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Abstract

A pattern is a finite string of constant and variable symbols. The language
generated by a pattern is the set of all strings of constant symbols which can be
obtained from the pattern by substituting non-empty strings for variables. De-
scriptive patterns are a key concept for inductive inference of pattern languages. A
pattern 7 is descriptive for a given sample if the sample is contained in the language
L(~) generated by m and no other pattern having this property generates a proper
subset of the language L(w). The best previously known algorithm for computing
descriptive one-variable patterns requires time O(n*logn), where n is the size of the
sample. We present a simpler and more efficient algorithm solving the same problem
in time O(n?logn). In addition, we give a parallel version of this algorithm that re-
quires time O(logn) and O(n?/logn) processors on an EREW-PRAM. Previously,
no parallel algorithm was known for this problem.

Using a modified version of the sequential algorithm as a subroutine, we devise
a learning algorithm for one-variable patterns whose expected total learning time is
O(£%log ¢) provided the sample strings are drawn from the target language according
to a probability distribution with expected string length ¢. The probability distri-
bution must be such that strings of equal length have equal probability, but can be
arbitrary otherwise. Furthermore, we show how the algorithm for descriptive one-
variable patterns can be used for learning one-variable patterns with a polynomial
number of superset queries.
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1. Introduction

Patterns are a very natural way to define formal languages. Suppose you are interested
in the language of all strings over the alphabet A = {0, 1} starting with 11, ending with
010, and containing the substring 01011 somewhere, but may be otherwise arbitrary.
Thus, all strings in your language follow the pattern m; = 112(010112,010, provided
you are willing to allow the variables xy, z; to be substituted by any string over {0,1}
including the empty one. As for another example, consider the set of all strings having
even length 2n such that the prefix of length n is identical to the suffix starting at position
n + 1. In that case, the wanted language follows the pattern my = xqxp.

Though patterns have already been considered since the beginning of this century
(cf., e.g., Thue [28], and Bean et al. [5]), the formal introduction of patterns and pattern
languages goes back to Angluin [2]. Since then, pattern languages and variations thereof
have been widely investigated (cf., e.g., Salomaa [21, 22|, and Shinohara and Arikawa [26]
for an overview).

This continuous interest in pattern languages has several reasons, among them the
learnability in the limit of the class of all pattern languages from positive data (cf. An-
gluin [2, 3]). Gold [8] introduced the corresponding learning model. Let L be any formal
language; then a text for L is any infinite sequence of strings that contains eventually all
the strings of L, and nothing else. The information given to the learner are successively
growing initial segments of a text. Processing these segments, the learner has to output
hypotheses about the target language L. Thereby the hypotheses are chosen from a pre-
specified set of admissible hypotheses called hypothesis space. Additionally, the sequence
of hypotheses has to converge to a hypothesis correctly describing the target language
(cf. Definition 1).

For pattern languages, the relevant hypothesis space is the set of all patterns. In partic-
ular, Angluin [2] showed the pattern languages to be learnable in the limit by outputting
so-called descriptive patterns (see below) as hypotheses. This approach has several advan-
tages, since the resulting hypotheses are consistent, and the resulting learning algorithm is
set-driven. Here consistency means that the hypothesis correctly and completely reflects
the information provided so far. A learner is said to be set-driven provided its output
depends exclusively on the range of its input. In general, consistency and set-drivenness
considerably limit the learning capabilities (cf., e.g., Zeugmann and Lange [34]). On the
other hand, this approach has also a major disadvantage, since no efficient algorithm is
known for computing descriptive patterns, and finding a descriptive pattern of maximum
possible length is known to be NP-complete. Therefore, it is unlikely that there exists a
polynomial-time algorithm for computing a descriptive pattern as hypothesis.

Consequently, it is only natural to ask whether efficient learning algorithms for pattern
languages can benefit from the concept of descriptive patterns at all. For answering this
question, several authors looked at special cases. For example, one can add the require-
ment that every variable appears at most once in the pattern. Such patterns are called
reqular, since the languages they generate are regular. For example, pattern m; above
is regular while pattern 7y is not. Computing descriptive patterns for regular pattern
languages can be done in polynomial time (cf. Shinohara [24, 25]). Further examples
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comprise the non-cross pattern languages as well as the class of unions of at most k regu-
lar pattern languages, where k is a priori fixed (cf., e.g., [26]). Another natural restriction
is obtained by a prior: bounding the number k of different variables that are allowed to
occur in a pattern. Such patterns are called k-variable patterns. For example, m; above
is a 2-variable pattern while 7, is a one-variable pattern. However, to our knowledge
it is still unknown whether polynomial-time algorithms exist that compute descriptive
k-variable patterns for any fixed £ > 1. (Compare with [11, 16, 12].)

Therefore, Lange and Wiehagen [17] have considered learners that are allowed to output
inconsistent guesses until enough shortest strings of the target pattern language have
been provided. Their algorithm achieves polynomial update time. Moreover, it is still
set-driven (cf. [33]), and outperforms Angluin’s [2] algorithm with respect to its storage
requirements, since it is iterative. That is, it is computing its current guess from its
previously made one, and the next input string.

Nevertheless, what really counts in practical applications is not just the time for com-
puting a single guess, but the overall time needed by the learner until convergence. We re-
fer to this time as the total learning time. On the one hand, it is easy to show that the total
learning time is unbounded in the worst case, while in the best case [log 4 (| A|+k—1)]+1
many strings are sufficient to achieve convergence (here k£ denotes the number of different
variables in the target pattern, and |.A4| the alphabet size) (cf. Zeugmann [33]). Therefore,
we are mainly interested in the average or expected total learning time. Unfortunately,
the expected total learning time of Lange and Wiehagen’s [17] algorithm was shown to be
exponential in the number of different variables occurring in the target pattern (cf. [33]).

Throughout the present paper we consider the special case of one-variable target pat-
terns. In the case of one-variable pattern languages, a polynomial-time algorithm for
computing descriptive patterns has been known for a long time. It has running time
O(n*logn) for inputs of size n and was presented by Angluin [2]. She was aware of pos-
sible improvements of the running time only for certain special cases, and she hoped that
further study would provide insight for a uniform improvement. We obtain such a uniform
improvement by presenting an algorithm that computes a descriptive one-variable pattern
in only O(n?logn) steps (Section 2). In addition, we show that our algorithm can be par-
allelized efficiently, using O(logn) time and O(n?/logn) processors on an EREW-PRAM
(Section 3). Previously, it was not known whether there exist efficient parallel algorithms
for learning one-variable pattern languages.

Moreover, we use a modified version of the sequential algorithm as a subroutine in order
to devise a learning algorithm for one-variable patterns whose expected total learning
time is O(£?log /) if the sample strings are drawn from the target language according to a
probability distribution with expected string length ¢. The probability distribution must
be such that strings of equal length have equal probability, but can be arbitrary otherwise
(cf. Section 4).

Finally, we turn our attention to active learning. In contrast to the model described
above, now the learner gains information concerning the target object by asking questions
to an oracle (cf. Definition 3). In particular, we show how the algorithm for descriptive
one-variable patterns can be used for learning one-variable patterns with a polynomial
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number of superset queries, i.e., by asking questions of the form “L(7) D L(n)?,” where
7 is the pattern to be learned and 7 is an arbitrary one-variable pattern. The number
of queries asked by our algorithm is polynomial (cf. Section 5). A different algorithm
that learns arbitrary pattern languages with a polynomial number of superset queries is
known (cf. [4]), but that algorithm uses patterns with more than one variable in its queries
even when the pattern to be learned is a one-variable pattern.

Finishing this section, we would like to mention that learning of pattern languages
has also been investigated in Valiant’s [29] probably approzimately correct (PAC) learning
model. Here, the learner has access to a random source of positive and negative examples
and must produce in polynomial time with high probability a pattern which is consistent
with nearly all future positive and negative examples from the source. Schapire [23] has
shown that it is highly unlikely that general pattern languages can be learned in this
model. On the other hand, Kearns and Pitt have shown that under certain assumptions
k-variable pattern languages can be learned in this model for any fixed & (cf. [15]).

The paper is structured as follows. Subsection 1.1 formally defines the pattern lan-
guages and some additional preliminaries. The different learning models considered in
this paper are introduced in Subsection 1.2. Next, we present our improved sequential
algorithm for finding one-variable descriptive patterns (cf. Section 2). Its efficient paral-
lelization is outlined in Section 3. In Section 4 we provide the announced average-case
analysis concerning the expected total learning time of our resulting learning algorithm.
Finally, we study the learnability of one-variable pattern languages from superset queries
(cf. Section 5), and discuss the results obtained (cf. Section 6).

1.1. The Pattern Languages

Let N ={0,1,2,...} be the set of all natural numbers, and let Nt = IN'\ {0}. For all
real numbers x we define |z], the floor function, to be the greatest integer less than or
equal to z.

Patterns and pattern languages are defined as follows (cf. [2]). Let A = {0,1,...} be
any non-empty finite alphabet containing at least two elements. By A* we denote the
free monoid over A (cf. Hopcroft and Ullman [9]). The set of all finite non-null strings of
symbols from A is denoted by A*, i.e., AT = A*\ {e}, where ¢ denotes the empty string.
By |A| we denote the cardinality of A. Furthermore, let X = {z;| i € IN} be an infinite
set of variables such that AN X = (). Patterns are non-empty strings over AU X, e.g.,
01, 0zol111, lxgzo0x1z970 are patterns. The length of a string s € A* and of a pattern 7
is denoted by |s| and ||, respectively. By Pat we denote the set of all patterns.

Let m € Pat, 1 < i < |r|; we use 7(i) to denote the i-th symbol in 7, e.g., 0x0111(2) =
xo, and 0xol111(5) = 1. If n(i) € A, then we refer to n(i) as a constant; otherwise
7(1) € X, and we refer to 7(i) as a variable. Analogously, we use s(i) to denote the i-th
symbol in a string s € AT for all i = 1,...,|s|. By #var(r) we denote the number of
different variables occurring in 7, and by #,,(7) we denote the number of occurrences of
variable z; in 7. If #var(w) = k, then we refer to = as a k-variable pattern. Let k € IN,
by Pat, we denote the set of all k-variable patterns. In the case kK = 1 we conventionally
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denote the variable occurring by z, i.e., we omit its index. Furthermore, if #,. (7) = 1 for
all variables occurring in pattern 7, then we call 7 a regular pattern.

Now let m € Paty, and let ug,...,ux 1 € A*t. We denote by 7[ug/zo, ..., ux 1/Tk 1]

the string s € A™ obtained by substituting u; for each occurrence of z;, 7 = 0,...,k—1,1in
the pattern 7. The tuple (uq, . .., ux 1) is called substitution. For every m € Pat) we define
the language generated by pattern © by L(n) = {n[uo/xo, - -, up—1/Tk_1]] U0, .., Ug_1 €

At} By PAT} we denote the set of all k-variable pattern languages. Finally, PAT =
Ukenw PAT\, denotes the set of all pattern languages over A.

