this subset does not
provide enough information to reconstruct the pattern.
We show that there exists an algorithm that efficiently
learns every one-variable pattern on the average with
respect to every distribution in D .

By E[|Z|] we denote the expectation of |Z| , i.e.,
the average length of a substitution. Then the expected
length of an example string X for π is given by E[|X|]
= nw + nx · E[|Z|] ≤ n · E[|Z|] . Obviously, if one

wants to analyze the bit complexity of a learning algo-
rithm with respect to the pattern length n one has to
assume that E[|X|] , and hence E[|Z|] , is finite, oth-
erwise already the expected length of a single example
will be infinite.

Assumption 1. E[|Z|] < ∞ .
Let X = X1, X2, X3, . . . denote a sequence of

random examples that are independently drawn accord-
ing to µπ . Note that the learner, in general, does not
have information about µπ a priori. On the other hand,
the average-case analysis of our learning algorithm pre-
supposes information about the distribution µ . Thus,
unlike the PAC-model, our framework is not completely
distribution-free. Nevertheless, we aim to keep the in-
formation required about µ as small as possible. Fi-
nally, let

L(π, µ) := {y ∈ Σ+ | µπ(y) > 0}

be the language of all example strings that may actually
occur.

3 PROBABILISTIC ANALYSIS OF
SUBSTITUTIONS

For obtaining most general results we would like to put
as little constraints on the distribution µ as possible.
Note that one cannot learn a target pattern if only ex-
ample strings of a very restricted form occur. This will
be in particular the case if Range(Z) itself is contained
in a nontrivial one-variable pattern language. For seeing
this, suppose there exists a pattern φ ∈ Pat \ {x} such

that Range(Z) ⊆ L(φ) . Clearly, then the languages
generated by π = w0x

u0w1x
u1w2 . . . wm−1x

umwm and
π′ = w0φ

u0w1φ
u1w2 . . . wm−1φ

umwm cannot be distin-
guished, since L(π, µ) ⊆ L(π′) . Thus, even from an
information theoretic point of view the learner has no
chance to distinguish this case from the one where the
pattern to be learned is actually π′ and the examples
are generated by the corresponding projection µ′ of
µ . Hence, such a problem instance (π, µ) should be
regarded as the instance (π′, µ′) . To exclude this case,
let us define

p0 := max
φ pattern, |φ|>1

Pr[Z ∈ L(φ)] .

and let us make
Assumption 2. p0 < 1 .
An alternative approach would be to consider the

correctness of the hypotheses computed with respect
to the distribution µ . The learner solves the learn-
ing problem if he converges to a pattern ψ for which
L(ψ, µ) = L(π, µ) . This model is equivalent, but con-
ceptually more involved and complicates the algorithm.
Therefore we stick to the original definition. If p0 < 1
then the following quantities

pa := max
σ∈Σ

Pr[Z[1] = σ] ,

pe := max
σ∈Σ

Pr[Z[−1] = σ] ,

are smaller than 1, too. Otherwise, for some σ it would
hold Range(Z) ⊆ L(σx) or Range(Z) ⊆ L(xσ) . To
illustrate these quantities, consider the special situa-
tion of length-uniform distributions, i.e., distri-
butions where the lengths |Z| of the substitutions may
be arbitrary, but for each length ` all possible strings
over Σ+ of that length have the same probability. Then
it is easy to see that p0 ≤ 1/s and pa = pe = 1/s .

In general, define
p := max{pa, pe} < 1 ,

and for sequences of substitutions Z = Z1, Z2, Z3, . . .
the event
Fg[Z] :=

[(
Z1[1] = Z2[1] = · · · = Zg[1]

)
∨

(
Z1[−1] = Z2[−1] = · · · = Zg[−1]

)]
.

Then Pr[Fg] ≤ 2p g − 1.
Moreover, we define f(Z) := min{g | ¬Fg[Z]} .
Lemma 1. The expectation of f(Z) can be bounded

as E[f(Z)] ≤ 2/(1− p) .
Proof. Clearly, if m < min{g | ¬Fg[Z]} then Fm[Z]

holds. Thus, we can estimate Pr[f(Z) > m] ≤ 2pm−1 ,
and a simple calculation yields

E[f(Z)] =
∞∑

m=0

Pr[f(Z) > m]

≤ 2 + 2 ·
∑
m≥2

pm−1

=
2

1− p

4 SYMMETRY OF STRINGS

We now come to the main technical tool that will help
us to detect the pattern variable and its replacements
in example strings, respectively.

Definition 2. Let y = y[1]y[2] . . . y[`] ∈ Σ+ be
a string of length ` . If for some k with 1 ≤ k ≤ `/2
the k -length prefix and suffix of y are identical, that
is y[1 . . . k] = y[`− k + 1 . . . `] , we say that y has a
k –symmetry u = y[1 . . . k] (or symmetry, for short).
A symmetry u of y is said to be the smallest symmetry
if |u| < |û| for every symmetry û of y with û 6= u .

Definition 3. Let u be a symmetry of y and
choose c, d ∈ N+ maximal such that y = uc v0 u

d ,
for some string v0 , i.e., u is neither a prefix nor a suffix
of v0 . This includes the special case v0 = ε . In this
case, since c and d are not uniquely determined, we
choose c ≥ d such that their difference is at most 1 .
This unique representation of a string y will be called
factorization of y with respect to u or simply
u –factorization, and u the base of this factoriza-
tion.

If all occurrences of u are factored out including
also possible ones in v0 one gets a representation y =
uc0 v1 u

c1 v2 . . . vr u
cr with positive integers ci (c0 =

c , cr = d) and strings vi that do not contain u
as substring. This will be called a complete u –
factorization of y .

