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Abstract

A new algorithm for learning one-variable pattern languages is proposed
and analyzed with respect to its average-case behavior. We consider the total
learning time that takes into account all operations till an algorithm has con-
verged to a correct hypothesis. For the expectation it is shown that for almost
all meaningful distributions defining how the pattern variable is replaced by a
string to generate random samples of the target pattern language this algorithm
converges within a constant number of rounds with a total learning time that
is linear in the pattern length. Thus, the algorithm is average-case optimal in
a strong sense.

1. Introduction

Patterns are a very natural way to define formal languages. Suppose you want to
define the set of all strings having even length 2m , for any m, such that the prefix
of length m is identical to the suffix starting at position m + 1. In that case, the
wanted language follows the pattern @ = x x. The formal definition of patterns and
pattern languages goes back to Angluin [An80]. Since then, pattern languages and
variations thereof have widely been investigated (cf., e.g., Salomaa [Sal94a, Sal94b],
and Shinohara and Arikawa [ShA95] for an overview).

As far as learning theory is concerned, pattern languages are one of the most
prominent examples of nonregular languages that can be learned in the limit from
positive data. Gold [Go67] has introduced the corresponding learning model. Let
L be any formal language; then a text for L is any infinite sequence of strings
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that eventually contains all the strings of L, and nothing else. The information
given to the learner are successively growing initial segments of a text. Processing
these segments, the learner has to output hypotheses about the target language L.
Thereby the hypotheses are chosen from a prespecified set of admissible hypotheses
called hypothesis space. Additionally, the sequence of hypotheses has to converge to
a hypothesis correctly describing the target language (cf. Definition 1).

Looking at potential applications of limit learners, efficiency becomes a central
issue. However, defining an appropriate measure of efficiency for learning in the
limit is a difficult problem (cf. [Pi89]). Various authors have studied the efficiency
of learning in terms of the so-called update time needed for computing a new single
hypothesis. But what really counts in practical applications is the overall time needed
by a learner until convergence, i.e., the so-called total learning time. Nevertheless, one
can show that the total learning time is unbounded in the worst-case. Thus, we study
the ezpected total learning time. For the purpose of motivation we shortly summarize
what has been known in this regard.

Angluin [An80] describes an algorithm that learns the class of all pattern languages
with an arbitrary number of different variables, which is based on the notion of de-
scriptive patterns. However, no efficient algorithm is known for computing descriptive
patterns. Hence, already the update time is practically infeasible. Moreover, finding
a descriptive pattern of mazimum possible length is known to be AP -hard.

Therefore, one has also considered restricted versions of pattern language learning
in which the number of different variables is fixed, in particular the case of a single
variable. In the same paper, Angluin gives a learning algorithm for one-variable
pattern languages with update time O(f*log/), where ¢ denotes the sum of the
length of all examples seen so far. Nothing is known concerning the expected total
learning time of her algorithm.

Recently, Erlebach et al. [ERS96, ERS97] have presented a one-variable pattern
learner that achieves an average total learning time O(|r|?log|r|), where |r| is the
length of the target pattern. Nevertheless, this result is also based on finding de-
scriptive patterns quickly. While this approach has the advantage that at least the
descriptiveness of every hypothesis produced can be guaranteed, it may also have
the disadvantage of preventing the learner to achieve a better expected total learning
time. Therefore, the question arises whether there is a one-variable pattern language
learner that achieves a subquadratic expected total learning time. Clearly, the best
one can hope to get is a linear average total learning time. If this is really possi-
ble, then such a learner seems to be more appropriate for potential application than
previously obtained ones, even if there are no guaranteed properties concerning the
intermediately calculated hypotheses. Such a learner with high probability would
have already finished his learning task before any of the known learner has computed
a single guess.

What we like to present in this paper is such a one-variable pattern learner. We
achieve this goal by studying combinatorial properties of strings generated by one-
variable patterns. Moreover, we prove that our learner achieves an expected linear
total learning time for a very large class of distributions with respect to which the
input examples are drawn.
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2. Preliminaries

By N = {0,1,2,...} we denote the set of all natural numbers, and by Nt =
N\ {0} . For all real numbers y we define |y|, the floor function, to be the greatest
integer less than or equal to y.

Let ¥ be an alphabet with s:= |X| > 2 symbols. By X* we denote the free
monoid over ¥ (cf. [HU69]). The set of all finite non-null strings of symbols from ¥
is denoted by X1, ie., ¥t =3*\{e}, where ¢ denotes the empty string. Let x be
a symbol not contained in ¥ . Every string over (X U {z})" is called a one-variable
pattern. We refer to x as the pattern variable. By Pat we denote the set of all
one-variable patterns. Moreover, we write #(m,z) for the number of occurrences of
the pattern variable z in 7.

The length of a string w € X* and of a pattern 7 € Pat is denoted by |w| and
||, respectively. Let w be a string with £ = |w| > 1, and let i € {1,...,¢}; we use
wli] and w[—i] to denote the i-th symbol in w counted from left to right and right
to left, respectively, i.e.,

w=w[l]w2] ... wl —1] wlf] = w[—] w[—L+1] ... w[-2] w[-1].

Moreover, for 1 <i < j < ¢ we denote the substring wli]...w[j] of w by w[i...j].
For m € Pat and u € ©% we denote by w[z/u] the string w € T obtained by
substituting all occurrences of x in m by w. The string w is called a substitution.
For every m € Pat we define the language generated by pattern m by

Lir) == {yeXt|Tuelt, y=nrz/u]}

Furthermore, for discussing our approach to learning all one-variable pattern lan-
guages we let
T = wertwixPwy . .. Wy 12" W,

be the target pattern throughout this paper. Here the «; denote positive integers
(the multiplicity by which x appears in a row), and w; € ¥* the separating constant
substrings, where for 1 <7 < m the w; are assumed to be nonempty.