From the viewpoint of formal language theory the class of pattern languages has sev-
eral interesting properties. First, it is incomparable with the class of regular languages
and the class of context-free languages (cf. [2]). Second, it is not closed under union, com-
plement, intersection, Kleene closure, homomorphism, or inverse homomorphism. But it
is closed under concatenation and reversal. Furthermore, it is one of the rare examples
of a class of languages where the equivalence problem is easily decidable but the inclu-
sion problem is undecidable (cf. [13]). One reason why one-variable pattern languages
are more interesting for practical purposes than general pattern languages is that several
problems are decidable or even efficiently solvable for one-variable pattern languages but
undecidable or NP-complete for general pattern languages. For example, in the case of
general pattern languages the word problem is NP-complete (cf. [2]) and the inclusion
problem is undecidable (cf. [13]), but both problems are decidable in linear time for one-
variable pattern languages. On the other hand, PAT is still incomparable to the regular
and context free languages. In the remaining sections of this paper, we will be mainly
concerned with one-variable patterns and their languages.

A finite set S = {so, s1,--.,8-} C A" of strings is called a sample. A pattern 7 is
consistent with a sample S if S C L(x). In order to formalize the notion of when a pattern
is a concise description of a given sample S, a (one-variable) pattern 7 is called descriptive
for S if it is consistent with S and there is no other consistent (one-variable) pattern 7
such that L(r) C L(w). Angluin [2] showed that any consistent one-variable pattern of
maximum length is descriptive, except for the trivial case when the sample consists of a
single string only.

1.2. Learning and Inductive Inference

Pattern languages have been introduced originally in the context of inductive infer-
ence. Research on inductive inference is concerned with formalizing and analyzing the
process of gradually learning concepts from successively larger sets of examples. Fre-
quently, the concepts are taken to be formal languages (cf., e.g., Osherson et al. [20],
Zeugmann and Lange [34]). In this case, a distinction is made between learning from
informant and learning from text. If L is the language to be identified, every sequence
1= (80, bo), (Sl,bl), (82,b2), ... with bj € {+, —} for all j € IN satisfying {Sjl j € ]N} =
A*, (sj,+) € i = s; € L, and (s;,—) € i = s; ¢ L is said to be an informant for
L. That is, every string over the relevant alphabet is classified as to whether it be-

'We study so-called non-erasing substitutions. It is also possible to consider erasing substitutions
where variables may be replaced by empty strings, leading to a different class of languages [6].
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longs to L or not. Furthermore, every infinite sequence ¢ = (s;),en of strings such that
range(t) = {s;| j € IN} = L is said to be a text for L, or, synonymously, a positive
presentation. By Text(L) we denote the set of all texts for L. Furthermore, let ¢ be a
text, and let n € IN. We set t,, = sq, ..., S,, and we refer to t,, as the initial segment of ¢ of
length n + 1. Moreover, we define ¢, to denote the range of t,,, i.e., t7 = {s;| 0 < i < n}.

As in Gold [8], we define an inductive inference machine (abbr. IIM) to be an algo-
rithmic device which works as follows: The IIM takes as its input larger and larger initial
segments of a text ¢t and on every input it first outputs a hypothesis, i.e., a pattern, and
then it requests the next input.

DEFINITION 1. PAT is called learnable in the limit from text iff there s an IIM M
such that for every L € PAT and every t € Text(L),

(1) for alln € IN, M(t,) is defined,

(2) there is a pattern w € Pat such that L(w) = L and for almost alln € IN, M(t,) = 7.

The learnability of the one-variable pattern languages is defined analogously by replac-
ing PAT and Pat by PAT, and Pat,, respectively.

The pattern languages as well as the class of all one-variable pattern languages consti-
tute an indezxable class L of uniformly recursive languages. That is, there are an effective
enumeration Ly, Ly, Lo, ... of all and only the languages in £ and a recursive function f
such that for all j € IN and all strings s € A* we have

fis) = {

In the following we refer to indexable classes with uniformly decidable membership as
indexable classes for short. Note that Definition 1 is a bit sharper than the usual definition
of learnability in the limit. The point here is that in our definition the IIM is requested
to output on every input a pattern as hypothesis, while in the general case, the IIM is
allowed to request the next input without making any guess. IIMs behaving thus are
called responsive. Throughout this paper, we exclusively deal with responsive ITMs.

1, if se Lj,
0, otherwise.

Angluin [3] gave sufficient and necessary conditions for indexable classes of languages
being inferable from text (not necessarily responsively). In particular, she proved that
an inference machine that always outputs as its hypothesis a pattern which is descriptive
for the input read so far responsively infers all pattern languages (cf. [2]). This approach
has another advantage, since it results in a set-driven learner. Set-drivenness has been
introduced by Wexler and Culicover [30], and is defined as follows.

DEFINITION 2. Let L be any indexable class. An IIM is said to be set-driven with
respect to L iff its output depends only on the range of its input; that is, iff M(t,) = M(t,)
for all z,y € IN and all texts t, t € Upe, Text(L) provided t7 =t} .

Note that in general one cannot expect to learn set-drivenly. For more information
concerning this subject the reader is referred to Lange and Zeugmann [18].

When dealing with set-driven learners, it is technically advantageous to describe them
in dependence of the relevant set ¢} obtained as input instead of the initial segments t,
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usually fed to an IIM. We refer to these sets as samples in accordance with the def-
inition made above. Now, let ¢ = sq, s1, ... be any text, and let m € IN. We set
n =37, s;|, and refer to n as the input length of the initial segment ¢,,. Analogously,
let S = {s0,81,---,5} be a sample. Then we set n = 32%_; |s;|, and refer to n as the
input length of sample S.

Furthermore, we mainly deal with the time complexity of the pattern learning al-
gorithms considered throughout this paper. Except in Chapter 3, where we use the
PRAM-model, we assume the same model of computation and the same representation
of patterns as Angluin [2], i.e., in particular a random access machine that performs a
reasonable menu of operations each in unit time on registers of length O(logn) bits, where
n is the input length. The inputs are read via a serial input device, and reading a string
of length n is assumed to require n steps.

Moreover, we aim at both determining the update time and the total learning time
which we define next. Let M be any IIM. Then, for every L € PAT and t € Text(L), let

Conv(M,t) = the least number m such that for all n > m, M(t,) = M(t,,)

denote the stage of convergence of M on t. Moreover, by Ty/(t,) we denote the time to
compute M (t,), and we refer to T (t,) as the update time of M. Furthermore, the total
learning time taken by the IIM M on successive input ¢ is defined as

Conv(M,t)

TT(M,t)= > Tul(ts).

Finally, we describe the model of active learning mentioned in the introduction we
want to deal with, i.e., learning via queries. The objects to be learned are the elements of
a prespecified indexable class £ defined over some alphabet A. Additionally, we assume
an indexable class H again defined over A as well as a fixed effective enumeration (h;);en
of it as hypothesis space for £. Clearly, H must comprise £. A hypothesis h is said to
describe a target language L iff L = h, i.e., for all s € A*, s € hiff s € L. The source of
information about the unknown target L are queries to an oracle. Following Angluin [4]
we distinguish membership, equivalence, subset, superset, and disjointness queries. Input
to a membership query is a string s, and the output is yes if s € L and no otherwise. As
for the other queries, the input is an index j and the output is yes if L = h; (equivalence
query), h; C L (subset query), L C h; (superset query), and L N h; = () (disjointness
query), and no otherwise. If the answer is no, additionally a counterezample is returned,
i.e., a string s € LAh; (the symmetric difference of L and h;), s € h;\ L, s € L\ hj, and
s € LN hj, respectively. Throughout this paper we always assume that all queries are
answered truthfully.

DEFINITION 3 (Angluin [4]). Let L be any indezable class and let H be a hypothesis
space for it. A learning algorithm ezactly identifies a target L € L with respect to H
with access to a certain type of queries if it always halts and outputs an index j such that

Besides the source of information, there is another major difference to Definition 1.
That is, now the learner is allowed only one guess, and that hypothesis must be correct.
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The complezity of a query learner is measured by the total number of queries to be asked
in the worst-case.

2. An Improved Sequential Algorithm

In this section we present an algorithm that computes a descriptive one-variable pattern
for a given sample. The input to the algorithm is a sample S, S = {s¢, $1,---,87_1}, of r
non-empty strings over A. Without loss of generality, we assume that sy is the shortest
string in S. Our algorithm runs in time O(n |sq|log|sy|) and is simpler and much faster
than the original algorithm by Angluin [2], which needs time O(n?|sy|?log|se|). Recall
that n denotes the input length of S.

Angluin’s [2] algorithm computes explicitly a representation of the set of all consistent
one-variable patterns for S. This requires a tricky data structure which can represent
exponentially many patterns in polynomial space. In order to get a faster algorithm we
avoid to represent all consistent patterns, but rather work with a polynomial-size subset
thereof.

Before we describe our algorithm in detail, we need to review and to establish a few
basic properties of one-variable patterns and the languages generated by them.

LEMMA 1 (Angluin [2], Lemma 3.9). Let 7 € Pat, and let m € Pat;. Then L(1) C L(m)
if and only if T can be obtained from w by substituting a pattern o € Pat for x.

For a pattern 7 to be consistent with S, there must be strings «y, ..., a, ; € A' such
that s; can be obtained from 7 by substituting «; for z, for all 0 < ¢ < r — 1. Given a
consistent pattern 7, the set {a, ..., a-_1} is denoted by «(S, 7). Furthermore, a sample
S is called prefiz-free if |S| > 1 and no string in S is a prefix of all other strings in S.

LEMMA 2. If S is a prefiz-free sample then there exists a descriptive pattern m € Paty
for S such that at least two strings in (S, ) start with a different symbol.

Proof. Let u denote the longest common prefix of all strings in S. The pattern ux
is consistent with S because u is shorter than every string in S, since S is prefix-free.
Consequently, there exists a descriptive pattern m € Pat; for S with L(w) C L(uz). Now,
by Lemma 1 we know that there exists a pattern o € Pat; such that 7 = ux[o/x]. Since
u is a longest common prefix of all strings in S, we can conclude o(1) ¢ A. Hence, o = z7
for some 7 € Pat, U{e}, and at least two strings in «(S, uzr7) must start with a differen‘i
symbol.

Let Cons(S) = {m| m € Paty, S C L(w), 3,j[i # j, s, o € (S, 7), (1) # o;(1)]},
i.e., Cons(S) is the set of all consistent patterns 7 for S such that at least two strings in
a(S, ) start with a different symbol. Note that Cons(S) is in general only a subset of all
patterns that are consistent with S, and that Cons(S) = () provided S is not prefix-free.