Of particular interest for a string y will be its sym-
metry of minimal length, denoted by mls(y) , which
gives rise to the minimal factorization of y . For
technical reasons, if y does not have a symmetry then
we set mls(y) := |y| + 1 . Let sym(y) denote the
number of all different symmetries of y .

The following properties will be important for the
learning algorithm described later.

Lemma 2. Let k ∈ N+ and let u, y ∈ Σ+ be any
two strings such that u is a k –symmetry of y . Then
we have

(1) u is a smallest symmetry of y iff u itself has no
symmetry.

(2) If y possesses the factorization y = uc v0 ud

then it has k′ -symmetries for k′ = 2k, 3k, . . . ,
min{c, d} k , too.

(3) If uc v0 u
d is the minimal factorization of y then,

for all k′ ∈ {1, . . . , max{c, d}mls(y)} , y does
not have other k′ -symmetries.

(4) sym(y) ≤ |y| / 2 mls(y) .

Proof. If a symmetry u of a string y can be written
as u = u′ v u′ for a nonempty string u then obviously
u′ is a smaller symmetry of y . Hence, (1) follows.

Assertion (2) is obvious. If there were other symme-
tries in between then it is easy to see that u itself must
have a symmetry and thus cannot be minimal. This
proves (3).

If v0 contains u as a substring there may be other
larger symmetries. For this case there must be strings
v1, v2 such that y can be written as

y = uc v1 u
d v2 u

c v1 u
d

where v1 does not contain u as substring. Then y has
an additional symmetry for k′ = (c+d) k+ |v1| . There
may be even more symmetries if v2 is of a very special
form containing powers of u , but we will not elaborate
on this further. The important thing to note is that the
length of such symmetries grows at least by an additive
term k = mls(y) . The bound on sym(y) follows.

Assertion (4) of the latter lemma directly implies the
simple bound

sym(y) ≤ |y|/2 ,
which in most cases, however, is far too large. Only
strings over a single letter alphabet can achieve this
bound. For particular distributions the bound is usu-
ally much better. To illustrate this, we again consider
the length-uniform case. Then, the probability that a
random string y has a minimal symmetry of length k
is given by

Pr[mls(y) = k] = Pr[|y| ≥ 2k] · s−k .

Furthermore, given that mls(y) = k the probability
that it has at least c symmetries is bounded by

Pr[sym(y) ≥ c | mls(y) = k] ≤ s−k·2 (c−1) · 1
1− s−2c+1

.

Thus, the probability of having at least c symmetries
is at most ∑

k≥1

s−k·(2c−1) ≤ s−2c+1

(1− s−2c+1)2
.

Now, we consider the expected number of symme-
tries. To motivate our Assumption 3, we first continue
to look at the length-uniform case.

Lemma 3. In the length-uniform case

E[sym(Z)] ≤ s

2(s− 1)2
.

Proof. Using the equality
∑

c≥1 c ·αc = α
(1−α)2 for

α = s−2k in the estimation below one gets
E[sym(Z)] =∑
k≥1

Pr[mls(Z) = k] ·
∑
c≥1

c ·Pr[sym(Z) = c | mls(Z) = k]

≤
∑
k≥1

s−k
∑
c≥1

c · s−k 2(c−1) · 1
1− s−2c+1

≤
∑
k≥1

sk
∑
c≥1

c · (s−2k)c · 1
1− s−1

=
1

1− s−1
·
∑
k≥1

sk · s−2k

(1− s−2k)2

≤ s

2(s− 1)

∑
k≥1

s−k

=
s

2 (s− 1)2
.

Thus, in this case the number of symmetries only
depends on the size s of the alphabet and therefore,
it is independent of the length of the strings generated.
Let us now estimate the total length of all factorizations
of a string y , which can be bounded by |y| · sym(y) .
For the length-uniform case,

E[|Z| · sym(Z)] ≤ E[|Z|] · E[sym(Z)] .

can be shown, but for arbitrary distributions, we have
to require

Assumption 3. E[|Z| · sym(Z)] <∞ .
Remember that we already had to assume E[|Z|] to

be finite. Trivially, the expectation of |Z| · sym(Z) is
guaranteed to be finite if E[|Z|2] <∞ , that means the
variance of |Z| is finite, but in general weaker condi-
tions suffice.

If 0 < E[|Z| · sym(Z)] <∞ then we also have 0 <
E[sym(Z)] <∞ . Thus we can find a constant c such
that

E[|Z| · sym(Z)] ≤ c · E[|Z|] · E[sym(Z)] = O(1).

Symmetries and factorizations should be computed fast;
we thus show:

Lemma 4. The minimal symmetry of a string y
can be found in O(|y|) operations.

Given the minimal symmetry, all further symmetries
can be generated in linear time.
From a symmetry, the corresponding factorization can
be computed in linear time as well.

Proof. To find the minimal symmetry an iterative
scanning of specific bit positions of y is done. Let `
denote the length of y .

Algorithm 1.

For j = 1, 2, . . . , `− 1 , we will construct subsets Ij
of [1 . . . `] with the property:

t ∈ Ij ⇐⇒ y[t . . . t+ j − 1] = y[1 . . . j] .

The sets are initialized with Ij = {1} for all j .
Then I1 := {t | y[t] = y[1]} .
Assume that Ij−1 has been constructed.

if j ∈ Ij−1 then
y[j . . . 2j − 2] = y[1 . . . j − 1] implying
y[1 . . . 2j − 2] = y[1 . . . j − 1]2 .
∀ t ∈ Ij−1 :
if t+ j − 1 ∈ Ij−1 then t ↪→ I2j−2

if 2j − 1 ≥ ` then stop and output FAILURE
else j := 2j − 1

if j /∈ Ij−1 then
∀ t ∈ Ij−1 :
if y[t+ j − 1] = y[j] then t ↪→ Ij
if `− j + 1 ∈ Ij then
stop with success and output y[1 . . . j]

if j ≥ ` then stop and output FAILURE
else j := j + 1

It can be shown that this procedure considers each
bit position y[j] at most a logarithmic number of times
from which the bound O(` log `) follows easily. For
most strings, however, the complexity is linear since
more than linear time is needed only for strings of highly
regular structure.