The learning problem considered in this paper is exact learning in the limit from
positive data defined as follows. A sequence (v;);,cn+ of patterns is said to converge
to a pattern 7 if 1; = m for all but finitely many 7.

DEFINITION 1. Given a target pattern 7, the learner gets a sequence of example
strings X1, Xo,... from L(7). Having received X, he has to compute as hypothesis
a one-variable pattern 1,. The sequence of guesses ;,1,... eventually has to
converge to a pattern v such that L(¢) = L(r).

Note that in the case of one-variable pattern languages this implies that ¥ = 7.
Some more remarks are mandatory here. Though our definition of learning resembles
that one given in Gold [Go67], there is also a major difference. In [Go67] the sequence
(Xi);en+ 18 required to exhaust L(w) in the limit, that is {X; | ¢ € N} = L(m).
Nevertheless, this requirement will be hardly fulfilled. We therefore omit this as-
sumption here. Instead, we only require the sequence (X;);cny to contain “enough”
information to recognize the target pattern 7. What is meant by “enough” will be
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made precise when discussing the set of all admissible distributions with respect to
which the example sequences are allowed to be randomly drawn.

We continue with the complexity measure considered throughout this paper. The
length of the pattern 7 to be learned is given by

n = Ny +ng, with Ny = E |lw;| and n, := E Q; .

This parameter will be considered as the size of problem instances, and the complexity
analysis will be done with respect to this value m. We assume the same model
of computation and the same representation of patterns as Angluin [An80], i.e., in
particular a random access machine that performs a reasonable menu of operations
each in unit time on registers of length O(logn) bits, where n is the input length.
The inputs are read via a serial input device, and reading a string of length n is
assumed to require n steps.

In contrast to previous work [An80, KP89, Sch90, WZ94], we like to measure the
efficiency of a learning algorithm by estimating the overall time taken by the learner
until convergence. This time is referred to as the total learning time. We aim to
determine the total learning time in dependence on the parameter n introduced
above, i.e., with respect to the length of the target pattern. From a practical point
of view we think this to be a more suitable concept than considering the update
time and measuring the effort with respect to the examples received. Obviously, one
is interested to learn an unknown pattern as fast as possible. If efficiency can be
achieved by doing nothing and simply waiting till a long list of examples has been
received from which one then can produce a hypothesis quickly this indicates that
something must be wrong with the underlying complexity measure (cf. [Pi89]). Of
course, if examples are provided by an adversary the number of examples one has to
see before being able to converge is unbounded in general.

Thus analyzing the total learning time in such a worst-case setting will not yield
much insight. On the other hand, such a scenario is much too pessimistic for many ap-
plications, and hence a worst-case analysis is not appropriate. Therefore, one should
consider the average-case behavior. Average-case complexity in general depends very
much on the distribution over the input space. Restricting to some sort of uniform
distributions might make the analysis easier, but such results may not have any im-
plications for typical distributions that occur in practice.

Analyzing the expected total learning time of limit learners has been initiated
by Zeugmann [Ze95] who studied Lange and Wiehagen’s [LW91] pattern language
learning algorithm. Their algorithm has an expected total learning time that is expo-
nential in the number & of different variables occurring in the target pattern (cf. Zeug-
mann [Ze95]). Moreover, the point of convergence definitely depends on the appear-
ance of sufficiently many shortest strings of the target language. On the one hand,
shortest strings give in a certain sense maximal information about the pattern to be
learned. On the other hand, assuming that variables are replaced independently by
strings over the alphabet such shortest samples are rare or do not occur at all. There-
fore, this algorithm seems to be of little practical use unless in the special situation
when shortest samples are guaranteed to occur frequently.

For one-variable patterns, [ERS96] make a new approach by trying to estimate the
number of occurrences of the pattern variable and the length of the substitution. This
way, a total average learning time of order n?logn is achieved.
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In this paper, we will more carefully analyze the combinatorics of words generated
by a one-variable pattern to achieve an optimal result of linear total learning time on
the average. It can even be shown that this linear bound holds with high probability.
Let

p BT —10,1]

denote the probability distribution that specifies how given a pattern 7 the variable
x is replaced to generate random examples w[z/Z] from L(w). Here

7 =2,

is a random variable with distribution .
Range(y) = Range(Z) = {we Xt |pu(w) >0}

denotes the range of Z, the set of all substitution strings that may actually occur.
From this we get a probability distribution

pr o X7 —[0,1]
for the random strings generated by 7 based on u. Let
X = Xou

denote a random variable with distribution u,. The random examples are then
generated according to X , thus the relation between X and Z is given by

X = wo Z% wy Z% wy ... Wy_1 Z°™ Wy, .

Note that p is fixed, and in particular independent of the special target pattern to
be learned. Otherwise, if p is chosen after the target pattern 7 has been specified,
an adversary can always construct a distribution that makes it extremely difficult or
even impossible to recognize this special pattern .

What we will actually consider in the following is a large class D of distributions
1 that is defined by requiring only very simple properties. These properties basically
exclude the case where only a small subset of all possible example strings occur and
this subset does not provide enough information to reconstruct the pattern. We will
show that there exists an algorithm that efficiently learns every one-variable pattern
on the average with respect to every distribution in D.

Let E[|Z]|] denote the expectation of |Z|, that is the average length of a substi-
tution. Then the expected length of an example string X for 7 is given by

E[IX]] = nw+n.-EZ]] < n-E[Z].

Obviously, if one wants to analyze the bit complexity of a learning algorithm with
respect to the pattern length n one has to assume that E[|X|], and hence E[|Z]],
is finite, otherwise already the expected length of a single example will be infinite.

Assumption 1. E[|Z]] < o©.