LeEMMA 3. Let S be any prefiz-free sample. Then Cons(S) # 0, and every pattern
m € Cons(S) of mazimum length is descriptive for S.

Proof. Let S be prefix-free. According to Lemma 2 there exists a descriptive pattern for
S belonging to Cons(S); thus Cons(S) # (. Now, suppose there is a pattern 7 € Cons(S)
of maximum length which is not descriptive for S. Thus, S C L(x), and, moreover, there
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exists a pattern 7 € Pat; such that S C L(7) as well as L(r) C L(w). Hence, by
Lemma 1 we know that 7 can be obtained from 7 by substituting a pattern o for z.
Since at least two strings in «(S,7) start with a different symbol, we immediately get
o(1) € X. Moreover, at least two strings in «(S,7) must also start with a different
symbol. Hence 7 € Cons(S) and ¢ = zv for some pattern v. Note that |v| > 1, since
otherwise 7 = 7[p/x] = 7 contradicting L(7) C L(w). Finally, by |[v| > 1, we may
conclude |7| > ||, a contradiction to 7 having maximum length. Thus, no such pattern 7
can exist, and hence, 7 is descriptive. 1

Note that the lemma above does heavily depend on the restriction to one-variable
patterns. For example, let S = {111000,000111}. Obviously, S is prefix-free, and there is
only one consistent pattern 7 € Patq, i.e., x. On the other hand, if we drop the restriction
to exclusively consider elements from Pat;, we may take zoxoxroriT12, as a descriptive
pattern.

Next, we explain how to deal with samples that are not prefix-free. First, the algorithm
checks whether the input sample consists of a single string s. If this is the case, it simply
outputs s as a descriptive pattern and terminates. Otherwise, it checks whether s is a
prefix of all other strings s1,..., s, 1. If this is the case, the algorithm outputs uz € Pat;,
where u is the prefix of sy of length |so| — 1, and terminates. Obviously, S C L(uz).
Suppose there is pattern 7 such that S C L(r), and L(7) C L(ux). Then we may
again apply Lemma 1, i.e., there must be a pattern p such that 7 = uz[p/z]. But this
immediately implies o = z, since otherwise |7| > |so|, and thus, S ¢ L(7). Consequently,
uzx is descriptive.

In all other cases |S| contains at least two strings and sq is not a prefix of all other
strings in the sample. Hence, |S| is prefix-free and Lemma 3 applies. Therefore, it is
sufficient to find and output a longest pattern in Cons(S). In the rest of this section we
will show how this can be done efficiently.

The observation that leads to an improved algorithm for prefix-free samples is that the
number of patterns in Cons(S) is bounded by a small polynomial, as we show next. Let
k,l € IN, k > 0; we call patterns with £ occurrences of x and [ occurrences of constants
(k,l)-patterns. Note that a (k,[)-pattern has length k£ + [. Furthermore, every pattern
m € Cons(S) satisfies |7| < |sg|, since we exclusively consider non-erasing substitutions.
Obviously, there can only be a (k,[)-pattern in Cons(S) if there is a positive integer my
satisfying |sq| = kmg + [. Clearly, mg refers to the length of the string substituted for
the occurrences of = in the relevant (k,[)-pattern to obtain sg. Thus, for my = 1 there
are |so| many possible pairs (k,1) such that k + [ = |s¢|. For mg = 2, the number [ must
satisfy 0 <1 = |sg| — 2k, hence there are at most [|sq|/2] many possible pairs (k, ) with
|so] = 2k + [, and so on. Therefore, there are at most ||so|/k] possible values of [ for a
fixed value of k. Hence, the number of possible (k,[)-pairs for which (k,[)-patterns can
exist in Cons(S) is bounded by

3° |1l = 0 -tog .

k=1

The algorithm considers all possible (k,[)-pairs in turn. We describe the algorithm
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for one specific (k,1)-pair. If there is a (k,[)-pattern m € Cons(S), the lengths m; of the
strings «; € oS, m) must satisfy m; = (|s;| —1)/k. In addition, it is clear that «; is simply
the substring of s; of length m; starting at the first position d where the input strings
differ. If (|s;| — [)/k is not integral for some i, then there is no consistent (k,[)-pattern
and the algorithm does not need to perform any further computation for this particular
(k,l)-pair. The following lemma shows that the (k,)-pattern in Cons(S) is unique, if it
exists at all.

LEMMA 4. Let S = {sq,...,S,_1} be any prefiz-free sample. For every given (k,l)-pair,
there is at most one (k,l)-pattern in Cons(S).

Proof. Let u be the longest common prefix of the strings in S, possibly v = ¢. All
patterns in Cons(S) start with ux. Thus, if |u| > [ there cannot be any (k,[)-pattern in
Cons(S). Now, assume |u| < I. If (|s;] — 1)/k is not integral for some i, there is again
no (k,l)-pattern in Cons(S). Otherwise, we show by induction on j that the j-th symbol
in a (k,l)-pattern m € Cons(S) is unique, or there is no such pattern 7. Note that all «;
and m; are already determined by the (k,[)-pair.

Obviously, the hypothesis is true for 1 < j < |u| + 1. Let us assume that the first
7 — 1 symbols of 7 are already fixed and contain b < k variables and ¢ < [ constants so
far. For each 7, the prefix of s; corresponding to the first 5 — 1 symbols of 7 has length
bm; + j — 1 — b. If all strings s; have the same symbol a € A in position bm; + j — b, the
j-th symbol of 7 must be a. In that case, the candidate pattern is extended by a, and
¢ := c+ 1. If all strings s; have the symbol «;(1) in position bm; + j — b, the j-th symbol
of m must be z, and another occurrence of x has been detected. Thus, the candidate
pattern is extended by z, and b := b+ 1. If none of the two conditions holds, there is no
(k,l)-pattern in Cons(S). Otherwise, the candidate pattern 7 is uniquely determined.

Now, three cases are possible. First, ¢ > [, i.e., more than [ constants occur in the
candidate pattern 7, and therefore, no (k,l)-pattern in Cons(S) can exist. Second, b > k,
i.e., more than k variables appear in w. Consequently, there is again no (k,[)-pattern in
Cons(S). Finally, k variables and [ constants appear in the candidate pattern 7. Now,
one can easily check whether 7 is consistent. If it is, 7 € Cons(S), and we are done.
Otherwise, there is no (k,[)-pattern in Cons(S). i

An algorithm computing the unique candidate 7 for the (k,[)-pattern in Cons(S)
follows straightforwardly from the proof above. For the sake of presentation, we omit the
consistency test here. Additionally, Algorithm 1 does not test whether the numbers m;
are integral, since it is run later only for pairs (k,!) leading to integral values of the m;.
Furthermore, we assume a subprocedure taking as input a sample S, and returning the
longest common prefix u as well as the first position d where the input strings differ. The
following algorithm either returns a pattern 7 or NIL. If NIL is returned then there is no
(k,1)-pattern in Cons(S).

Algorithm 1
On input (k,1), S = {so,---,8r_1}, and u, d do the following:

for j=0,...,7r —1dom; < (|sj| —1)/k od;
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T u; b 0; <« d; c+ |uf;
while j <k +1 do
if so(bmo +j — b) = s;(bm; +j —b) for all 1 <i <r —1 then
if c <l then 7« mwso(bmo+j—b); c+c+1
else return NIL
fi
elseifb < k then 7+ 7mx; b+ b+ 1
else return NIL
fi;
j—j+1
od;

return

Note that minor modifications of Algorithm 1 perform the consistency test S C L(w)
even while 7 is constructed.

Example 1 Let S = {0001000010,

1011010110,
10010101001010,
1100101011001010,
110111110110111110}.
Then |so| = 10 and there are 27 possible (k,[)-pairs, i.e., (1,9), (2,8), ..., (10,0),
(1,8), ..., (5,0), (1,7), (2,4), (3,1), (1,6), (2,2), (1, ) (2,0), (1,4), ..., (1,0).
Next, checking for |s1|, [sa|, |ss|, and |s4| whether or not m; = (|s;| — 1)/k is integral

immediately rules out 12 of the listed (k,[)-pairs. Clearly, for S the longest common
prefix is u = ¢, and thus d = 1. Running Algorithm 1 on the remaining 15 pairs returns
NIL for (1,9), (1,8), (1,7), (1,6), (1,5), (1,4), (1,3) as well as for (2,8) and (2,6).
Thus, Cons(S) contains only patterns for the pairs (2,4), (2,2), (1,2), (2,0), (1,1), and
(1,0). These are 210210, 0z0, 210, zz, z0, and z, respectively. The longest among these
patterns is 10210, and it is descriptive for S.

Putting Lemma 4 and the fact that there are O(|sq|-log|se|) many possible (k, 1)-pairs
together, we directly obtain:

LEMMA 5. Let S = {sq,.--,8.—1} be any prefiz-free sample. Then |Cons(S)| =
O([so| log |sol).

Using Algorithm 1 as a subroutine, Algorithm 2 below for finding a descriptive pattern
for a prefix-free sample S follows the strategy exemplified above. Thus, it simply computes
all patterns in Cons(S) and outputs one with maximum length. For inputs of size n
the overall complexity of the algorithm is O(n |sq|log|se|) = O(n?logn), since at most
O(|so] log|se|) many tests must be performed, which have time complexity O(n) each.
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Algorithm 2
On input S = {so, ..., sy_1} do the following:

P+ 0;
for k=1, ..., |s| do
formg=1, ..., [JSTO[J do
if there is a (k, |so| — kmyg)-pattern m € Cons(S) then P « P U {r}
od
od;

Y

Output a maximum-length pattern 7 € P.

It should be noted that the number of (k, [)-pairs for which the test has to be performed
is actually smaller than O(|sq|log|sq|) for many inputs. This is because the requirement
that (|s;| —1)/k is integral for all i restricts the set of possible values of k if not all strings
have the same length. More precisely, only those values of k that are divisors of |s;| — |s,]
for all 0 < ¢,7 < r — 1 must be considered.

Another remark concerns the order in which the (k,[)-pairs are processed. Since it
suffices to output a consistent pattern having maximum length, it is practically helpful to
process the (k, [)-pairs in order of non-increasing k1. This ensures that the algorithm can
terminate as soon as it encounters the first consistent pattern. The worst-case complexity
is not improved, however, because all (k,[)-pairs have to be processed if the descriptive
pattern is .

3. An Efficient Parallel Algorithm

Whereas the RAM (random access machine) model has been generally accepted as the
most suitable model for developing and analyzing sequential algorithms, such a consensus
has not yet been reached in the area of parallel computing. Nevertheless, the PRAM
(parallel random access machine) model, introduced by Fortune and Wyllie [7], is usually
considered an acceptable compromise (cf., e.g., Zeugmann [32] for an overview).