Algorithm 2.
The second, and in the worst-case more efficient al-

gorithm first computes a maximal overlap of y , that
is a substring w of maximal length such that

y = w ν1 = ν2w

for some nonempty strings ν1, ν2 . If |w| ≤ |y|/2 then
y can be written in the form

y = w ν w

for some string ν , that means w is a symmetry of y .
Since w was chosen maximal it is even the maximal
symmetry. If |w| > |y|/2 then in the representation
y = w ν1 = ν2w the string w overlaps with itself, thus
it cannot be used as a symmetry. However, let κ denote
the length of the νi , r = ` − κ the length of w , and
r′ := ` mod κ . Then

w[κ+ 1 . . . r] = w[1 . . . r − κ] ,

which implies in particular w[1 . . . κ] = w[κ+1 . . . 2κ] .
In the same way, w[κ+1 . . . 2κ] = w[2κ+1 . . . 3κ] , thus
w can be written as

w = w[1 . . . κ] br/κc w[1 . . . r′]

and
y = w[1 . . . κ] br/κc+1 w[1 . . . r′],

where w[1 . . . r′] is empty for r′ = 0 . Now define

w0 :=

{
w, if |w| ≤ `/2,
w[1 . . . κ], if r′ = 0,
w[1 . . . r′], otherwise .

Note that w0 is a symmetry of y . As already men-
tioned it is the maximal one in the first case, whereas
in the other cases the maximal one is w[1 . . . κ]`/2κ if
r′ = 0 , resp. w[1 . . . κ](`−κ)/2κ w[1 . . . r′] for r′ > 0 .
Symmetries of size between w0 and the maximal one
are of the form w[1 . . . κ]L w[1 . . . r′] for some 1 ≤ L <
`/2κ . Having obtained w0 , iteratively in the same way
we first compute the maximal overlap of this string and
from this a substring w1 , and so forth until for the first
time wj has zero overlap. Then wj is the minimal
symmetry of y .

A maximal overlap (sometimes also called a maximal
border) can be computed in linear time, see for exam-
ple [2], chapter 3.1, where an algorithm of complexity
2 |y| − 3 is described.

Given the maximal overlap, the string w0 can easily
be obtained in a linear number of steps. Since for all j
the length of wj is at most half the length of wj−1 the
whole iterative procedure stays linearly bounded.

Once we have found a symmetry u , computing the
complete u –factorization of y is just a simple pattern

matching of u against y , which can be done by well
established methods in linear time.

From a complete minimal factorization based on u1

other symmetries can be deduced by checking powers of
u1 and the equality of substrings between these powers.
This can be done in a linear number of operations.

Let Σ+
sym denote the set of all strings in Σ+ that

possess a symmetry and let

psym := Pr[Z ∈ Σ+
sym] .

We require that the distribution is not restricted to
substitutions with symmetries – with positive probabil-
ity also nonsymmetric substitutions should occur.

Assumption 4. psym < 1 .
Now consider the event

Qg[Z] :=
[
{Z1, . . . , Zg} ∈ Σ+

sym

]
.

Qg[Z] means that among the first g substitutions all
have a symmetry. Obviously,

Pr[Qg[Z]] ≤ p g
sym .

Define q(Z) := min{g | ¬Qg[Z]} . Similarly to
Lemma 1, one can show

Lemma 5. E[q(Z)] ≤ 1/(1− psym) .

5 BASIC SUBROUTINES: FACTOR-
IZATIONS AND COMPATIBILITY

For a subset A of Σ∗ let PRE(A) and SUF(A) denote
the maximal common prefix and suffix of all strings in
A , respectively. Let mpre(A) and msuf(A) be their
lengths. The first goal of the algorithm is to recognize
the prefix w0 and suffix wm before the first and last
occurrence of the variable x , respectively, in the pat-
tern π . In order to avoid confusion, x will be called
the pattern variable, where variable simply refers to any
data variable used by the learning algorithm.

The current information about the prefix and suf-
fix is stored in the variables PRE and SUF . The re-
maining pattern learning is done with respect to the
current value of these variables. If the algorithm sees
a new string X such that PRE({X,PRE}) 6= PRE or
SUF({X,SUF}) 6= SUF then these variables will be up-
dated. We will call this the begin of a new phase.

Definition 4. For a string Y ∈ Σ+ a (PRE,SUF) -
factorization is defined as follows. Y has to start
with prefix PRE and end with suffix SUF . For the re-
maining middle part Y ′ we select a symmetry u1 . This
means Y can be written as Y = PRE u c11 v1 u

d1
1 SUF

for some strings u1, v1 and c1, d1 ∈ N+ .
If such a representation is not possible for a given

pair (PRE,SUF) then Y is said to have no (PRE,SUF)
–factorization.

Moreover, Y ′ may have other symmetries u2, u3, . . .

giving rise to factorizations Y = PRE u cii vi u
di
i SUF

for ci, di ∈ N+ . For simplicity, we assume that the
symmetries ui are ordered by increasing length, in par-
ticular u1 always denotes the minimal symmetry with
corresponding minimal factorization.

Lemma 6. Let Y = PRE u c11 v1 u
d1
1 SUF be

the minimal (PRE,SUF) –factorization of Y . Then,
for every string Ỹ of the form Ỹ = PRE u1 ṽ u1 SUF
for some string ṽ , the minimal (PRE,SUF) –factoriza-
tion of Ỹ is based on u1 , too.