Let
X = Xl, XQ, X3,



6 RUDIGER REISCHUK, THOMAS ZEUGMANN

denote a sequence of random examples that are independently drawn according to fi, -
Note that the learner, in general, does not have information about u, a priori. On
the other hand, the average-case analysis of our learning algorithm presupposes infor-
mation about the distribution g . Thus, unlike the PAC-model, our framework is not
completely distribution-free. Nevertheless, we aim to keep the information required
about p as small as possible.

Finally, let
L(m,p) = {y €2 | ua(y) >0}

denote the language of all example strings that may actually occur, i.e., in 7 only
substitutions are allowed that replace the variable = by a string from Range(Z).

3. Probabilistic Analysis of Substitutions

For obtaining most general results we would like to put as little constraints on the
distribution p as possible. For example, in previous work it was assumed that for
every length all possible substitution strings are equally likely (cf. [ERS96]) or that
all substitutions have a non-zero probability to occur (cf. [Ze95]). However, in real
applications like genome analysis this will be hardly the case.

On the other hand, one cannot learn a target pattern if only example strings of a
very restricted form occur. This will be the case if substitutions of the pattern variable
are severely limited, in particular if Range(Z) itself is contained in a nontrivial one-
variable pattern language. For seeing this, suppose there exists a pattern ¢ € Pat\{z}
such that Range(Z) C L(¢). Clearly, then the languages generated by

T = Wer"wi T Wy . .. Wy 12 ™ Wy,

and

T = wed" w1 wy .. Wi 1P Wiy

cannot be distinguished, since L(w,u) C L(x'). Thus, even from an information
theoretic point of view the learner has no chance to distinguish this case from the one
where the pattern to be learned is actually 7’ and the examples are generated by the
corresponding projection ' of p. Hence, such a problem instance (7, u) should be
regarded as the instance (7', u').

For excluding this case, let us define

po = max  Pr[Z € L(¢)] .

¢ pattern, |¢|>1

and let us make
Assumption 2. pyg<1.

An alternative approach would be to consider the correctness of the learning hy-
potheses with respect to the distribution . The learner solves the learning problem
if he converges to a pattern v for which L(v, u) = L(w, u) . This model is equivalent,
but conceptually more involved and complicates the algorithm. Therefore we stick to
the original definition.
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If po <1 then the following quantities

Do = Itxrlez;xchr[Z[l] =],
Pe = Igg}){Pr[Z[—l] =0,

are smaller than 1, too. Otherwise, for some ¢ it would hold Range(Z) C L(ox) or
Range(Z) C L(zo) . To illustrate these quantities, consider the special situation of

length-uniform distributions, i.e., distributions where the lengths |Z| of the sub-
stitutions may be arbitrary, but for each length ¢ all possible strings over X+
of that length have the same probability.

Then it is easy to see that py < 1/s and p, = p.=1/s.

In general, define

p = max{pgpe} <1,

and for sequences of substitutions Z = 2y, Z5, Z3, ... the event

FlZ] == [(Zi[l]= 2] =---=Z,[1]) V (Zi[-1] = Zy[-1] =--- = Z,[-1]) ] .
Then

Pr[F,) < 2p9~ 1
Define
f(Z2) = min{g | ~F,[Z2]} .
2
LEMMA 1. The ezpectation of f(Z) can be bounded as E[f(2)] < T,

Proof. Taking into account that m < min{g | ~Fy[Z]} implies F,,[Z] holds, we
can estimate Pr[f(Z) > m] < 2p™~!. Thus, a simple calculation yields

BlI(@)) = YoPilf(2)>m] < 24235 = 12—

4. Symmetries of Strings

We now come to the main technical tool that will help us to detect the pattern
variable and its replacements in sample strings, respectively.

DEFINITION 2. Let y = y[1]y[2]...y[¢] € £ be a string of length ¢. If for some
k with 1 <k </{/2 the k-length prefix and suffix of y are identical, that is
yll...k] = yll—k+1...4],

we say that y has a k —symmetry u = y[l...k] (or symmetry, for short).

A symmetry u of y is said to be the smallest symmetry if |u| < |a| for every
symmetry o of y with @ # .
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DEFINITION 3. Let u be a symmetry of y and choose positive integers c,d
maximal such that for some string vq

y = uvu?,
i.e., u is neither a prefix nor a suffix of vy. This also includes the special case vy = ¢ .
In this case, since ¢ and d are not uniquely determined in general, we choose ¢ > d
such that their difference is at most 1. This unique representation of a string y will
be called factorization of y with respect to u or simply u —factorization,
and u the base of this factorization.

If all occurrences of u are factored out including also possible ones in vy one gets
a representation
y = u® vy ut vy ... 0 uU”

with positive integers ¢; (¢p = ¢, ¢, = d) and strings v; that do not contain u as
substring. This will be called a complete u —factorization of y.

Of particular interest for a string y will be its symmetry of minimal length, denoted
by mls(y), which gives rise to the minimal factorization of y. For technical
reasons, if y does not have a symmetry then we set mis(y) := |y| + 1. Let sym(y)
denote the number of all different symmetries of 3.

The following properties will be important for the learning algorithm described
later.

LEMMA 2. Let k € NT and let u, y € ¥ be any two strings such that v is a
k —symmetry of y. Then we have

(1) w is a smallest symmetry of y iff u itself has no symmetry.

(2) If y has the factorization y = u° vy u then it also has k' -symmetries for
k' = 2k, 3k, ..., min{c,d} k.

(3) If u® vo u? is the minimal factorization of y then y does not have other k' -
symmetries for k' € {1, ..., max{c,d} mls(y)}.

(4) sym(y) < |yl /2mis(y).

Proof. If a symmetry « of a string y can be written as v = v’ v v’ for a nonempty
string u then obviously u' is a smaller symmetry of y. Hence, (1) follows.