A PRAM consists of a number of processors, each of which has its own local memory
and can execute its local program, and all of which can communicate by exchanging data
through a shared memory (cf., e.g., J4J4 [10]). The advantages of the PRAM model over
competing parallel machine models include the simplicity with which PRAM algorithms
can be described and analyzed, and the high level of abstraction this model offers. Its
drawback is the somewhat unrealistic assumption of a globally shared memory which
causes problems for the implementation of PRAM algorithms on existing parallel com-
puters. It has been shown, however, that PRAM algorithms can be executed efficiently
on a number of parallel architectures [1, 14].

Different variants of the PRAM model have been considered with respect to the con-
straints on simultaneous accesses to the same memory location by different processors.
The CREW-PRAM allows concurrent read accesses but no concurrent write accesses
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(CREW stands for concurrent read — ezclusive write). The various PRAM models, rang-
ing from EREW to CRCW, have been shown to be equally powerful except for logarithmic
factors in running time or processor requirements. For ease of presentation, we will de-
scribe our algorithm for the CREW-PRAM model. The algorithm can be modified to
run on an EREW-PRAM, however, by the use of standard techniques. For any further
information, we refer the reader to JaJ4 [10].

To our knowledge, no parallel algorithm for computing descriptive one-variable pat-
terns has been known previously. We show how Algorithm 2 can be efficiently parallelized
by using several well-known techniques including prefix-sums, tree-contraction, and list-
ranking as subroutines (cf. [10]).

First, we observe that a parallel algorithm can deal with non-prefix-free samples S in
the same way as the sequential algorithm. Checking whether S is singleton or whether
so is a prefix of all other strings can be easily done in time O(logn) using O(n/logn)
processors. Therefore, without loss of generality we assume that these prefix-tests have
been performed, and that the input sample S = {so, ..., s,_1} is prefix-free. In addition,
we assume that the prefix-tests have returned the first position d where the input strings
differ and an index ¢, 1 <t < r — 1, such that sy(d) # s;(d).

Obviously, a parallel algorithm can deal with all O(|sq|log|so|) possible (k,[)-pairs in
parallel. For each (k,[)-pair, our parallel algorithm computes the unique (k,[)-pattern in
Cons(S), if it exists. Finally, it suffices to output any obtained pattern having maximum
length. Next, we show how to efficiently parallelize the two steps to be performed for each
(k,l)-pair, i.e., computing a candidate (k,!)-pattern m and checking whether S C L(m).
An illustrative example can be found at the end of this section.

For a given (k,[)-pair, the algorithm uses only the strings sy and s; for calculating
the unique candidate 7 for the (k,!)-pattern in Cons(S). Considering only two strings
reduces the processor requirements, and an easy modification of the proof of Lemma 4
shows that the candidate pattern remains unique even if only two strings that differ in
position d are considered.

Position j; in s; is said to be b-corresponding to position j, in sq if j; = jo+b(m; —my),
where 0 < b < k. Intuitively, the meaning of b-corresponding positions is as follows.
Suppose there is a (k, [)-pattern 7 which is consistent with sy and s;. Furthermore, assume
that position jy in sy corresponds to a constant symbol in 7, and that b occurrences of
x are to the left of that constant symbol. Then that symbol corresponds to position
Ji = Jo + b(my — mg) in s;. For example, let 7 = 020200x1, so = w[0/x] = 00000001, and
sy = mw[11111/2] = 01111101111100111111. Thus, mg = 1 and m; = 5. Hence position 20
in s; is 3-corresponding to position 8 in sg, since 8 + 3(5 — 1) = 20.

In order to be able to compute the candidate pattern from sy and s;, the algorithm
calculates the entries of an auxiliary array EQUAL[j, b] of Boolean values first, where j
ranges from 1 to |s¢| and b ranges from 0 to k. Intuitively, EQUALJj, b] is true iff the
symbol in position j in sy is the same as the symbol in its b-corresponding position in s;.
Formally, the array is defined as follows:

EQUAL[], b] = true iff SO(j) = St(j + b(mt - mo))
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The array EQUAL has O(k|sg|) entries, and each value can be calculated in constant time.
Using O(k|so|/ logn) processors, the resulting time requirement is O(logn) for computing
EQUAL. The following lemma shows how a candidate pattern can be obtained from
EQUAL within the same time and processor bounds.

LEMMA 6. Let S = {sq, ..., Sr_1} be a sample, and let n be its size. Given the array
EQUAL, the unique candidate w for the (k,l)-pattern in Cons(S), or NIL, if no such pat-
tern exists, can be computed on an EREW-PRAM in time O(logn) using O(k|so|/logn)
PTOCESSOTS.

Proof. Sequentially, the candidate pattern can be obtained from EQUAL in a way
similar to Algorithm 1 in Section 2, namely by starting at EQUALJL, 0] with the empty
pattern 7 and visiting entries of EQUAL according to the following rule: If EQUAL(y, b]
is true, append s¢(j) to 7 and go to EQUAL[j + 1, b]. Otherwise, append z to = and go
to EQUAL[j + mg, b + 1]. This is iterated until at least one index lies outside the valid
range. If the procedure terminates because it tries to visit EQUAL[|sq|+ 1, k], a candidate
pattern has been obtained. Otherwise, there is no (k, [)-pattern in Cons(S), and NIL can
be returned.

To perform this calculation efficiently in parallel, a directed graph G = (V, E) is built
from the array EQUAL. The set of nodes V' consists of one node for each entry of EQUAL
and one additional node, i.e., nodes v;;, for 1 < j < |so| and 0 < b < k and an additional
node v 5 41,k- Note that [V| = O(k|so|). The following arcs are added to E:

(vjp,vj41) € B iff EQUALIJ, b] = true,
(Uj,b, 'Uj-i—mg,b-i—l) e kB iff EQUAL[], b] = false

These are the only arcs in the graph G. Note that each node of G has outdegree at most 1
and indegree at most 2, and that G is acyclic. In other words, GG is a forest of binary
in-trees.

Now we observe that a candidate (k,[)-pattern exists if and only if there is a path in
G from vy t0 V5414 In addition, this path can be used to determine the candidate
pattern. In order to extract the path, the tree-contraction technique can be used. We view
each in-tree of G as an arithmetic expression tree where every internal node represents a
+ operation and every leaf node gets a 0, except for the leaf node v, o which gets a 1. The
expressions represented by all trees and subtrees of G' can be evaluated simultaneously in
time O(logn) using O(k|se|/logn) processors on an EREW-PRAM. At the end, precisely
the nodes reachable from v; o have the value 1, whereas all other nodes are 0. Hence,
the path from v, to the root of its in-tree can easily be extracted using prefix-sums and
list-ranking.

In addition, if the path does indeed end at w5114, the candidate (k,[)-pattern can
be obtained directly from the path and the string so. This is because the length of
the candidate pattern 7 is equal to the number of nodes on the path minus one, and
because m can be computed from the path by replacing each of the first |7| — 1 nodes by
the appropriate symbol. More specifically, each node v;; corresponding to a true entry
EQUALJj, b] is replaced by the constant sq(j), and each node v, corresponding to a false
entry is replaced by the variable z. i
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At this stage, the algorithm has either discovered that no (k,[)-pattern exists, or it
has obtained a candidate (k,[)-pattern 7. In the latter case, it needs to check whether 7
is indeed consistent with S.

LEMMA 7. Given a candidate pattern m with k occurrences of x and | occurrences of
constants, a parallel algorithm can check whether w is consistent with a sample S of size n
in time O(logn) with O(n/logn) processors on a CREW-PRAM.

Proof. Given the candidate pattern 7, each symbol of a string s; € S either corresponds
to a constant in the pattern or to an occurrence of z (more specifically, it is the z-th symbol
of an instantiation of z in s;, for some z). We associate one bit with each symbol in each s;,
such that S C L(r) if and only if all these bits are true. For a symbol corresponding to a
constant in the pattern, the bit is set to true if the symbol is equal to that constant. For
a symbol which is the z-th symbol of an instantiation of x in s;, the bit is set to true if
the symbol is equal to the (d + z — 1)-th symbol of s;, where d is the position of the first
z in 7. In other words, «; is set to the substring of s; that starts in position d and has
length m;, and it is checked whether this choice is consistent with all other occurrences
of z in m. The Boolean AND of these n bits can then be computed in time O(logn) with
O(n/logn) processors on an EREW-PRAM. The resulting value is true if and only if 7w
is consistent with the whole sample S.

Now we show how the bits associated to all symbols in the sample can be calculated
in the same time and processor bounds. In the following, the calculation is described for
the symbols in one specific string s;. First, the algorithm assigns a value to each symbol
7(7) of the pattern. If j =1 or 7(j — 1) € A, the value 1 is assigned to n(j). If j > 1
and 7(j — 1) = z, the value m; is assigned to 7(j). A prefix-sums calculation over the
values assigned to the symbols in the pattern yields, for each symbol in the pattern, the
position of its corresponding symbol in s; (for constant symbols) or the position of the
first symbol of its corresponding instantiation in s; (for variable symbols).

Next, a pair (j,z) is associated with each symbol in s; and initialized to (0,0). For
the j-th symbol 7(j) in the pattern (1 < j < k + 1), the (0,0)-pair associated to its
corresponding symbol in s; is replaced by (4,0) if 7(j) € A, and by (4,1) if 7(j) = z. As a
consequence, now the pair associated to a symbol in s; is (j,0) if the symbol corresponds
to m(j) € A and (7, 1) if the symbol starts the instantiation of 7(j) = . Symbols in the
z-th position, z > 1, of an instantiation of z still have (0,0). The following operation on
pairs of integers can easily be shown to be associative:

. . _ (jQ,ZQ) 1f]2 %0

(1, 21) @ (J2, 22) = { (i,z1+1) if jo =0
After a parallel prefix computation using the operation & on the pairs associated to the
symbols in s;, the pair associated to a symbol in the z-th position of an instantiation of
7(j) = x is (J, 2). The desired bit values can then be computed in constant time per bit
as follows: Assume that the result of the prefix computation is (j, z) for symbol s;(h). If
7(j) € A, the bit associated to s;(h) is true if and only if s;(h) = 7(j). If w(j) is z, the

bit associated to s;(h) is true if and only if s;(h) = s;(d + z — 1).