Proof. That u1 gives rise to a factorization is obvi-
ous. There cannot be one of smaller length because this
implies that u1 has a symmetry and contradicts that
u1 is minimal for Y .

Though the following lemma is easily verified, it is
important to establish the correctness of our learner pre-
sented below.

Lemma 7. Let π = w0 x v xwm be any pattern with
#(π, x) ≥ 2 , let u ∈ Σ+ , and let Y = π[x/u] . Then
Y has a (w0, wm) –factorization with base u and its
minimal (w0, wm) –factorization is based on the mini-
mal symmetry u1 of u .

The results of Lemma 4 directly translate to
Lemma 8. The minimal base for a (PRE, SUF) –

factorization of a string Y can be computed in time
O(|Y |) . All additional bases can be found in linear
time. Given a base, the corresponding (PRE,SUF) –
factorization can be computed in linear time as well.

Definition 5. Two strings Y, Ỹ are said to be
directly compatible with respect to a given pair
(PRE,SUF) if from their minimal (PRE,SUF) –factor-
izations a single pattern ψ = ψ(Y,Ỹ) can be derived
from which both strings can be generated. More pre-
cisely, it has to hold:
Y = PRE u c11 v1 u

d1
1 SUF and

Ỹ = PRE ũ c̃11 ṽ1 ũ
d̃1
1 SUF , and for

Ymid := u c1 − 1
1 v1 u

d1 − 1
1 and

Ỹmid := ũ c̃1 − 1
1 ṽ1 ũ

d̃1 − 1
1 every occurrence of u1

in Ymid – including further ones in v1 – is matched
in Ỹmid either by an occurrence of ũ1 (which indicates
that at this place π has a pattern variable) or by u1

itself (indicating that the constant substring u1 occurs
in π). In all the remaining positions Ymid and Ỹmid

have to agree.
We extend this compatibility notion to pairs consist-

ing of a string Y and a pattern π . Y is directly com-
patible to π with respect to (PRE,SUF) if for the min-
imal symmetry u1 of the (PRE,SUF) –factorization of
Y holds π[x/u1] = Y .

The following lemma is easily verified.
Lemma 9. Assume that (PRE,SUF) = (w0, wm)

has the correct value. If a string Y is generated from
π by substituting the pattern variable by a nonsymmet-
ric string u then the string u1 on which its minimal
(PRE,SUF) –factorization is based equals u . Thus, Y
is directly compatible to π .

Proof. It is easy to see that for a nonsymmetric string
u the string

Y = π[x/u] = w0 u
α1 w1 u

α2 w2 . . . wm−1 u
αm wm

has u as the basis for its minimal (w0, wm) –factoriz-
ation. That u gives rise to a factorization is obvi-
ous, and if there were a smaller one it would imply
that u has a symmetry. Since the constant substrings
w1, . . . , wm−1 may contain u as a substring the ac-
tual factorization may show more powers of u , but it
is unique since occurrences of u cannot overlap – again
because u is nonsymmetric. If the constant substring
wi of π has a decomposition with respect to u of the
form uβi,0 ωi,1 u

βi,1 . . . ωi,ni u
βi,ni , where the βi,j are

integers and the ωi,j are substrings not containing u ,
then the middle part Ymid of Y without prefix, suffix
and first and last occurrence of u looks like

uα1−1 uβ1,0 ω1,1 u
β1,1 . . . ω1,n1 u

β1,n1 uα2 uβ2,0 ω2,1 u
β2,1

. . . ω2,n2 u
β2,n2 uα3 . . . uαm−1 .

When checking direct compatibility of Y against π
it becomes obvious whether a substring u in Y corre-
sponds to a variable or not.

If one of the substitutions u, ũ for Y = π[x/u] ,
resp. Ỹ = π[x/ũ] is a prefix of the other, let us say
ũ = uu′ for some nonempty string u′ then there may
be an ambiguity if u u′ appears as a constant substring
in Ymid . If this is not followed by another occurrence
of u′ it can easily be detected. In general, if u u′ is a
constant in π then the number of occurrences follow-
ing this substring will be the same in the corresponding
positions in Ymid and Ỹmid , otherwise it has to be one
more in Ỹ .

Using this observation it is easy to see that even in
such a case testing of direct compatibility is easy.

Lemma 10. Let the minimal factorizations of two
strings Y, Ỹ be given. Then by a single joint scan one
can check whether they are directly compatible, and if
yes construct their common pattern ψ(Y, Ỹ) . The scan
can be performed in O(|Y |+ |Ỹ |) bit operations.
Moreover, for a pattern π it can be checked in time
O(|Y |+ |π|) whether Y is directly compatible to π .

The extra effort in the degenerated case of u being
a prefix of ũ can be omitted if in this case the pattern
matching is done from right to left since the procedure
is completely symmetric. This will only fail if u is both
prefix and suffix of ũ , implying that ũ = u u′ u . But
this means that ũ has a symmetry and thus cannot
derive from a minimal factorization of Ỹ .

Definition 6. A string Y is downwards com-
patible to a string Ỹ with respect to a given pair
(PRE,SUF) if for some κ ≥ 1, from the minimal (PRE,
SUF) –factorization of Y and the κ -th (PRE,SUF) –
factorization of Ỹ a single pattern ψ = ψ(Y, Ỹ , κ) can
be derived from which both strings can be generated.
We also say that Ỹ is upwards compatible to Y .

Again, these notions are extended to pairs consisting
of a string and a pattern.

