J. Int. Process. Cybern. BIK 25 (1989) 10, 543 — 547
(formerly Elektron. Inf.verarb. Kybern.)

Improved Parallel Computations in the Ring Z/p~t)

By Thomas Zeugmann

Abstract: Improved parallel algorithms computing the inverse or a large power modulo
an element that has only small prime factors are presented.

1. Introduetion

Within the last years parallel algorithms have attracted much attention of computer
scientists (cf. e.g. [4], [7]). Thereby it has been shown that, even using a feasible
amount of hardware, many problems can be solved substiantially faster in parallel
than by a sequential algorithm (cf. e.g. [3]). However, despite the enormous progress
made within the last decade some problems seem to be very hard parallelizable.
Among them we find the following problems concerning parallel computbations over
the integers:

(1) GCD: Let n-bit integers a, b be given. Compute the greatest common divisor of
a and b.

(2) INV: Let n-bit integers a, m be given. Compute the inverse 2 of @ modulo m, i.e.,
compute the number a satisfying ax = 1 mod m if it exists, otherwise return
failure.

(3) POW: Let n-bit integers @, b, and m be given, whereas @ == 0 mod m. Compute
the number y ¢ {1, ..., m — 1} fulfilling y = a® mod m.

It is an open question whether or not GCD, INV, and POW are in NC, i.e., whether
they can be solved simultaneously in polylog time using only polynomially many
Processors. ,

In a beautiful paper v. z. Gathen ([5]) has pointed out that INV and POW are both
contained in NC provided the modulus m is of the form m = p§i ... pf, where p,
ohast o =il

In the present paper we shall describe improved algorithms computing INV
and POW, again under the assumption that the modulus has only small prime
factors.

The used model of parallel computation is that of uniform families of Boolean
circuits (cf. [2]). Please note that we have to distinguish between log-space uniformity
and polynomial time wuniformity (abbr. P-uniformity) whenever division is in-
volved.

Thus we denote by div(n) the amount of parallel time needed to divide two n-bit
integers. Beame/Cook/Hoover [1] have shown that div(n) = O(log n log log n) for log-
space uniformity, and that div(n) = O(log) for P-uniformity.

) Extended version of a lecture presented at the Colloquium on Computation Theory
(CCT °88), Berlin, GDR, September 5—9, 1988.

36 J. Inf. Process. Cybern. BIK 25 (1989) No. 10

544 Th. Zeugmann

2. Computing the inverse modulo a number me
having only small prime factors

Using Chinese remaindering we can restrict ourselves to exclusively consider the
case m = p*, where p, o« = n (n is the number of bits). The classical algorithm com-
puting the inverse is mainly based on Euclid’s algorithm. Thus it works extremely
sequential. Exploiting the special properties of moduli having only small prime factors,
v. z. Gathen ([5]) has been introduced the following iteration technique:

¥

(i) Compute w, such that ax, = 1 mod p
(ii) Compute z; := (2 — (w?_la — ¥;—1)) mod p¥ for ¢ =1, ..., [log o]

Thereby the first step can be performed even by exhaustive search since p < n.

However at this point we malke the observation that quite a few is done in parallel.
Consequently we ask whether or not we can do something more in parallel. A closer
look to the above iteration technique leads to the following observation: If x is
the inverse of @ modulo p° then performing one iteration step (i.e., computing
@' = x — (a%a —) mod p*) augments the exponent only by the factor 2. Hence we
are interested in augmenting the exponent somehow faster, thereby doing more and
more in parallel, e.g. computing

x' = 4o + 4a?z® — Gax? — alzt mod pte .

The latter iteration can be performed in parallel using the same time as the above one.
On the other hand, the number of iteration steps is reduced to the half. Nevertheless, in
order to achieve a substantially better result we have to augment the exponent from
¢ to e* per iteration.

Lemma 1. Let p be a prime number, and let x be the inverse of a number a modulo p°,
where ¢ 1s even. Furthermore, let

e=2

=/ b :

pil==9e ()aa;“" o=lge=v(_1)?+1 L ex) mod p® .
v=0 \vV

Then ax’ = 1 mod p?.
Proof. We have to show that p* divides ez’ — 1. Computing (ax’ — 1) mod p**

we get:
(ax’ — 1) mod p*

¢—2

e

=1 Fo3 (>ae"”x@“”(—1y+1 4 eqr — 1| mod p¢*
v=0 \v

|

= (g iu<c)(m;)e*”(—1)° + cax — 1) mod p¢*

v=0\v
¢=2"¢ 5
= —{ X < (@)= (—1)® — eax 4 1] mod p°
v=0 \?
(Remember that ¢ has been assumed to be even)
g (e e S
= ST ROY (@z)=? (—1)°} mod p
v=0 \?
= — (ax — 12 mod p* = 0

since p¢/(ax — 1) directly implies that p/(ax — 1)°. []

Improved Parallel Computations 545

Exploting the above lemma one directly obtains a powerful iteration technique
computing the inverse.

Theorem 2. Let a be an n-bit number, and let p, & < n.
Then there exists « uniform family of Boolean circuits having stmultancowsly depth
O(div(n) loglog n) and size O(n?M) which computes the inverse of a modulo p*.

’

Proof. We use the following algorithm :
(i) Compute #, € {1, ..., p — 1} such that sz, = Lmod p
(ii) Compute x, € {1, ..., p? — 1} by @ = (2z, — axd) mod p?