For the prefix-sum computations over the values associated to symbols of the pattern
time O(logn) and O((k +1)/logn) = O(|sy|/logn) processors are sufficient. The prefix-
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sum computations over the pairs associated to symbols of s; can be performed in time
O(logn) using O(|s;|/ logn) many processors. Performing these computations in parallel
for all i, 0 < i <r — 1, requires O(logn) time and O(n/logn) processors on an EREW-
PRAM. A straightforward implementation of the computation of the bit values requires
concurrent read access, however, because several processors may access the same symbol
in 7 or in some s; when comparisons are performed. i

THEOREM 1. There exists a parallel algorithm that computes descriptive one-variable
patterns in time O(logn) using O(|se| max{|se|?, nlog|se|}/logn) = O(n3/logn) proces-
sors on a CREW-PRAM for samples S = {sq, ..., Sy_1} of size n.

Proof. If |S| = 1 or S is not prefix-free, O(n/logn) processors and O(logn) time clearly
suffice. Otherwise, the number of processors required for calculating the array EQUAL
and the candidate pattern in parallel for all possible (k,[)-pairs according to Lemma 6
can be bounded as follows:

k |sol 3
S o) o (e ]} o (f8)

(k. ) pairs logn logn (= k logn
Furthermore, checking which of the candidate patterns are consistent with S using the
algorithm from Lemma 7 for all (k,/)-pairs in parallel requires O(n |sy|log|so|/logn)

processors. A simple maximum calculation then suffices to output a consistent pattern
with maximum £ + [, which is descriptive by Lemma 3. i

As already mentioned earlier, it is not difficult to make the algorithm run on an EREW-
PRAM in the same time and processor bounds. For this purpose, it is only necessary to
make a sufficient number of copies of all memory locations that are accessed by several
processors at the same time in order to ensure that each processor can work with its
private copy. The details are somewhat tedious but standard, and therefore omitted here.

Furthermore, note that the work performed by the parallel algorithm, i.e., the product
of its time and processor requirements, is the same as that performed by the improved
sequential algorithm from Section 2 whenever [so|? = O(nlog|so|). If |so| is larger, the
work performed by the parallel algorithm exceeds that of the sequential algorithm by a
factor less than O(|sg|?>/n) = O(|sg)).

Example 2 We give an example for the computation of a (k,[)-pattern in Cons(S) by
the parallel algorithm. Let the sample S contain the following strings:

sp = 0000101001 so] =10 me=2
s; = 010101011011 s1]=12  my=3
sy = 00101010101011 5o =14 my=4

The values for m; are given for the (k,[)-pair (2, 6), which is the pair which we focus on
for the rest of this example. First, the algorithm finds that S is prefix-free. It determines
that d = 2 (the first position where the strings differ) and ¢ = 1 (s; is a string that differs
from s in position d). The entries of the array EQUAL are then computed from s, and
s1. The resulting values are given next, using 0 to denote “false” and 1 to denote “true.”
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EQUAL
bJ1 2 3 45 6 7 8 9 10
0|1 010000O0GO0 O
11010111101 1
2101000110 1

In order to check whether there exists a candidate (2, 6)-pattern, the algorithm creates
a graph G from the array EQUAL. The graph is depicted in Figure 1. Obviously, there

is a path from v, t0 vjs 412 in G. Hence, there is a candidate (2, 6)-pattern, and it can
be derived from the path and from s; as follows:

() T 1) () C-(20) T

Figure 1: The graph obtained from the EQUAL array

Path: V1,0 = V2,0 —* V4,1 — Us1 —* Vg,1 — V7,1 — Vg1 — V10,2 — V11,2
Pattern: 0 x 0 1 0 1 T 1

The nodes v,y and vg; on the path correspond to false-entries of the array EQUAL. As
these nodes appear in positions 2 and 7 on the path, respectively, the candidate pattern
7 has occurrences of x in positions 2 and 7. The constant symbols in 7 are obtained by
replacing v, by so(j) for the remaining nodes on the path except the last one.

The algorithm verifies that the resulting (2, 6)-pattern 02010121 is consistent with the
sample and concludes that it is contained in Cons(S). In addition, this pattern turns out
to be a longest pattern in Cons(S) and therefore descriptive for the given sample.

It should be mentioned that there is a special case for which the processor requirements
of the algorithm can be improved. If the input sample contains two strings that are not
identical but have equal length, the algorithm can be modified to use these two strings
instead of sy and s; to calculate the candidate (k, [)-patterns. This has the advantage that
the value of an entry EQUALJj, b] of the array EQUAL does not depend on the second
index b, because the value m; is identical for the two strings. Hence, the array EQUAL is
only one-dimensional in this case. Therefore, the size of EQUAL and the corresponding
graph is only O(n), and the candidate pattern 7 can be obtained in time O(logn) with
O(n/logn) processors instead of O(k|sy|/logn) processors as before. Consequently, the
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overall processor requirement is reduced to O(n |sq|log|se|/logn) in this case. Further-
more, note that it is not necessary to compute candidate patterns for all O(|so|log|so|)
(k,1)-pairs. Let s; and s; be the two strings that are not identical but have equal length.
Then it is sufficient to check for the O(|s;|) possible substitution lengths m; whether there
is a candidate pattern which can generate s; and s; by substituting strings of length m;
for x. The processor requirement for this alternative implementation is O(n |s;|/logn),
which is an improvement if |s;| = o(|so|log|so|). A corresponding improvement is possible
for the sequential algorithm from Section 2 in this special case as well.

4. Analyzing the Expected Total Learning Time

Until now, we have dealt with the update time of our set-driven learners by analyzing
the proposed algorithms for computing descriptive one-variable patterns. Now, we are
interested in the resulting total learning time.

Let 7 be the pattern to be inferred. The total learning time of any algorithm that tries
to infer 7 is unbounded in the worst case, because there are infinitely many strings in L(7)
that can mislead the algorithm. To see this, assume that 7 = z and that the learning
algorithm is initially given strings of the form Ou for some u € A*. The algorithm cannot
rule out the possibility that the pattern to be inferred is Ox until it sees a string 0 or au for
some a € A\ {0} and u € A*. On the other hand, in the best case two examples, namely
7[0/x] and w[1/x], do always suffice for a learning algorithm that outputs descriptive
patterns as hypotheses.

Hence, we assume that the strings presented to the algorithm are drawn from L(w)
according to a certain probability distribution. This allows us to obtain results about the
expected total learning time of an algorithm. The probability distribution must satisfy
two criteria: any two strings in L(7) of equal length must have equal probability, and the
expected string length must be finite. We refer to such distributions as proper probability
distributions. The assumption that strings of equal length are equally probable seems a
very natural assumption.

We present a learning algorithm that infers a one-variable pattern m with expected
total learning time O(¢?log ¢), where £ is the expected length of a string drawn from L ()
according to the probability distribution.

It turns out advantageous not to calculate a descriptive pattern each time a new string
is read. Instead, our proposed one-variable pattern learning algorithm, Algorithm 1LA,
reads a certain number of strings before it starts to perform any calculations at all. It
waits until the length of a sample string is smaller than the number of sample strings read
so far and until at least two different sample strings have been read. During these first two
phases, it outputs s;, the first sample string, as a hypothesis as long as all sample strings
read so far are the same, and it outputs x as a hypothesis once a sample string different
from s; has been encountered. If the pattern 7 is a constant pattern, i.e., |L(7)| = 1, the
correct hypothesis is output after the first sample string is read, and the algorithm never
reaches the third phase. Otherwise, the algorithm uses a modified version of Algorithm 2
from Section 2 to calculate a set P’ of candidate patterns when it enters Phase 3. More
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precisely, it does not calculate the whole set P’ at once. It rather uses the function
first_candidate once to obtain a longest pattern in P’, and the function nezt_candidate
repeatedly to obtain the remaining patterns of P’ in order of non-increasing length. This
has the benefit of reducing the memory requirements for Algorithm 1LA substantially.

The pattern 7 obtained from the call to first_candidate is used as the current candidate
pattern. Each new sample string s is then compared to the current candidate pattern 7.
If s € L(1), T is output as a hypothesis. Otherwise, next_candidate is called to obtain a
new candidate pattern 7. Now, 7" becomes the current candidate pattern and is output
as a hypothesis, no matter whether s € L(7'). If the longest common prefix of all sample
strings including the new string s is shorter than that of all sample strings excluding
s, however, first_candidate is called again and a different list of candidate patterns is
considered. Note that Algorithm 1LA may output inconsistent hypotheses, because the
current candidate pattern 7 may fail to generate a previously read sample string that has
been discarded or even the current sample string if 7 has just been obtained by a call to
next_candidale in order to replace a previous candidate pattern that failed to generate
the current sample string.

Algorithm 1LA is shown in Figure 2. The functions first_candidate and nezt_candidate
represent a modified version of the algorithm from Section 2. Let S = {s,s'}. Let
P'(S) = {vx}, if s = vc for some ¢ € A and s’ = sw for some string w. Otherwise, denote
by u the longest common prefix of s and s’, and let P'(S) be the set of all patterns 7 = up
that can generate s and s’ if we allow substitutions that replace different occurrences of
x by different strings of the same length. The algorithm from Section 2 yields exactly
P'(S) if we omit the consistency check. Hence, P'(S) D Cons(S), where Cons(S) is as
defined in Section 2. Note that P’(S) necessarily contains the pattern = if s and s are
in L(7) and if the longest common prefix of s and s’ is the same as the longest constant
prefix of 7. Furthermore, P'(S) contains at most O(|s|log|s|) patterns. Since we omit
the consistency checks, a call to first_candidate and all subsequent calls to next_candidate
until either the correct pattern is found or the prefix changes can be performed in time
O(|s|*1og|s|) altogether.

We will show that Algorithm 1LA correctly infers one-variable pattern languages from
text in the limit, and that it correctly infers one-variable pattern languages from text with
probability 1 if the sample strings are drawn from L(7) according to a proper probability
distribution.? In the latter case, the expected total learning time is shown to be O (¢2log ¢),
where / is the expected length of a sample string.

THEOREM 2. Let m be an arbitrary one-variable pattern. Algorithm 1LA correctly
infers m from text in the limit.

Proof. If 7 is a constant pattern, Algorithm 1LA outputs 7 after reading a single sample
string and doesn’t change its hypothesis later on. Otherwise, let 7 = uxu, where u € A*
is a string of d — 1 constant symbols and u € Pat; U {e}. As every string in L(7) will be
eventually presented to Algorithm 1L A, sooner or later it will have encountered two strings
that differ in position d. At this point, pattern 7 will be among the candidate patterns in

2Note that learning a language L in the limit and learning L from strings that are drawn from L
according to a proper probability distribution are not the same.