Lemma 11. Assume (PRE,SUF) = (w0, wm) hav-
ing the correct value. Let Y = π[x/u] for a nonsym-
metric string u . Any other string Ỹ in L(π) obtained
by substituting the pattern variable by a string ũ for
which u is not a symmetry is upwards compatible to Y
with respect to (PRE,SUF) .
The pattern ψ(Y, Ỹ) equals the pattern π to be learned.

Given the (PRE,SUF) –factorization of both strings,
ψ(Y, Ỹ) can be constructed in time at most O((1 +
sym(Ỹ)) · (|Y | + |Ỹ |)) , where sym(Ỹ) := sym(ũ) de-
notes the number of symmetries of the string ũ that
generates Ỹ .
Furthermore, given a pattern ψ and the factorization
of a string Y it can be checked in time O(|Y | + |ψ|)
whether Y is upwards compatible to ψ . For Y , down-
wards compatibility to ψ can be checked and ψ(Y, ψ, ·)
can be constructed in linear time, too.

Proof. Let u be nonsymmetric, Y = π[x/u] , and
let

Ymid = uα1−1 uβ1,0 ω1,1 u
β1,1 . . .

ω1,n1 u
β1,n1 uα2 uβ2,0 ω2,1 u

β2,1 . . . uαm−1 .

If

Ỹ = π[x/ũ] = w0 ũ
α1 w1 ũ

α2 w2 . . . wm−1 ũ
αm wm

then Ỹ has a (w0, wm)–factorization based on ũ . Note
that this factorization will not be minimal if ũ itself
has symmetries. Since w1, . . . , wm−1 may contain ũ
the actual factorization may show more powers of ũ .

By assumption, u is not a symmetry for ũ and
since one may either work from left to right or right
to left we may assume that u is not a prefix of ũ .
When comparing Ymid to Ỹmid after the first α1 − 1
occurrences of u in Ymid have been read and matched
against occurrences of ũ in Ỹmid the next occurrence of
u in the substring uβ1,0 will be detected as a constant.
This is because this substring also occurs in Ỹmid and
u is not a prefix of ũ . The same holds for the other
occurrences of u in Y .

Given the corresponding factorizations, checking
whether Ymid and Ỹmid match can be done by a sin-
gle pass over the strings and has linear time complex-
ity. However, one has to find that factorization of Ỹ
that matches the one of Y . Considering the symme-
tries of Ỹ in increasing length this will be symmetry
sym(ũ) . In the worst-case, if ũ contains only one sym-
bol sym(ũ) can be as large as |ũ|/2 , but such a case
will be easier to handle.

This can even be sped-up. One observation is that
a string with c symmetries yields a least by a factor c
more occurrences of its minimal symmetry in the mini-
mal factorization. Thus, once one output pattern ψ has
been computed, which also gives the number of occur-
rences of the pattern variable, strings Ỹ with a much

larger number of occurrences in the minimal factoriza-
tion based on a string ũ1 can simply be discarded unless
ψ itself contains lots of substrings ũ1 . More precisely,
let

#(Y, u) := maximal number of nonoverlapping
occurrences of u in Y .

Since u is nonsymmetric and Y = π[x/u]

#(Y, u) = #(π, x) + #(π, u) .

For Ỹ = π[x/ũ] and a symmetry ũi of a factorization
of Ỹ such that ũi is a substring of ũ it holds,

#(Ỹ , ũi) = #(ũ, ũi) ·#(π, x) + #(π, ũi) .

Let ψ a pattern that is supposed to equal the pattern
π to be learned. Thus, to find the right factorization of
a string Ỹ to check upwards compatibility against ψ
from the minimal factorization one can compute

#(Ỹ , ũ1) − #(ψ, ũi)
#(ψ, x)

to get an estimate on #(ũ, ũ1) . When all symmetries
of Ỹ are known it is then easy to find that string ũ di-
rectly that matches this value. However, when checking
upwards compatibility of a string Ỹ to a string Y , we
do not have a precise estimate on #(π, x) , there is only
the upper bound #(Y, u) available from the factoriza-
tion of Y . This implies a lower bound on #(ũ, ũ1) of
the form

#(ũ, ũ1) ≥ #(Ỹ , ũ1) − #(Y, ũi)
#(Y, u)

.

Thus, unless #(π, u) is relatively large compared to
#(π, x) this gives a good approximation which symme-
try of Ỹ should be used.

Note that one cannot decide whether a string Y was
generated by substitution with a nonsymmetric string
by counting the number of its factorizations – which is
likely to be one. However, there are rare cases with more
factorization than the one induced by the substitution –
for example, if α1 and αm have a common nontrivial
divisor or even if α1 = αm = 1 , but by chance w1 =
v u v′ and wm−1 = v′′ u v for some arbitrary strings
v, v′, v′′ .

6 THE ALGORITHM

The learner may not store all example strings he has
seen so far. Therefore let A = Ag = Ag(X) denote the
set of examples he remembers after having got the first
g examples of the random sequence X = X1, X2, . . . ,
and, similarly, let PREg and SUFg be the values of
the variables PRE and SUF at that time. We will call
this round g of the learning algorithm.

Let us first describe the global strategy of the learn-
ing procedure. When the pattern is a constant π = w
all example strings are equal to w and the variables

PRE and SUF are not defined. Thus, as long as the
algorithm has seen only one string, it will output this
string.

Otherwise, we try to generate a pattern from 2 com-
patible strings received so far. If this is not possible or if
one of the examples does not have a factorization then
the output will be the default pattern

ψ0 := PREg x SUFg .

If a non-default pattern has been generated as a hy-
pothesis further examples are tested for compatibility
with respect to this pattern. As long as the test is pos-
itive the algorithm will stick to this hypothesis, else a
new pattern will be generated. In the simplest version
of the algorithm we remember only a single example of
the ones seen so far. Instead of a set A we will use a
single variable Y .