Assertion (2) is obvious. If there were other symmetries in between then it is
easy to see that w itself must have a symmetry and thus cannot be minimal. This
proves (3).

If vy contains u as a substring there may be other larger symmetries. For this
case there must be strings vy, vy such that y can be written as

y = u® vy u® vy uf vy ul

where v; does not contain u as substring. Then y has an additional symmetry for
k' = (¢ +d) k + |v1]. There may be even more symmetries if vy is of a very special
form containing powers of u, but we will not elaborate on this further. The important
thing to note is that the length of such symmetries grows at least by an additive term
k = mls(y). This implies the bound on sym(y) . i
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Assertion (4) of the latter lemma directly implies the simple bound

Y|

sym(y) < o

which in most cases, however, is far too large. Only strings over a single letter alphabet
can achieve this bound. For particular distributions the bound is usually much better.
To illustrate this, we again consider the length-uniform case. Then, the probability
that a random string y has a minimal symmetry of length £ is given by

Prmis(y) = k] = Prfly| > 2k]-s7*

Furthermore, given that mls(y) = k the probability that it has at least ¢ symmetries
is bounded by

k2 (e 1
Prlsym(y) > ¢ | mls(y) =k < s+ —r
Thus, the probability of having at least ¢ symmetries is at most

—2c+1

—k-(2c—1) s
ZS S (1 _ 87204—1)2

k>1

Now, let us consider the expected number of symmetries. For the purpose of motiva-
tion of our Assumption 3, we first take a closer look at the length-uniform case.

LEMMA 3. In the length-uniform case we have

s
E )] < ———
[Sym( )] — 2 (8 _ 1)2
Proof. Using the equality ) . ,c-a¢ = ﬁ for o = 572¢ in the estimation
below one gets -
E[sym(Z)] = ZPr[mls(Z) =k]- Z ¢ Prlsym(Z) = ¢ | mis(Z) = k|
k>1 c>1
1
—k (e—1
< Qs e s ey
k>1 c>1
1
< DD e (T
k>1 >l 5
—2k
_ —k
T 1= gt ZS 1_3—2k) = 2(s—1) ZS
k>1 k>1
B s
o 2(s—1)2

Thus, in this case the number of symmetries only depends on the size of the
alphabet, it is independent of the length of the generated strings. Next, let us estimate
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the total length of all factorizations of a string y, which can be bounded by |y -
sym(y) . In the length-uniform case, we get

E[Z|-sym(Z)] = > Pr[|Z|=4-¢-> Primis(Z)=k||Z|=1(]-
£>1 k>1
> c-Prlsym(Z) = c | mis(Z) =k, |Z| = (]

The estimation for E[sym(Z)] above are independent of the length of Z, thus the
terms

ZPr[mls(Z) =k||Z|=1]- Zc-Pr[sym(Z) =c|mls(Z) =k, |Z]| =]

k>1 e>1

can be replaced by the bound for

Z Primls(Z) = k] - Z c-Prlsym(Z) =c | mis(Z) = k]

E>1 c>1

1
—k —k 2(c—1
< ZS ZC'S N )'1_8—2c+1'

k>1 c>1

This gives for E[|Z]|-sym(Z)] the same bound as for F[|Z|] - E[sym(Z)].
For arbitrary distributions, we require
Assumption 3.  E||Z|-sym(Z)] < o0c.

Remember that we already had to assume that E[|Z|] is finite. Trivially, the
expectation of |Z| - sym(Z) is guaranteed to be finite if E[|Z|?] < co, that means
the variance of |Z| is finite, but in general weaker conditions suffice.

If 0 < E[|Z]-sym(Z)] < co then also 0 < E[sym(Z)] < oo. Thus we can find a
constant ¢ such that

E[|1Z|- sym(Z)] < c- E||Z]]- E[sym(2)] = O(1) .

For efficiency reasons, symmetries and factorizations should be computed fast
which is expressed by the following result.

LEMMA 4. The minimal symmetry of a string y can be found in O(|y|) operations.
Given the minimal symmetry, all further symmetries can be generated in linear time.
From a symmetry, the corresponding factorization can be computed in linear time as
well.

Proof. To find the minimal symmetry an iterative scanning of specific bit positions
of y is done. Let ¢ denote the length of y.

Algorithm 1.
For j=1,2,...,£—1, we will construct subsets I; of [1...¢] with the property:
tel; < y[t...t+j—-1] = y[l...4].

The sets are initialized with I; = {1} for all j.
Then I := {t]|ylt] =y[l]} .

Assume that I;_; has been constructed.
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if je I, then
ylg-..25-2] = y[1...5-1] implying y[1...25-2] = y[1...5—1]*.

VtGIj_l: 1ft—|—j—1€I]_1 then ¢ — IQj_Q

if 27 —1>/¢ then stop and output FAILURE else j:=27—1
if] ¢ Ij,1 then

Viel: if yt+j—1] =ylj] thent — I,

if {—j+1€1l; then stop with success and output y[1...J]

if 7 > ¢  then stop and output FAILURE else j:=j5+1

It can be shown that this procedure considers each bit position y[j] at most a log-
arithmic number of times from which the bound O({log¢) follows easily. For most
strings, however, the complexity is linear since more than linear time is needed only
for strings of highly regular structure.

Algorithm 2.

The second, and in the worst-case more efficient solution first computes a maximal
overlap of y, that is a substring w of maximal length such that

Yy = wry = Vhw
for some nonempty strings vy, vy . If |w| < |y|/2 then y can be written in the form
Yy = wruw

for some string v, that means w is a symmetry of y. Since w was chosen maximal
it is even the maximal symmetry.