20

T. ERLEBACH, P. ROSSMANITH, H. STADTHERR, A. STEGER AND T. ZEUGMANN

{ Phase 1 }
r < 0;
repeat
r<r+1;
read string s,;
if s; = s9 = --- = s, then output hypothesis s;
else output hypothesis z
fi
until |s,| < 7;

{ Phase 2 }
while s; = sy =+--= s, do
rr+1;
read string s;;
if s, = s; then output hypothesis s;
else output hypothesis

fi
od;
{ Phase 3 }
s < a shortest string in {s1, s, ..., S };
u < maximum length common prefix of {s1, s9,..., S, };
if u = s then ¢’ < a string in {sy, 89, ..., s, } that is longer than s
else s’ + a string in {sy, 89, ..., s, } that differs from s in position |u| + 1
fi

T < first_candidate(s, s');
forever do
read string s”;
if u is not a prefix of s” then
u < maximum length common prefix of s and s”;
s« s";
T < first_candidate(s, s')
else if s" ¢ L(7) then
T < next_candidate(s, s', T)
fi;
output hypothesis 7;
od

Figure 2: Algorithm 1LA
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the set P’ implicitly maintained by Algorithm 1LA. For every pattern 7’ € P'\ {n} with
|7'| > |r|, there are infinitely many strings in L(7) \ L(7'). Hence, all these patterns 7’
will be eventually discarded by the algorithm, and it will output the correct hypothesis 7.
After that, the algorithm will never change its hypothesis.

THEOREM 3. Let w be an arbitrary one-variable pattern. If sample strings are drawn
from L(7) according to a proper probability distribution, Algorithm 1LA correctly infers
with probability 1.

Proof. If m is a constant pattern, Algorithm 1LA outputs 7 after reading a single
sample string and converges. Otherwise, let 7 = uxu, where u € A* is a string of d — 1
constant symbols and p € Pat; U {e}. After Algorithm 1LA has read two strings that
differ in position d, pattern 7 will be one of the candidate patterns in the set P’ implicitly
maintained by the algorithm. As each new sample string differs from the first sample
string in position d with probability (|A| —1)/|A| > 1/2 (this is a consequence of the
fact that strings in L(m) of equal length are equally probable), this event will happen
eventually with probability 1. After that, as long as the current candidate pattern 7 is
different from 7, the probability that the next sample string read is not in the language
of 7 is at least 1/2 (cf. Lemma 8 below). Hence, all candidate patterns will be discarded
with probability 1 until 7 becomes the current candidate pattern and is output as a
hypothesis. After that, the algorithm converges. i

LEMMA 8. Let m = uzp be a one-variable pattern with constant prefic u, and p €
Pat1U{e}. Let so, s1 € L(m) be arbitrary such that so(|u|+1) # s1(|u| +1). Let 7 # 7 be
a pattern from P'({so, s1}) with |t| > |n|. Then 7 fails to generate a string s drawn from
L(m) according to a proper probability distribution with probability at least (|A| —1)/|A|.

Proof. Denote the number of occurrences of constant symbols in 7 and 7 by #4(n),
and # 4(7), respectively. Recall that #,(7) and #,(7) denotes the number of occurrences
of x in 7 and 7, respectively. Note that either #,(7) > #4(7) or #.4(7) > #.4(n) (or
both). This is obvious if |7| > ||, and for |7| = || this follows from the fact that there
is at most one (k,[)-pattern in P’'({so, s1}) for each (k,[)-pair.

Let n be the length of the string s drawn from L(n). If n — #.4(7) is not divisible by
#.(7), then Pr(s € L(7) | |s| = n) = 0. Otherwise, we distinguish the following cases:

Case 1. #,(17) > F#(m). Let I; be the set of positions in s which correspond to the
first symbol of a substitution string o, that is substituted for x in 7 to obtain s. Similarly,
let I, be the set of positions in s which correspond to the first symbol of a substitution
string that is substituted for z in 7 to obtain s, assuming such a substitution exists. As
|I;| > |I:|, I contains a position i, which corresponds to the first symbol of a substitution
string with respect to 7, but to a constant or a second, third, fourth, etc. symbol of a;
with respect to m. Hence, 7 can only generate s if that constant or second, third, fourth,
etc. symbol of o, is equal to the first symbol of a substitution string with respect to 7,
which must in turn be equal to the first symbol of a, because 7 and 7 have the same
constant prefix. The probability for this to happen is 1/|.A|.

Case 2. #4(1) > #a(m). Let I; be the set of positions in s which correspond to
constants with respect to m, and let I, be the set of positions in s which correspond to a
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constant with respect to 7. As |I;| > |I|, I; contains a position i, which corresponds to
a constant ¢ with respect to 7 but to a symbol of «, with respect to 7. The probability
that this symbol of o is equal to c is 1/|.A|.

Now, we analyze the total expected learning time of Algorithm 1LLA. Obviously, the
total expected learning time is O(¥) if the pattern 7 to be learned is a constant pattern.
Hence, we assume in the following that 7 contains at least one occurrence of .

The total learning time of Algorithm 1LA is divided into three phases. Phase 1 refers
to the time when the algorithm reads strings but does not yet perform any calculations
because |s,| > r. Phase 2 refers to the time when the algorithm has already encountered
a sample string s, with |s,| < r, but is waiting for a sample string that differs from s;.
Phase 3 starts when the algorithm makes the first call to first_candidate, and it ends when
the algorithm outputs the correct hypothesis for the first time.

Next, we recall the definition of the median, and establish a basic property of it that
is used later. As usual, we use E(R) to denote the expectation of a random variable R.

DEFINITION 4. Let R be any random variable with range(R) C IN. The median of R

is the number p € range(R) such that Pr(R < p) < % and Pr(R > p) < 3.

PROPOSITION 1. Let R be a random variable with range(R) C INT. Then its median p
satisfies p < 2E(R).

Proof.

E(R)=)Y_ nPr(R=n) > > nPr(R=n)> uPr(R> p)

n>1 n>p

= p(l-Pr(R<p) >

VIS

This proposition also follows from the Markov inequality Pr(R > t) < E(R)/t, which
holds for all random variables R assuming only non-negative values and for all positive
real numbers ¢. In addition, note that the median can be significantly smaller than the
expectation. For example, the median is always finite, even if the expectation is not. The
proposition above is only a worst-case estimate.

LEMMA 9. Let D be any proper probability distribution, and let L be the random
variable taking as values the length of a string drawn from L(m) with respect to D. Fur-
thermore, let p be the median of L and let £ be its expectation. Then, the expected number
of steps performed by Algorithm 1LA during Phase 1 is O(uf).

Proof. Let L; be the random variable whose value is the length of the ¢-th string read
by the algorithm. Obviously, the distribution of L; is the same as that of L. Let R be the
random variable whose value is the number of strings Algorithm 1LA reads in Phase 1. Let
Ly := L1+ - -+ Lg be the number of symbols read by Algorithm 1LA during Phase 1. Let
W1 be the random variable whose value is the time spent by Algorithm 1LA in Phase 1.
Obviously, Wi = O(Ly).
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Claim 1. For i <r, we have:

E(L)
E(Lz‘R:T)Sm (1)

As L; must be at least i provided R > i, Equation (1) can be proved as follows:

E(L|R=1)=3 kPr(Li=k | R=r)

k=i
< Pr(l;=kAR=r)
= k
kzzi Pr(R=r)

ad kPr(Ll >1)---Pr(Ly=k)---Pr(L,_y >r—1)Pr(L, <r)

= 2 Pr(L, > 1)---Pr(L;

VAR

k=i i) -Pr(L,_y 271 —1)Pr(L, <r)
= ikPr(Li =k) / Pr(L; > i)
k_ZE(Li) E(L)

<

Pr(L; > 1) Pr(L; > 1)
Thus, Claim 1 is proved.

Similarly, it can be shown that

E(L, | R=r)< —————— 2
(L | T)_Pr(Lr<r) )

Furthermore, it is clear that
E(L,|R=r)<r-1 (3)

Now, we rewrite E(Ly):

M=

E(Ly)=)» E(Ls |R=r)Pr(R=r1)+ Z E(Ls | R=r)Pr(R=r)

1 >uU

/

)
Il

>

~~ ~~

) 8)
Using Pr(L; > 1) > 1/2 for i < u as well as Equations (1) and (3), we obtain:

) é(;E(LZ"R:T”E(LrlR:T))Pr(R:r)
: ,é(;%“r*))ﬂ(hr)
S i ((7’ — 1)2E(L) “+ (r — 1)) PI‘(R — 7,)

IN
— 3
Il

u—1)2E(L) +1) = O(ul)
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For (3), we use Equations (1) and (2) to obtain:

(B) = _i (E(Ll|R=7‘)—|—---+E(Lr\Rzr))Pr(Rzr)

< 2 (hinan m e £) A
= 21( Préz,:ll)zErL— 0T pr(]ifi) ) )Pr(Ly > 1)++Pr(Ly_y > 7 — 1)Pr(L, <)
< iHrE(L)Pr(L1 > 1) Pr(Ly, o> —2)
< T;i;lrE(L) (%)HW (using Pr(L; > 4) < 3 for i > p)
_ E(L)g(HMﬂ) %y_l
- (G Q) el )
=4 =4(ut1)

— B(L)(4u+8) = O(ud)

Hence, the expected number of steps performed in Phase 1 is E(W;) = O(E(Ly)) =
o(ub). i

Now, under the same assumptions as in Lemma 9, we can estimate the expected number
of steps performed in Phase 2 as follows.

LEMMA 10. During Phase 2, the expected number of steps performed by Algorithm 1LA
is O(f).

Proof. If different sample strings have already been read during Phase 1, no work is
performed in Phase 2. Otherwise, denote by 71" the number of strings read in Phase 2. As
7 contains at least one variable, the probability that a newly read sample string differs
from the previously read strings is at least 5. Hence, Pr(T' =t) < 27¢=Y for ¢ > 1.

Denote by W, the number of steps performed in Phase 2. Furthermore, since it is clear
that E(Wy | T =t) =tE(L), we obtain:
EWy) = EWy, | T=0)Pr(T=0)+EW,|T=1)Pr(T=1)
+> EW, | T =t)Pr(T = t)

t=2

< 04 E(L)+ 3 HE(L) (E)H — 0(0)

t=2

Finally, we deal with Phase 3. Again, let L be as in Lemma 9. Then, the average
amount of time spent in Phase 3 can be estimated as follows.
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LEMMA 11. During Phase 3, the expected number of steps performed in calls to the
functions first_candidate and next_candidate is O(u?log ).

Proof. Denote by W5 the number of steps performed in all calls to the functions
first_candidate and next_candidate in Phase 3. We study the conditional expectation
E(Wg | R = r) first. We account for the function calls in groups consisting of one
call to first_candidate and all subsequent calls to nezt_candidate prior to another call to
first_candidate. Note that such a group of candidate calls requires time O(|s|*log|s|)
altogether, where s is the shorter of the two parameters for the call to first_candidate.