The One-Variable Pattern Learning Algorithm

Y := X1 ; PRE := X1 ; SUF := X1 ;
output X1 ;
for g = 2, 3, 4, . . . do
PRE′ := PRE ; SUF′ := SUF ;
ψ := output of previous round;
read the new example Xg ;

if Xg = ψ then output ψ , else
PRE := PRE({PRE, Xg}) ;
SUF := SUF({SUF, Xg}) ;
if PRE 6= PRE′ or SUF 6= SUF′ then
compute the (PRE,SUF) –factorization of Y ;

ψ0 := PRE x SUF ;
ψ := ψ0 endif;

compute the (PRE,SUF) –factorization of Xg ;
case 1: Y does not have a factorization

then output ψ0 :
case 2: Xg does not have a factorization

then output ψ0 and Y := Xg ;
case 3: ψ = ψ0

if Xg is downwards compatible to Y
then output ψ(Xg, Y, ·) ,
else output ψ0 ,

if Xg is shorter than Y then Y := Xg ;

case 4: Xg is upwards compatible to ψ
then output ψ ;

case 5: Xg is downwards compatible to ψ
then output ψ(Xg, ψ, ·) and Y := Xg ;

else output ψ0 .

7 PROOF OF CORRECTNESS

Since the example strings are generated at random it
might happen that only “bad examples” occur in which
case no learning algorithm can eventually come up with
a correct hypothesis. Therefore, the following claims
cannot hold absolutely in a probabilistic setting, but
they will be true with probability 1. Remember that
π = w0x

α1w1x
α2w2 . . . wm−1x

αmwm is the pattern to

be learned. Since not all substitutions start with the
same symbol or end with the same symbol (remember
that we have assumed p < 1) with probability 1 a
sequence X contains strings Xi, Xj , Xk , where Xκ =
π[x/uκ] such that

ui[1] 6= uj [1] and ui[−1] 6= uk[−1] .

Note that j may be equal to k . Let g be the maximum
of i, j, k and consider a triple for which g is minimal.
By the construction of the sets PRE and SUF round
g will start a new phase in which now the variables
PREg = w0 and SUFg = wm have the correct values.

We do not care about the output of the algorithm
before this final phase has been reached. It remains to
show that the algorithm will converge in the final phase.
For this purpose, let us distinguish whether the pattern
contains the variable only once, in which case there will
be examples without any symmetry, or more than once
(the case that the pattern does not contain any variable
is obvious).

If π = w0xw1 then with probability 1 there will
be an example Xg obtained from a substitution [x/u]
with a nonsymmetric string u . Then Xg does not have
a (PREg,SUFg) –factorization and thus case 2 occurs.
Since Y is set equal to X from then on always case 1
occurs. The algorithm will always choose case 1 and
output ψ0 , which in this case is the correct answer.

Otherwise, the pattern contains the variable at least
twice and any example does have a (PREg,SUFg) –fac-
torization. Lemma 11 shows that a nonsymmetric sub-
stitution generates a string that is downwards compati-
ble to any other string in L(π) . Thus, as soon as Xg is
such a string, which again happens with probability 1,
the output ψg will equal the pattern π . Furthermore
the algorithm will never change its output from this
round on since case 4 “Xg′ is upwards compatible to
ψ ” will hold for any g′ > g .

Let us summarize these properties in the following
Lemma 12. After the algorithm has detected the

correct prefix and suffix it will converge immediately to
the correct hypothesis π as soon it gets the first example
generated by a nonsymmetric substitution.

8 COMPLEXITY ANALYSIS

Let ψg denote the output of round g , and Yg the value
of Y at the end of that round. Let Timeg(X) denote
the number of bit operations in round g on example
sequence X , and recall that Z and X are defined as
random variables for the substitutions and examples,
respectively.

Lemma 13. For each round g it holds

E[Timeg(X)] ≤ O
(
E[|X|] ·

(
1 + E[sym(Z)]

))
≤ O

(
n · E[|Z|] ·

(
1 + E[sym(Z)]

))
.

Proof. By Lemma 10 and 11 in each round g the
number of bit operations can be estimated by
Timeg(X) ≤

O(|Yg−1|) + O(|Xg|)
+ max {O((|Yg−1| + |Xg|) · (1 + sym(Yg−1)),

O((|ψg−1| + |Xg|) · (1 + sym(Xg)),
O(|ψg−1| + |Xg|)}

≤ O
(
|Yg−1|+ |Xg|+ |ψg−1|+ |Yg−1| · sym(Yg−1)

+ |Xg| · sym(Yg−1) + |ψg−1| · sym(Xg)

+ |Xg| · sym(Xg)
)
.

By construction of the algorithm and the fact that a
pattern is never longer than an example string it gen-
erates we can bound E[|Xg|] as well as E[|Yg−1|] and
E[|ψg−1|] by E[|X|] . Moreover, Assumption 3 directly
implies that E[|Xg|·sym(Xg)] and E[|Yg−1|·sym(Yg−1)]
are both bounded by O(E[|X|]·E[sym(Z)]) . Note, that
Xg is independent of Yg−1 and ψg−1 . Thus

E[|Xg| · sym(Yg−1)] = E[|Xg|] · E[sym(Yg−1)]
= E[|X|] · E[sym(Z)]

and
E[|ψg−1| · sym(Xg)] = E[|ψg−1|] · E[sym(Xg)]

≤ E[|X|] · E[sym(Z)] .
This simplifies the expectation to
E[Timeg(X)] ≤

O
(
E[|Yg−1|] + E[|Xg|] + E[|ψg−1|]

+ E[|Yg−1| · sym(Yg−1)] + E[|Xg| · sym(Yg−1)]

+ E[|ψg−1| · sym(Xg)] + E[|Xg| · sym(Xg)]
)

≤ O
(
E[|X|] + E[|X|] · E[sym(Z)]

)
.