If |w| > |y|/2 then in the representation y = w v; = vyw the string w overlaps
with itself, thus it cannot be used as a symmetry. However, let x denote the length
of the v;, » = ¢ — k the length of w, and ' := ¢ mod k. Then

wk+1...r] = w[l...mr =k,
which implies in particular w[l...k] = w[k + 1...2k]. In the same way, w[xk +
1...2k] = w[2k+1...3k], thus w can be written as
w = wll... k" w[l.. and y = wll... kU 1),

where w[l...7'] is empty for ' = 0. Now define

w, if  |w| < ¢/2,
wy = wll...k], if 7" =0,
w[l...r],  otherwise .

Note that wg is a symmetry of 3. As already mentioned it is the maximal one in
the first case, whereas in the other cases the maximal one is w[1...&]? if ' =0,
resp. w(l...k]“=™/2% 1. .¢'] for 7" > 0. Symmetries of size between w, and the
maximal one are of the form w(l...x]" w[l...7] for some 1 < L < £/2k.

Having obtained wy, iteratively in the same way we first compute the maximal
overlap of this string and from this a substring w;, and so forth until for the first
time w; has zero overlap. Then w; is the minimal symmetry of y.
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A maximal overlap (sometimes also called a maximal border) can be computed in
linear time, see for example [CR94|, chapter 3.1, where an algorithm of complexity
2 |y| — 3 is described.

Given the maximal overlap, the string wy can easily be obtained in a linear number
of steps. Since for all j the length of w; is at most half the length of w;_; the whole
iterative procedure stays linearly bounded.

Once we have found a symmetry u, computing the complete u —factorization of y
is just a simple pattern matching of u against y, which can be done by well estab-
lished methods in linear time.

From a complete minimal factorization based on wu; other symmetries can be
deduced by checking powers of u; and the equality of substrings between these powers.
Again, this can be done in a linear number of operations.

Let X}, denote the set of all strings in X+ that possess a symmetry and let

Psym = Pr[Z e X}

syml *

Again, for illustration, in the length-uniform situation for pg,, one can easily derive
the upper bound pgym < >4, 5% < (s—1)7', which gives a significantly good
estimation smaller than 1 except for s = 2. In this case, by a more careful analysis
one can show the bound pgym < 3/4.

In general, it will be required that the distribution is not restricted to substitutions
with symmetries — with positive probability also nonsymmetric substitutions should
occur.

Assumption 4.  pgym < 1.

Now consider the event

Q2] = [{4,....2,y €3] .

(04| Z] means that among the first g substitutions all have a symmetry. Obviously,

Pr(Qy[2]] < pfs -

Define ¢(2) = min{g | Q,[Z]} .
Similarly to Lemma 1, one can show
LEMMA 5. E[g(2)] < 1/(1 — psym) -

5. Basic Subroutines: Factorizations and Compatibility

For a subset A of ¥* let PRE(A) and SUF(A) denote the maximal common prefix
and suffix of all strings in A, respectively. Furthermore, let mpe(A) and mgu(A)
be their lengths. The first goal of the algorithm is to recognize the prefix wy and
suffix w,, before the first and last occurrence of the variable x, respectively, in the
pattern 7. In order to avoid confusion, x will be called the pattern variable, where
variable simply refers to any data variable used by the learning algorithm.

We will store the current information about the prefix and suffix in the two variables
PRE and SUF. All the remaining pattern learning is done with respect to the
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current value of these variables. If the algorithm sees a new sample string X such
that PRE({X,PRE}) # PRE or SUF({X,SUF}) # SUF then these variables will be
updated. We will call this the begin of a new phase.

DEFINITION 4. For a string Y € ¥ a (PRE, SUF)—factorization is defined as
follows. Y has to start with prefix PRE and end with suffix SUF . For the remaining
middle part Y’ we select a symmetry «;. This means Y can be written as

Y = PRE u,! v, u1d1 SUF

for some strings w;,v; and positive integers ci,d; .

If such a representation is not possible for a given pair (PRE,SUF) then Y is
said to have no (PRE, SUF)—factorization.

Y’ may have other symmetries us, u3, ... which give rise to factorizations

d

Y = PRE v/ v; u,"t SUF

for positive integers c;,d;. For simplicity, we assume that the symmetries u; are
ordered by increasing length, in particular w; always denotes the minimal symmetry
with corresponding minimal factorization.

LEMMA 6. Let Y = PRE u v, u' SUF be the minimal (PRE,SUF)-
factorization of Y . Then, for every string Y of the form Y = PRE w; v u; SUF
for some string ¥, the minimal (PRE, SUF) —factorization of Y is based on wu; , too.

Proof. That u; gives rise to a factorization is obvious. There cannot be one of
smaller length because this implies that u; has a symmetry and contradicts that u;
is minimal for Y . i

Though the following lemma is easily verified, it is important to establish the
correctness of our learner presented below.

LEMMA 7. Let m = wox vz wy, be any pattern with #(m,x) > 2, let w € ¥, and
let Y =n[z/u]l. Then Y has a (wo,wy,) —factorization with base u and its minimal
(wo, wy,) —factorization is based on the minimal symmetry u, of u.

The results of Lemma 4 directly translate to

LEMMA 8. The minimal base for a (PRE, SUF) —factorization of a string Y can
be computed in time O(|Y]). All additional bases can be found in linear time. Given
a base, the corresponding (PRE,SUF) —factorization can be computed in linear time
as well.

DEFINITION 5. Two strings Y, Y are said to be directly compatible with respect
to a given pair (PRE, SUF) if from their minimal (PRE, SUF) factorizations a single
pattern ¢ = ¥(Y, 17) can be derived from which both strings can be generated. More
precisely, it has to hold

Y = PREu® v, w2 SUF  and ¥V = PREa ! & 4 SUF,
and for

Yiia = ulcl -1 (4] uldl -1 and Ymid = @101 -1 vy 7jhall -1
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every occurrence of u; in Y9 — including further ones in v; — is matched in Yinid
either by an occurrence of #; (which indicates that at this place 7 has a pattern
variable) or by w; itself (indicating that the constant substring w; occurs in 7). In
all the remaining positions Y4 and ffmid have to agree.