If R = r, the shortest string read in Phase 1 has length at most » — 1, and each
group of candidate calls takes at most O((r — 1)?log(r — 1)) steps. How many groups
of candidate calls are performed? With probability 1, at least one group is started. A
new group is started only when the longest common prefix of all sample strings becomes
shorter. Since at least two strings are read before the first group of candidate calls is
started, the probability for a second group is at most 1/2. Whenever the longest common
prefix of all sample strings changes, the probability that the new prefix is the final one
and that, therefore, the next group of candidate calls is the last one is at least 1/2. Hence,
the probability that k groups of candidate calls are performed is at most 2~ 1) and we
have:

1 1
EWS | R=1r) = O((r—1)log(r —1)) - (1+§+Z+"'>
= O((r —1)’log(r — 1)) (4)
Furthermore, we can rewrite E(WW5) as follows:
EWg) = Y E(Ws|R=r)Pr(R=r)
r=1
W 00
= Y EWs|R=r)Pr(R=r)+ Y E(Wj|R=r)Pr(R=r)
=1 r=u+1

~ /
~~

~~

(@) (8)

Obviously, Equation (4) implies (o) = O(u?log ). In addition, (3) can be bounded as
follows:

B = i O((r —1)*1log(r — 1)) - Pr(R=r)

r=u+1
= Y O((r+p)*log(r+pu)-Pr(R=r—+pu+1)
r=0
[ee] 1 r+1
< Y O((r*+ p® + 2rp)(logr + log ) - (2)
r=0
< O(p*log )

Hence, we obtain E(W¥) = O(u?log p). i
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LEMMA 12. During Phase 3, the expected number of steps performed in reading strings
is O(pllog ).

Proof. Denote by W3 the number of steps performed while reading strings in Phase 3.
We make a distinction between strings read before the correct set of candidate patterns is
considered, and strings read afterwards until the end of Phase 3. The former are accounted
for by random variable Vi, the latter by V5.

If the correct set of candidate patterns, i.e., the set containing , is not yet considered,
the probability that a new string does not force the correct set of candidate patterns to be
considered is at most 1/2. Denote by K the random variable whose value is the number of
strings that are read in Phase 3 before the correct set of candidate patterns is considered.
We have:

E(V;) = ki E(Vi | K = k)Pr(K = k) < kikE(L) (%) — O(E(L))

Assume that the correct set of candidate patterns P’ contains M patterns that are con-
sidered before pattern w. For any such pattern 7, the probability that a string drawn
from L(m) according to a proper probability distribution is in the language of 7 is at most
1/2, because either 7 has an additional variable or 7 has an additional constant symbol
(Lemma 8). Denote by V3 the steps performed for reading strings while the i-th pattern
in P’ is considered.

E(Vy | M =m) = f,;E(v;\M —m) < i i kB(1) (3) = OmE(D)
Since M = O(Rlog R), we obtain:
E() = 3BV | R=r)Pr(R=1)
= XN:IE(VQ |R=r)Pr(R=r)+ ilE(Vz | R=r)Pr(R=r)
) =0(E(;)u10gu) 0 (;) ’
and B
() < _ZIO(E(L)rlogr) (%)
= B(I)Y 0+ ostr+) ()
= O(nE(L)log )
Hence, we have E(WI) = E(V1) + E(V3) = O(utlog ). i

LEMMA 13. During Phase 3, the expected number of steps performed in checking
whether the current candidate pattern generates a newly read sample string is O(ul log ).

Proof. Denote by W4 the number of steps performed during Phase 3 for checking
whether a newly read sample string can be generated by the current candidate pat-
tern. Each such check requires a number of steps that is linear in the length of the
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respective sample string. For each string read in Phase 3, only one such check is per-

formed. Hence, each check can be charged to the corresponding read, and we obtain
E(Ws?) = O(E(WS)) = O(uE(L) log ). I

Putting it all together, we arrive at the following expected total learning time required
by Algorithm 1LA.

THEOREM 4. If the sample strings are drawn from L(w) according to a proper prob-
ability distribution with expected string length £ the expected total learning time of Algo-
rithm 1LA is O(£*logt).

Proof. Taking into account that y = O(E(L)), the assertion follows directly from the
Lemmas 9 through 13. i

It should be mentioned that Algorithm 1LA can be implemented with very small space
requirements. It suffices to store only two sample strings and one candidate pattern in
memory. The two sample strings are the shortest string s encountered so far and a sample
string s’ that differs from s, either by being longer than s (if all sample strings have the
form sv) or by having a different character in position |u| + 1 (if the longest common
prefix u of the sample strings satisfies |u| < |s|). In addition, a third string, namely the
newly read sample string, must be stored temporarily.

5. Learning with Superset Queries

Angluin [4] showed that the class of all pattern languages is not learnable with poly-
nomially many queries if only equivalence, membership, and subset queries are allowed
as long as any hypothesis space H is considered such that range(#) = PAT. Applying
the same proof technique, this result may be easily extended to the one-variable pattern
languages. That is, there is no query learning algorithm exactly inferring PAT; with
respect to any hypothesis space H with range(H) C PAT that uses only polynomially
many queries.

On the other hand, positive results are also known. First, Lange and Wiehagen [17]
showed PAT to be exactly learnable using polynomially many disjointness queries with
respect to the hypothesis space PAT U FIN, where FIN is the set of all finite languages.
Additionally, they proved that PAT U FIN(Q is exactly learnable with respect to PAT U
FINQ@ using polynomially many disjointness queries, too, where FINQ is the set of all
finite query languages really needed. Moreover, their proof technique easily extends to the
one-variable pattern languages, i.e., PAT is exactly inferable with respect to PAT{UFIN
by asking polynomially many disjointness queries. It remains open, however, whether
polynomially many disjointness queries do suffice, if the admissible hypothesis space is
PAT or PAT itself, respectively.

Second, Angluin [4] established an algorithm exactly learning PAT with respect to
PAT by asking polynomially many superset queries. Clearly, this algorithm also learns
one-variable patterns as a special case. But what can be said about the hypothesis
space needed? Angluin’s [4] algorithm starts by determining the length of 7 by asking
L(m) C L(7) for 7 = x1, 1%2, T1Z2x3 and so on until the answer is no. If i is the
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minimum for L(7) € L(z;...x;), then |7| = ¢ — 1. Thus, this approach works for one-
variable patterns, too, but it requires choosing general patterns 7 for asking the queries.
It does not work if the hypothesis space contains only one-variable patterns, however.
Moreover, there seems to be no way to modify this superset query algorithm for general
pattern languages to obtain an algorithm that learns PAT; with respect to PAT;. Hence,
the following question arises naturally.

Does there exist a superset query algorithm learning PAT. with respect to PAT. that
uses only polynomially many superset queries?

Using the results of previous sections, we are able to answer this question affirmatively.
Nevertheless, whereas PAT can be learned with respect to PAT by restricted superset
queries, i.e., superset queries not returning counterexamples, our algorithm for exactly
learning PAT with respect to PAT; needs counterexamples. Interestingly enough, it
does not need a counterexample for every query answered negatively, instead two coun-
terexamples always suffice.

The reason why counterexamples are so useful to learn one-variable patterns seems
to be that they limit the search space tremendously. The next theorem shows that one-
variable patterns are not learnable by a polynomial number of restricted superset queries.

LEMMA 14. Let w € A*. If L(zwx) C L(7), then T = x or 7 = zwz.

Proof. By Lemma 1 we know that L(w) C L(7) implies 7 = 7[p/z] for some g € Pat.
Here zwz = 7[p/z] for some ¢ € Pat;. Obviously, 7 must begin and end with an z. If
T =z, we are done. Now, let 7 # z. Thus, 7 = z7'z, and since zwx = (x7'z)[0/z], the
pattern p must also begin and end with an x.

If o = x then 7 = zwz, and again we are done. Finally, if o = x¢'z, then zwz =
Tlo/z] = zox7'[p/x]x0'® # WX, a contradiction. i

Now, we are ready for proving the theorem announced above.

THEOREM 5. Any algorithm exactly identifying all L € PAT . generated by a pattern
of length n with respect to PAT by using restricted superset and equivalence queries only
must make at least |A|""? > 2"72 queries in the worst case.

Proof. Assume any learning algorithm LA. For constructing an adversary, we consider
all patterns 7 = zwz, w € A", of length n and show that LA has to ask at least |A|" 2
many queries when learning one of the languages L(r). Note that there are [ A"~ many
pairwise different such patterns. We denote the target language by L,.

We can assume that the Algorithm LA does not ask the question L, C L(z), since this
question is answered yes for each possible 7. Furthermore, without loss of generality we
can assume that no question is asked twice.

Now, Lemma 14 is the only ingredient needed. Suppose, the Algorithm LA is asking
any pattern 7, i.e., whether or not L, C L(7) or L, = L(7). The adversary maintains a
list S of all patterns m described above, and simply answers each superset and equivalence
query with no, until |S| = 1, in which case he gives up. If 7 has been one of the patterns
zwx, this pattern is deleted from S, otherwise S remains unchanged. By Lemma 14, all
answers given are compatible with the remaining element 7 of S, and thus at least |.A["~2
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many queries are necessary for exactly identifying L, = L(w). i

Furthermore, we can show that learning one-variable pattern languages with a poly-
nomial number of superset queries is not possible if the algorithm may ask for a single
counterexample only.

THEOREM 6. Any algorithm that exactly identifies all one-variable pattern languages
by restricted superset queries and one unrestricted superset query needs at least 2F~1/4 —1
queries in the worst case, where k is the length of the counterexample returned.

Proof. Take an arbitrary algorithm that learns one-variable patterns with superset
queries and asks only for one counterexample. Assume again that there is no query
L(r) C L(z). The alphabet A should contain the symbol 0.

Let 71,...,7; be the patterns queried by the algorithm if all questions are answered
no and let L(w) C L(7;) be the first (and only) unrestricted query. Let 7ji1,7j42,... be
the following queries, if the algorithm gets 0% as the counterexample and all following
questions are also answered no. The constant & is some number such that 0F ¢ L(7;) and
either k£ or k—1 is a multiple of 4. Such a & must exist unless 7; € 0*z0* (when we choose
1% instead and change in the rest of the proof all 0’s to 1).

Let =0, 0 = z, and let
A= {xalxazxag e Ty 1T Oy, 08,y —10 . . . A30a50a1 ‘ ai,...,a, € {0,z} }
or
A= {xalxagxag, e XAy 1200,00,,0a,, 10 .. .a30a900,x ‘ ai,y ..., 0y, € {0,2} }

be a set of patterns of length k with m = k/4 or m = (k — 1)/4. Obviously, 0¥ € L(m)
for all m € A.

We force the algorithm to ask at least 2™ — 1 queries by letting it identify a pattern
m € Awith m # 7; for 1 <4 < 2™. Such a 7 exists because |A| = 2™.