Now we can also bound the total learning time.
Lemma 14. The expected total learning time is

bounded by

O

(
n · E[|Z|] · (1 + E[sym(Z)]) ·

(1
1− p

+
1

1− psym

))
.

Since E[|Z|]) , E[sym(Z)] , p , and psym are charac-
terized by the distribution for substituting the pattern
variable they are all independent of the problem size.
This means the complexity grows linear with the size of
the problem.

Proof. The number of rounds can be bounded by
the number of rounds to reach the final phase plus the
number of rounds in the final phase till ψg = π . By
Lemma 1 and 5 the expectation of both is a constant
that only depends on the probabilities p and psym .
Let G be a random variable that counts the number of
rounds till convergence. Then,

E[G] ≤ O

(
1

1− p
+

1
1− psym

)
. (1)

Let Timetotal(X) denote the total number of opera-
tions on example sequence X . Then

Timetotal(X) =
G∑

g=1

Timeg(X)

=
∑
t≥2

Pr[G = t] ·
t∑

g=1

Timeg(X)

and
E[Timetotal(X)] =

E
[∑

t≥2

Pr[G = t] ·
t∑

g=1

Timeg(X)
]
≤

O
(
E
[∑

t≥2

Pr[G = t] · t · E[|X|] ·
(
1 + E[sym(Z)]

)])
≤

O

(
E[|X|] · (1 + E[sym(Z)]) · E

[∑
t

Pr[G = t] · t
])

= O
(
E[|X|] · (1 + E[sym(Z)]) · E[G]

)
≤

O

(
n · E[|Z|] · (1 + E[sym(Z)]) ·

(1
1− p

+
1

1− psym

))
= O(n) .

Summarizing, we state the main result of this paper.
Theorem 1. One-variable pattern languages can be

inferred in linear expected total learning time for all dis-
tributions that fulfill the Assumptions 1 through 4 made
above.

Clearly, the expected value of a random variable is
only one aspect of its distribution. Looking at potential
applications of our learning algorithm, a hypothetical
user might be interested in knowing how often the to-
tal learning time exceeds its average substantially. For
answering this question we could compute the variance
of the total learning time. Then Chebyshev’s inequality
provides the desired tail bounds. However, in our par-
ticular setting, there is an easier way to figure out how
good the distribution of the total learning time is cen-
tered around its expected value. The main ingredient is
the following additional nice feature of our algorithm.
It convergence immediately in the final phase when an
example with a nonsymmetric replacement occurs.

The expectation of this event is E[G] , hence with
probability at least 1/2 the algorithm converges within
2 E[G] rounds. If this did not happen, no matter which
bad examples have occurred, again there will be con-
vergence in the next 2 E[G] rounds with probability at
least 1/2 . Thus, the probability of failure decreases ex-
ponentially with the number of rounds, more precisely,
for all m ∈ N it holds:

Pr
[
Timetotal ≥ 2 ·m · E[Timetotal]

]
≤ 2−m. (2)

Since the distribution of Timetotal decreases expo-
nentially, all higher moments of it exist. In particu-
lar, we may conclude that the variance of Timetotal is
small.

9 CONCLUSIONS

We have shown that one-variable pattern languages are
learnable for basically all meaningful distributions with-
in an optimal linear total learning time on the average.
The algorithm obtained is quite simple and is based on
symmetries that occur in such languages. Thus, our
approach to minimize the expected total learning time
turned out to be quite satisfactory.

Additionally, our learner requires only space that is
linear in the length of the target pattern. Therefore,
it is not only faster than the algorithms presented by
Angluin [1] and Erlebach et al. [3] but also more space-
efficient. The only known algorithm using even less
space is Lange and Wiehagen’s [7] learner. But their
algorithm is only successful for a much smaller class of
probability distributions, since it requires shortest ex-
amples in order to converge. On the other hand, our
learner maintains the incremental behavior of Lange
and Wiehagen’s [7] algorithm. While it is no longer
iterative, it is still a bounded example memory learner.
A learner is called iterative, if it uses only its last guess
and the next example in the sequence of example strings
for computing its actual hypothesis. A bounded exam-
ple memory learner is additionally allowed to memorize
an a priori bounded number of examples it already has
had access to during the learning process. For more
information concerning these learning models, we refer
the reader to Lange and Zeugmann [8].

Moreover, our algorithm does not only possess an
expected linear total learning time, but also very good
tail bounds. Note that, whenever learning in the limit is
considered one cannot decide whether or not the learner
has already converged to a correct hypothesis. If con-
vergence is decidable, we arrive at finite learning. It is
easy to see that one-variable pattern languages are not
finitely learnable. On the other hand, a bit of prior
knowledge about the underlying probability distribu-
tions nicely buys a stochastically finite learner with high
confidence. Recall that the number G of rounds de-
pends only on p and psym . Now, assuming that one
has the additional knowledge of upper bounds for both
p and psym , Formula 1 can be used to estimate the ex-
pected number of rounds. Let G̃ be this estimate, and
let δ ∈ (0, 1) be the confidence parameter given to the
modified learner as additional input. Now, the modified
learner computes the least m such that 1 − 2m ≥ δ ,
and runs our algorithm for 2·m·G̃ rounds. While doing
this, no output is provided. After having finished these
rounds, the modified learner outputs the last guess π
made by our algorithm, and stops thereafter. Now, us-
ing the same argument as above for proving (2), one
easily sees that π must be correct for the target to be
learned with probability at least δ . Furthermore, the
total learning time remains linear in the length of the
target pattern.