This compatibility notion is extended to pairs consisting of a string Y and a
pattern 7. Y is directly compatible to m with respect to (PRE,SUF) if for the
minimal symmetry u; of the (PRE, SUF)—factorization of ¥ holds 7[z/ui] =Y .

The following lemma is easily verified.

LEMMA 9. Assume that (PRE,SUF) = (wo, wy,) has the correct value. If a string
Y s generated from m by substituting the pattern variable by a nonsymmetric string u
then the string u, on which its minimal (PRE, SUF) —factorization is based equals u .
Thus, Y s directly compatible to .

Proof. Tt is easy to see that for a nonsymmetric u the string
Y = 7wlz/u] = wou® wy u™ wy ... Wy_1 U™ Wiy

has u as the basis for its minimal (wy, w,,)factorization. That u gives rise to a
factorization is obvious, and if there were a smaller one it would imply that » has a
symmetry. Since the constant substrings wi, ..., w,—1 may contain u as a substring
the actual factorization may show more powers of «, but it is unique since occurrences
of u cannot overlap — again because u is nonsymmetric.

If the constant substring w; of 7 has a decomposition with respect to u of the form
ubio Wi 1 ubin - Wi ni ubini | where the B;; are integers and the w;; are substrings
not containing w , then the middle part Yiq of Y without prefix, suffix and first and
last occurrence of u looks like

[e%

u®r L gfro w11 ufir S W1pl uPrnt 02 P20 Wy 1 ulr . Wa p2 uPznz s

TRl
When checking direct compatibility of Y against 7 it becomes obvious whether a
substring v in Y corresponds to a variable or not. i

If one of the substitutions u,#% for Y = 7[z/u], resp. ¥ = w[z/@] is a prefix of
the other, let us say & = uwu' for some nonempty string u' then there may be an
ambiguity if u u' appears as a constant substring in Ypq. If this is not followed by
another occurrence of ' it can easily be detected. In general, if u «' is a constant
in m then the number of occurrences following this substring will be the same in the

corresponding positions in Y;q and Y4, otherwise it has to be one more in Y .

Using this observation it is easy to see that even in such a case testing of direct
compatibility is easy.

LEMMA 10. Let the minimal factorizations of two strings Y,Y be given. Then
by a single joint scan one can check whether they are directly compatible, and if yes
construct their common pattern (Y,Y). The scan can be performed in O(|Y|+|Y])
bit operations.

Furthermore, for a pattern m it can be checked in time O(|Y| + |r|) whether Y is
directly compatible to .

The extra effort in the degenerated case of u being a prefix of u can be omitted
if in this case the pattern matching is done from right to left since the procedure is
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completely symmetric. This will only fail if u is both prefix and suffix of %, implying
that & = u ' w. But this means that « has a symmetry and thus cannot derive
from a minimal factorization of Y .

DEFINITION 6. A string Y is downwards compatible to a string Y with respect
to a given pair (PRE,SUF) if for some x > 1, from the minimal (PRE,SUF)-
factorization of Y and the x-th (PRE,SUF)-factorization of Y a single pattern
U =YY, Y, k) can be derived from which both strings can be generated.

We also say that Y is upwards compatible to Y .
Again, these notions are extended to pairs consisting of a string and a pattern.

LEMMA 11. Assume that (PRE,SUF) = (wo,wy,) has the correct value. Let
Y = xwlz/u] for a nonsymmetric string w. Any other string Y in L(rw) obtained
by substituting the pattern variable by a string @ for which w 1is not a symmetry is
upwards compatible to Y with respect to (PRE,SUF) .

The pattern (Y,Y) equals the pattern 7 to be learned.

Given the (PRE,SUF) —factorization of both strings, ¥(Y, f/) can be constructed

in time at most O((1+sym(Y))-([Y|+|Y])), where sym(Y) := sym(@) denotes the
number of symmetries of the string @ that generates Y .
Furthermore, given a pattern v and the factorization of a string Y it can be checked
in time O(|Y| + |¢|) whether Y is upwards compatible to 1. For Y , downwards
compatibility to ¥ can be checked and (Y,1),-) can be constructed in linear time,
too.

Proof. Let u be nonsymmetric, Y = x|z /u], and let

Vg = w7 yfro Wi 1 uPrn e W11 uPrt 2 g f2e W 1 uPr L oymt
If

Y = 7lz/d] = we @ wy 4% wy ... Wy GO wy,

then Y has a (wo, wy,) factorization based on % (which will not be minimal if % has
symmetries). Since ws,...,w,_1 may contain % the actual factorization may show
more powers of .

By assumption, u is not a symmetry for % and since one may either work from left
to right or right to left we may assume that « is not a prefix of 4. When comparing
Yiia to f’mid after the first a; — 1 occurrences of uw in Y,;;q have been read and
matched against occurrences of % in f/'mid the next occurrence of u in the substring
uP10 will be detected as a constant. This is because this substring also occurs in f/mid
and wu is not a prefix of %. The same holds for the other occurrences of u in Y .

Given the corresponding factorizations, checking whether Y4 and ffmid match
can be done by a single pass over the strings and has linear time complexity. However,
one has to find that factorization of ¥ that matches the one of Y . Considering the
symmetries of ¥ in increasing length this will be symmetry sym(@). In the worst-
case, if 4 contains only one symbol sym(a) can be as large as |@|/2, but such a case
will be easier to handle.

This can even be sped-up. One observation is that a string with ¢ symmetries
yields a least by a factor ¢ more occurrences of its minimal symmetry in the minimal
factorization. Thus, once one output pattern @ has been computed, which also gives
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the number of occurrences of the pattern variable, strings Y with a much larger
number of occurrences in the minimal factorization based on a string %; can simply
be discarded unless 1 itself contains lots of substrings w; . More precisely, let

#(Y,u) := maximal number of nonoverlapping occurrences of u in Y .