How does the algorithm react, if it learns 7 and eventually gets 0% as the counterex-
ample? We claim that the first 2™ — 1 questions are answered no because L(7;) 2 L(m).

The counterexample 0 is then really a counterexample because 0F € L(r) by definition
of A.

It remains to be shown that 7; # 7 implies L(r;) 2 L(w). Assume L(7;) 2 L(m). Then
7;lo/z] = m for some p € Pat,. Since 7; # x and 7 begins and ends with an z, 7; must be
of the form 7; = zwx and p of the form p = zo'x. Then 7 = xp' zw'z o'z for some w'. We
can, however, show that 7 has no proper prefix that is also a suffix and whose length is

between 2 and ||7|/2|. Here 20’z would be such a prefix/suffix, so we have a contradiction
and L(r;) 2 L(r) follows.

Why does 7 not have such a prefix/suffix? Let us assume v is such a prefix/suffix.
If |v| is odd, then v = zajraszas...xa;x because it is a prefix. On the other hand
v = 0a;0a;_10...as0a;z because it is a suffix, and thus v =0... =z ..., a contradiction.
If |v| is even, then v = za;xaszas...za; and v = @;0a; 10...a3,0a,2. Now x = a; (first
symbols) and a; = = (last symbols), again a contradiction.
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if L(r) C L(0) then 7 < 0
else i + 1;
while L(7) C L(C(0)S'z) do i < i + 1 od;
if L(w) C L(C(0)) then 7 «+ C(0)
else S < {C(0),C(C(0)S%x)};
R < Cons(S);
repeat 7 + max(R); R+ R\ {7}
until L(7r) C L(7)
fi
fi;

return 7

Figure 3: Algorithm Q. This algorithm learns a pattern 7 by superset queries. The queries
have the form “L(n) C L(7),” where 7 € Pat; is chosen by the algorithm. If the answer
to a query L(w) C L(7) is no, the algorithm can ask for a counterexample C(7). By w<"*
we denote the prefix of w of length 7 and by max(R) some maximum-length element of R.

The new algorithm works as follows (see Figure 3). Assume the algorithm should learn
some pattern 7. First the algorithm asks whether L(7w) C L(0) = {0} holds. This is the
case iff 7 = 0, and if the answer is yes the algorithms knows the right result.

Otherwise, the algorithm obtains a counterexample C(0) € L(w). Let C(0)</ be the
prefix of C(0) with length j. By asking questions L(w) C L(C(0)z) for j = 1,2,3,...
until the answer is no, the algorithm computes

i =min{ j| L(r) £ L(C(0)~z) }.

Now we know that 7 starts with C'(0)<"! (since L(mw) C L(C(0)S*1z) = C(0)S LAY);
but what about the i-th position of 7?7 If 7 has no i-th position, i.e., 7| =i — 1, then
7 contains no variable and therefore 7 = C'(0). The algorithms asks L(7) C L(C(0)) to
determine whether this is indeed the case. An example is 7 = 1011 and C(0) = 1011; here
i = 4 since {1011} = L(7) C L(C(0)=3z) = 101A", but {1011} = L(r) € L(C(0)%*z) =
1011A*. The question L(m) C L(C(0)) is answered affirmatively and the algorithm
presents C'(0) = 1011 as its correct hypothesis.

Otherwise, i.e., if L(m) ¢ L(C(0)), then 7 contains at least one variable and ()
cannot be a symbol from A since this would imply that 7 (7) is equal to the i-th symbol
of C(0) and, therefore, L(m) C L(C(0)<'z), a contradiction. Thus 7 (i) = z. At this point
the algorithm uses the counterexample for the query L(w) C L(C(0)S'z) to construct a
set S = {C(0),C(C(0)S'z)}. By construction, the two counterexamples differ in their
i-th position, but coincide in their first ¢ — 1 positions.

Algorithm 2 on page 12 computes R = Cons(S), the set of all patterns consistent with
S and coinciding with the words in S in their first + — 1 positions. Since 7 is consistent
with S and coincides with S in the first ¢ — 1 positions, 7 € R. Again we narrowed the



Efficient Learning of One-Variable Pattern Languages from Positive Data 31

search for 7 to a set R of candidates. Let m be the length of the shortest counterexample
in S. Then |R| = O(mlogm) by Lemma 5.

Now, the only task left to be performed is to find 7 among all patterns in R. We find =
by removing other patterns from R. The following lemma gives a sufficient and necessary
condition for this end.

LEMMA 15. Let S C AY and let m, 7 € Cons(S) with |7| < |r|. Then L(m) C L(7)
implies m = T.

Proof. If |7| < |7| then L(7w) € L(7). Let us therefore assume |7| = |7|.

By Lemma 1, we have L(w) C L(7) iff # = 7[p/z| for some p € Paty. Since |7| = |7|,
we must have |g| = 1; thus either p =z or p € A. If p € A, then 7 € A*, a contradiction
since all patterns in Cons(S) contain at least one z. Hence, p = z and 7 = 7[z/z] = . |

The algorithm tests L(7) C L(7) for a maximum length pattern 7 € R and removes
7 from R if L(w) € L(r). Iterating this process finally yields the longest pattern 7 for
which L(m) C L(r). Lemma 15 guarantees that 7 = 7. It is important to start with long
patterns, since Lemma 15 does not hold for |7| < ||

For finding the correct i, the algorithm asks up to |7| queries followed by up to
O(mlogm) additional queries to identify 7. The number of queries (and the running
time) is therefore polynomial in the pattern length and the length of the counterexamples
returned.

Example 3 Let A = {0,1} and let 7 = 01z0zzlz. The algorithm starts by asking
L(r) C L(0) and the answer is no. The algorithm now asks for a counterexample to
L(0) and gets 0110101011011101. To compute the fixed prefix up to the first z of 7, the
next queries are L(w) C L(0z), L(7) C L(0lz), and L(7) C L(011x). Since the first two
answers are yes, but the third answer is no, the algorithm knows that either 7 € A" or
the fixed prefix is 01 followed by an z. By asking L(7) C L(0110101011011101) (no) the
second possibility turns out to be right.

Now we have to give a counterexample, say, 01100000000001000, to L(r) C L(011x).
The algorithm constructs the sample S = {0110101011011101, 0100000000001000} and
computes R = Cons(S) = {01202020220x120zx, 0120zz1z, 012}, which must contain 7.
After the question L(7) C L(0120x020xx0x1z0x) is answered no, 012020x0xz0z1z0x
is removed from R and 0lz0Ozxlz is the longest remaining pattern. The next question
L(7w) C L(01z0zzlx) is answered yes and 01z0zzlzx is identified as 7.

In this example seven queries suffice to identify .

The following theorem states the main result of this section.

THEOREM 7. There exists an algorithm @) learning PAT 1 with respect to PAT by ask-
ing only superset queries. The query complexity of @ is O(|m| + mlogm) many restricted
superset queries plus two superset queries (these are the first two queries answered no)
for every language L(w) € PAT,, where m is the length of the shortest counterexzample
returned.
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6. Conclusions and Open Problems

During the last 15 years pattern languages have attracted considerable attention in ma-
chine learning, formal language theory, and several interesting applications have emerged
(cf., e.g., Shinohara and Arikawa [26] and the references therein). Taking the growing
interest in applications into account, the problem of efficient learning becomes a major
issue. This demand leads to several new and interesting questions. Clearly, any efficient
learner is required to have a polynomial update time. Furthermore, it is highly desirable
to provide performance bounds concerning the total learning time, and/or to elaborate
efficient parallel learners.

The present paper addressed these issues for the special case of one-variable pattern
language inference. First, we provided a new algorithm learning PAT; consistently, set-
drivenly, and responsively from positive data (cf. Algorithm 2). This algorithm achieves
update time O(n?logn) for input samples of size n, which saves a factor of n? over the
best previously known algorithm by Angluin [2]. Moreover, the computation of descrip-
tive patterns was efficiently parallelized achieving parallel update time O(logn) using
O(n?®/logn) processors on an EREW-PRAM. The resulting parallel learning algorithm
is still consistent, set-driven and responsive. As far as we know, this is the first parallel
algorithm computing descriptive patterns.

Next, we turned our attention to the total learning time of Algorithm 2, and arrived
at a modified version of it which has optimal expected total learning time. Here, by
optimal we mean that the total learning time of Algorithm 1LA equals the update time of
Algorithm 2 up to a constant factor. The price paid is giving up the requirements to learn
consistently and set-drivenly. It is also interesting to compare our algorithm to Lange and
Wiehagen’s [17] inference procedure learning all pattern languages. This algorithm has
been analyzed with respect to its expected total learning time, too (cf. [33]). An easy
inspection of the analysis given in [33] shows that the expected total learning time of
Lange and Wiehagen’s algorithm is O(¢u 1) for target languages L(w), where £ is again
the expected string length, and u is the probability to see a shortest string from L(7).
Hence, whenever p < 1/(¢log#) our Algorithm 1LA behaves better than Lange and
Wiehagen’s [17] with respect to its expected total learning time. The difference in behavior
finds its explanation in the fact that Lange and Wiehagen’s algorithm definitely needs
two different shortest strings from L(7) for achieving convergence, while our Algorithm
1LA does not. As far as we know, 1LA is the first pattern language learning algorithm
which provably converges even in case it has not received any string of minimal length

from L(w).

Moreover, we could successfully apply our basic technique for computing descriptive
patterns to obtain an efficient active learning algorithm asking superset queries. Addition-
ally, we established a tight bound on the number of unrestricted superset queries needed
by any algorithm learning PAT; with respect to PAT, by asking superset queries: just
two are necessary and sufficient.

Next, we discuss possible generalizations of the results obtained. Let us start with
erasing one-variable pattern languages. Taking into account that {7m[¢/z]} is singleton
for all # € Patq, our results easily generalize to erasing one-variable pattern languages.
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Clearly, if a pattern does not contain any variable, there is only one text for it. Otherwise,
the resulting pattern language is infinite. Thus, as long as any of our learners has just seen
a singleton sample, it outputs the only string in it as hypothesis. Otherwise, it always
ignores the shortest string in the sample but behaves otherwise as described. The same
idea applies mutatis mutandis to our query learner.

Further research should deal with unions of one-variable pattern languages. This class
is much richer and more interesting than PAT itself (cf., e.g. [21, 22, 26]). Furthermore, a
distinction has to be made between unbounded unions and an a prior: restricted number
m of allowed unions. In the first case, the whole class is not learnable if erasing sub-
stitutions are allowed (cf. [26]). As far as a priori bounded unions are concerned, their
learnability by a polynomial update-time algorithm has been known for a rather long
time (cf., e.g. [26]), but nothing is known concerning the resulting total learning time and
efficient parallelizations.
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