Note that stochastically finite learning with high
confidence is different from PAC-learning. First, it is
not completely distribution independent. Thus, from

that perspective, this variant is weaker than the PAC-
model. But the hypothesis computed is probably ex-
actly correct. Moreover, the learner receives exclusively
positive data while the correctness of its hypothesis is
measured with respect to all data. Hence, from that
perspective, our model of stochastically finite learning
with high confidence is stronger than the PAC-model.

Our approach also differs from U-learnability intro-
duced by Muggleton [9]. First of all, our learner is fed
positive examples only, while in Muggleton’s [9] model,
examples labeled with respect to their containment in
the target language are provided. Next, we do not make
any assumption concerning the distribution of the tar-
get patterns. Furthermore, we do not measure the ex-
pected total learning time with respect to a given class
of distributions over the targets and a given class of
distributions for the sampling process, but exclusively
in dependence on the length of the target. Finally, we
require exact learning and not approximately correct
learning.

We have implemented the algorithm and the reader
is referred to http://www.itheoi.mu-luebeck.de/pages/
reischuk/Algor/learn/LearnUnser.html for getting ac-
cess to the resulting Java-applets.

Next, we shortly discuss possible directions of fur-
ther research. An obvious extension would be to con-
sider k -variable pattern languages for small fixed k >
1 . Already for k = 2 the situation becomes consider-
ably more complicated and requires additional tools.

Another direction to pursue would be to learn lan-
guages that are the union of at most ` one-variable
pattern languages for some fixed ` .

Finally, the approach presented in this paper seems
to be quite suited to tolerate errors in the example data.
Let us assume that there is some (small) probability ε
that

error model 1: in an example string X[1] . . . X[l] a
symbol X[i] is changed to a different one,

error model 2: X[i] is changed to a different symbol
or removed or replaced by two symbols X[i]σ for some
σ ∈ Σ .

A property of the pattern language like the common
prefix of all strings now is only accepted if it is sup-
ported by a large percentage of examples. The details
and modification of the algorithm will be given in an-
other paper.

References

[1] D. Angluin. Finding Patterns Common to a Set of
Strings, Journal of Computer and System Sciences
21:46–62, 1980.

[2] M. Crochmore and W. Rytter. Text Algorithms,
Oxford University Press, 1994.

[3] T. Erlebach, P. Rossmanith, H. Stadtherr, A. Ste-
ger and T. Zeugmann. Efficient learning of one-
variable pattern languages from positive data, DOI-
TR-128, Kyushu University, Fukuoka, Japan, 1996.

[4] T. Erlebach, P. Rossmanith, H. Stadtherr, A. Ste-
ger and T. Zeugmann. Learning One-Variable Pat-
tern Languages Very Efficiently on Average, in
Parallel, and by Asking Queries, in M. Li and
A. Maruoka (Eds.), Proc. 8th International Work-
shop on Algorithmic Learning Theory, 1997, Lec-
ture Notes in Artificial Intelligence 1316, 260–276,
Springer-Verlag.

[5] E. Gold. Language identification in the limit, In-
formation & Control 10:447–474, 1967.

[6] M. Kearns and L. Pitt. A polynomial-time algo-
rithm for learning k -variable pattern languages
from examples, in R. Rivest, D. Haussler and
M. K. Warmuth (Eds.), Proc. 2nd Annual ACM
Workshop on Computational Learning Theory,
1989, 57–71, Morgan Kaufmann.

[7] S. Lange and R. Wiehagen. Polynomial-time infer-
ence of arbitrary pattern languages, New Genera-
tion Computing 8:361–370, 1991.

[8] S. Lange and T. Zeugmann. Incremental Learn-
ing from Positive Data, Journal of Computer and
System Sciences 53(1):88–103, 1996.

[9] S. Muggleton. Bayesian Inductive Logic Program-
ming, in M. Warmuth (Ed.), Proc. 7th Annual
ACM Conference on Computational Learning The-
ory, 1994, 3–11, ACM Press.

[10] L. Pitt. Inductive inference, DFAs and computa-
tional complexity, in K.P. Jantke (Ed.), Proc. 2nd
International Workshop on Analogical and Induc-
tive Inference, 1989, Lecture Notes in Artificial In-
telligence 397, 18–44, Springer-Verlag.

[11] R. Reischuk and T. Zeugmann. Learning One-
Variable Pattern Languages in Linear Average
Time, DOI-TR-140, Kyushu University, Fukuoka,
Japan, 1997.
http://www.i.kyushu-u.ac.jp/ thomas/tr.html

[12] A. Salomaa. Patterns, (The Formal Language The-
ory Column), EATCS Bulletin 54:46–62, 1994.

[13] A. Salomaa. Return to patterns, (The Formal Lan-
guage Theory Column), EATCS Bulletin 55:144–
157, 1994.

[14] R. Schapire. Pattern languages are not learnable,
in M.A. Fulk and J. Case (Eds.), Proc. 3rd An-
nual ACM Workshop on Computational Learning
Theory, 1990, 122–129, Morgan Kaufmann.

[15] T. Shinohara and S. Arikawa. Pattern inference, in
“Algorithmic Learning for Knowledge-Based Sys-
tems,” (K. Jantke and S. Lange (Eds.)) Lecture
Notes in Artificial Intelligence 961, 1995, 259–291,
Springer-Verlag.

[16] R. Wiehagen and T. Zeugmann. Ignoring data may
be the only way to learn efficiently, Journal of Ex-
perimental and Theoretical Artificial Intelligence
6:131–144, 1994.

[17] T. Zeugmann. Lange and Wiehagen’s pattern lan-
guage learning algorithm: An average-case analysis
with respect to its total learning time, RIFIS-TR
111, Kyushu University, Fukuoka, Japan, 1995, to
appear in Annals of Mathematics and Artificial In-
telligence.