Since w is nonsymmetric and Y = 7|z /u]

#(Y,u) = #(m,z) + #(m,u) .

For Y = n[x/4] and a symmetry @; of a factorization of ¥ such that @; is a substring
of u it holds,

#(V,0) = #(0,%)  #(m.2) + #(r, @) .
Let ¢ a pattern that is supposed to equal the pattern 7 to be learned. Thus, to find

the right factorization of a string Y to check upwards compatibility against ¢ from
the minimal factorization one can compute

#,01) — #(, i)
#(¢,x)

to get an estimate on #(4, 4;). When all symmetries of Y are known it is then easy
to find that string 4 directly that matches this value.

However, when checking upwards compatibility of a string Y to a string Y, we
do not have a precise estimate on #(m, ), there is only the upper bound #(Y, )
available from the factorization of Y . This implies a lower bound on #(@, ;) of the

form -
#V, ) — #Y, %)
#(Y, u) '

Thus, unless # (7, u) is relatively large compared to #(m,z) this gives a good ap-
proximation which symmetry of Y should be used.

#(U, 1) >

Note that one cannot decide whether a string Y was generated by substitution
with a nonsymmetric string by counting the number of its factorizations — which is
likely to be one. However, there are rare cases with more factorization than the one
induced by the substitution — for example, if a; and «,, have a common nontrivial
divisor or even if a; = a,, = 1, but by chance w; = v u v' and w,,_; = v" v v for
some arbitrary strings v,v’,v".

6. The Algorithm

The learner may not store all sample strings he has seen so far. Therefore let
A=A, =A,(X) denote the set of examples he remembers after having got the first
g samples of the random sequence X = X, Xs,..., and, similarly, let PRE, and
SUF, be the values of the variables PRE and SUF at that time. We will call this
round g of the learning algorithm.

Let us first briefly describe the global strategy of the learning procedure. In the
trivial case where the pattern is just a constant 7 = w all sample strings will be equal
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w and the variables PRE and SUF are not defined. Thus, as long as the algorithm
has seen only one string, it will output this string.

Otherwise, we try to generate a pattern from 2 compatible strings received so far.
If this is not possible or if one of the samples does not have a factorization then the
output will be the default pattern 1o := PRE, z SUF,.

If a non-default pattern has been generated as a hypothesis further samples are
tested for compatibility with respect to this pattern. As long as the test is positive
the algorithm will stick to this hypothesis, otherwise a new pattern will be generated.

In the simplest version of the algorithm we remember only a single example of the
ones seen so far. Instead of a set A we will use a single variable Y .

The One-Variable Pattern Algorithm

Y = Xyi;

PRE = X;;

SUF = Xi;

output X ;

for g = 2, 3,4, ... do
PRE' := PRE;

SUF’ := SUF;

1 := output of previous round;
read the new sample Xg;

if X, =1 then output ¥,

else

PRE := PRE({PRE, X,}); SUF := SUF({SUF, X,});

if PRE # PRE’ or SUF # SUF’ then (a new phase begins)
compute the minimal (PRE, SUF) -factorization of Y;
Yo = PRE z SUF;
Y = 1y endif;

compute the minimal (PRE, SUF) factorization of Xg;

case 1: Y does not have a (PRE, SUF) factorization
then output yq:
case 2: X, does not have a (PRE, SUF) factorization
then output ¢y and Y := X,;
case 3: Y =1y
if X, is downwards compatible to Y
then output ¢(X,,Y,-),
else output 7y,
if X, is shorter than Y then Y := X;

case 4: X, is upwards compatible to
then output ¢ ;

case 5: X, is downwards compatible to
then output ¥(X,,¢,-) and YV = X ;

else output .
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7. Proof of Correctness

Since the sample strings are generated at random it might happen that only “bad
examples” occur in which case no learning algorithm can eventually come up with
a correct hypothesis. Therefore, the following claims cannot hold absolutely in a
probabilistic setting, but they will be true with probability 1. Remember that

T = werw xPwy . .. Wy 1% W,y

is the pattern to be learned. Since not all substitutions start with the same symbol or
end with the same symbol (p < 1) with probability 1 a sequence X’ contains strings
Xi, X, Xy, where X, = w[z/u,] such that

Note that 7 may be equal to k. Let g be the maximum of ¢, 7,k and consider a
triple for which ¢ is minimal. By the construction of the sets PRE and SUF round g
will start a new phase in which now the variables PRE; = wy, and SUF, = w,, have
the correct values.

We do not care about the output of the algorithm before this final phase has been
reached. It remains to show that the algorithm will converge in the final phase. For
this purpose, let us distinguish whether the pattern contains the variable only once,
in which case there will be samples without any symmetry, or more than once (the
case that the pattern does not contain any variable is obvious).

If m = worw; then with probability 1 there will be a sample X, obtained from
a substitution [r/u] with a nonsymmetric string w. Then X, does not have a
(PRE,, SUF,) —factorization and thus case 2 occurs. Since Y is set equal to X from
then on always case 1 occurs. The algorithm will always choose case 1 and output
1 , which in this case is the correct answer.

Otherwise, the pattern contains the variable at least twice and any sample does
have a (PRE,, SUF,) factorization. Lemma 11 shows that a nonsymmetric substi-
tution generates a string that is downwards compatible to any other string in L(7).
Thus, as soon as X, is such a string, which again happens with probability 1, the
output 9, will equal the pattern 7. Furthermore the algorithm will never change its
output from this round on since case 4 “ X, is upwards compatible to " will hold
for any ¢’ > g.

Let us summarize these properties in the following
LEMMA 12. After the algorithm has detected the correct prefiz and suffix it will

converge immediately to the correct hypothesis w as soon it gets the first sample
generated by a nonsymmetric substitution.

8. Complexity Analysis

Let 1, denote the output of round g, and Y, the value of ¥ at the end of that
round. Let T'imey(X) denote the number of bit operations in round ¢ on sample
sequence X, and recall Z and X defined as random variables for the substitutions,
resp. samples.
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LEMMA 13. For each round g it holds
ElTime,(x)] < O(E[X] - (1+ Elsym(2)))

< O(n CE[|Z)] - (1+ E[sym(Z)])) .

Proof. By Lemma 10 and 11 in each round g the number of bit operations can be
estimated by

Time,(X) < O(Yy) + O(X,]) +
max {O((|Vya| + |X,0)- (1 + sym(Y, 1)),
O(([gm| + 1,0 - (1 + sym(X,),
Oy + 1X,])}
< O(Wyal + 1X] + [omtl + Vo] - sym(Vyr) +

X sym(Yy 1) + [y 1] - sym(Xy) + |X,|-sym(X,)) .

By construction of the algorithm and the fact that a pattern is never longer than a
sample string it generates we can bound E[|X,|] as well as E[|Y;_:|] and E[|¢y_1]]
by FE[|X]|]. Furthermore, E[|X,| - sym(X,)] and E[|Y,_1| - sym(Y,_1)] are both
bounded by O(E[|X|]- E[sym(Z)]) (a consequence of Assumption 3). Note, that X,
is independent of Y,_; and t,_;. Thus

E[|IXg| - sym(Yy1)] = ElX,[]- E[sym(Yy-1)] = E[|X]]- Elsym(Z)]  and
Elldgal-sym(X,)] = Ellggll- Elsym(X,)] < E[X]]- E[sym(Z)] .

This simplifies the expectation to
ETime,(¥)] < O(E[Yoll + EIX,|] + Ellgyll +
E[[Yya| - sym(Vy1)] + B[] sym(Yy )] +
El[gy1- sym(X,)] + E[IX,| - sym(X,)])

< O(BlX|) + EIX]- Elsym(2)]) .

Now we can also bound the total learning time.

LEMMA 14. The expected total learning time 1s bounded by

O(E[|X|]-(1+E[sym(Z)])'< o ))

1_p 1_psym

< O(n-E[|Z|]-(1+E[sym(Z)])-( LI ))

l_p 1_psym

Since E[|Z|]), E[sym(Z)], p, and psym are characterized by the distribution for
substituting the pattern variable they are all independent of the problem size. This
means the complexity grows linear with the size of the problem.
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Proof. The number of rounds can be bounded by the number of rounds to reach the
final phase plus the number of rounds in the final phase till 1, = 7. By Lemma 1 and 5
the expectation of both is a constant that only depends on the probabilities p and
Psym - Let G be a random variable that counts the number of rounds till convergence.

Then,
1 1
EIG] < O + > .
G (1—19 I — Psym

Let Timepa(X) denote the total number of operations on sample sequence X' . Then

Timegora(X) = ilTimeg(X) = ;Pr[G:t] : ilTimeg(X) and
E[Timepu(X)] = E[; Pr[G =1] - gz;ﬂmeg(;c)]
< 0 (E (oG =a-d] FlxD- (04 E[sym(zn))
g >

0 (E[|X|] - (1+ E[sym(2))) - E[Z PG = 1] - t])
= O(EIX]- (1+ Elsym(2))) - B[G))

< 0 (n -E[|Z]] - (1 + Elsym(Z)]) - (1 ip + 1 —1psym)>
= O(n).

Summarizing we can state

THEOREM 1. One-variable pattern languages can be learned in linear expected
time for all distributions that with nonzero probability generate a sample strings by a
nonsymmetric replacement of the pattern variable.

An additional nice feature of the algorithm is the immediate convergence in the
final phase when a sample with a nonsymmetric replacement occurs. The expectation
of this event is E[G], hence with probability at least 1/2 the algorithm converges
within 2 E[G] rounds. If this did not happen, no matter which bad samples have
occurred, again there will be convergence in the next 2 E[G] rounds with probability
at least 1/2. Thus, the probability of failure decrease exponentially with the number
of rounds:

Pr[Tz'metotal > 2k - E[Timeom] ] < 27k

which implies that the variance is small.
9. Conclusions

We have shown that one-variable pattern languages are learnable for basically
all meaningful distributions in optimal linear time on the average. The algorithm
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obtained is quite simple and is based on symmetries that occur in such languages.
Thus, our approach to minimize the expected total learning time turned out to be
quite satisfactory. Moreover, our algorithm does not only possess an expected linear
total learning time but also very good tail bounds. Note that, whenever learning in the
limit is considered one cannot decide whether or not the learner has already converged
to a correct hypothesis. Therefore, knowing the probability of failure decreases expo-
nentially a potential user of our algorithm can easily gain an exponentially growing
confidence into the correctness of the actual hypothesis received.

Next, we shortly discuss possible directions of further research. An obvious ex-
tension would be to consider k-variable pattern languages for small fixed £ > 1.
Already for k£ = 2 the situation becomes considerably more complicated and requires
additional tools.

Another direction to pursue would be to learn languages that are the union of at
most ¢ one-variable pattern languages for some fixed /.

Finally, the approach presented in this paper seems to be quite suited to tolerate
errors in the sample data. Let us assume that there is some (small) probability e that

error model 1: in a sample string X[1]... X[l] a symbol X[i] is changed to a
different one,

error model 2: X]Ji| is changed to a different symbol or removed or replaced by
two symbols X[i]o for some o € .

A property of the pattern language like the common prefix of all strings now is
only accepted if it is supported by a large percentage of samples. The details and
modification of the algorithm will be given in another paper.
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