(iii) Compute

9o0=2 0 22i—2

) e s 2i—2 . . ot y 21—1

x; = (22z Py A Zo (5)“2 Yl = "‘I)HJ) mod p?
V=

for ¢ =2, ..., [loglog]
(iv) Let I = [loglog «]. Return z; mod p=.

The correctness of this algorithm is an immediate consequence of Lemma 1. In
each iteration step there will eventually occur O(n) numbers the sum of which has
to be computed. These numbers can be computed in parallel in depth being at most
O(div(n)). Thereby only O(n?®) processors are needed (cf. [1]). Using standard
techniques it can be easily seen that each of these numbers has at most O(n) bits.
Consequently, the sum can be computed in depth O(div(n)) using O(n?M) processors.
Since we have to perform only [loglog «] - 1 iteration steps the theorem follows. []

It is an interesting open question whether or not the above result can be improved.
In particular, we are interested in learning to know whether the computation of the
inverse mudulo a number m having only small prime factors is more complex than
division.

3. Improved powering

The powering problem has been intensively studied by v. z. Gathen (I5]). Thereby
for P-uniform families of Boolean circuits he obtained the best possible result, i.e., he
described a P-uniform family of Boolean circuits having simultaneously depth
Olog n) and size O(n®D) which computes POW for a modulus that has only small prime
factors. On the other hand, considering log-space uniform families of Boolean circuits
much more difficulties arise. Using the well-known decomposition 7 /p* = ¢ x H
(cf. [6]) v. z. Gathen ([5]) has divided the problem POW into appropriate computations
in ¢ and H. Thereby H = {r ¢ Z[p*|r = 1 mod p} and G is defined to be the image
set of the following injective group homomorphism h: % [p > Z[p*, delined as:

> o=l mod p%,
The hardest part here is the computation of the homomorphism %. In [5] again
an iteration technique has been presented which computes % as follows:
(S = 1
(i) 80 =si1 + (F3 — 1) (L + p 4 ... 4 p2~1) 272 mod p*
forv =1, ..., [log x].
36

546

Th. Zeugmann

What we like to present here is an improvement of the above technique which
considerably reduces the size of the circuit.

Algorithm HOMOMORPHISM

Input: Let p, &, 7 be numbers satisfying 7 € Z/p*, p, « < n. s
Output: The number s € Z/p* fulfilling s = 1 mod p*
Method:
@)Fsg ="
(ii) For 7 = 1 to ! = [logx] do
Sy S o L (30 s D (oetiph et oals P71 54 mod p? .
Return s; mod p*.

Theorem 3. The Algorithm HOMOMORPHISM correctly computes the group
homomorphism h: Z]p > Z|p*, with r > 17"~ mod %

Proof. First of all we note that card(Z/p*) = (p — 1) p*~!. Hence, if s = ¢2*71
mod p* then

s = r mod p, and (1

- 71 =1 mod p*. (2)

Conversely, if s satisfies (1) and (2) then s = 7" " mod p~. Consequently it suffices
to show that each s; satisfies s; = » mod p and 7™ = 1 mod p*.

We proceed inductively. For ¢ = 0 the agsertion is obviously fulfilled. So let us now
assume that s; = r mod p and 7" = 1 mod p%. We get:

st = (s, 2 (e R e T R pzi"“l) si)7>~1 mod p¥
p—1 WA 0y
=X (7) 1)6 (677 — 1) (1 + msfnseg p2Hitad)is)p—1-v
=0)

= ((p—1) PP~ — 1) (L + p + ... 4+ p2T =) 5, o P1) mod p2'*?
(p — 1) s7(s} Y1 +p P i

‘ . : % e & : i+1, p o
since by the assumption 2% divides (s?™' — 1), and consequently p2' " '(s?~1 —1)» for
every v = 2.

Considering the latter term we obtain:

it e MG et OB Sl o e

9

— (pzi»l-l x| 1) (S?ﬁ] 5 1) 818,?-,]“2 0 S?Ml

=" =1 (T =D P

m= (WS (e el e
(p) ((s57) i 5

= g2 (P —) — (PN - P P
=(—1) (P2 =2+ D) 1= (DL — 1241
= 1 mod]921*1 .

s . i OOy = -1 e
since by assumption p% divides (sP~* — 1). Thus p2' /(P! — 1)2. [

Improved Parallel Computations 547

Since our method is less complicated than v. z. Gathen’s one the algorithm HOMO-
MORPHISM either reduces the parallel time by a constant factor or it considerably
reduces the number of gates.

On the other hand it remained open whether or not the number of iterations can be
decreased up to loglog n.

References

[1] Beame, P. W., S. A. Cook, H. J. Hoover: Log depth circuits for division and related
problems. STAM J. Comput. 15 (1986), 994 — 1003,

[2] Borodin, A.: On relating time and space to size and depth. STAM J. Comput. ¢ (1977,
733 —744.

[3] Cook, S. A.: The clagsification of problems which have fast parallel solutions. Tn:
Proc. Foundations of Computation Theory; (Lecture Notes in Computer Science, 158)
Springer, 1983; pp. 78 —93.

[4] v. z. Gathen, J.: Parallel arithmetic computations: a survey. In: Proc. Mathematical
Houndations of Computer Science; (Lecture Notes in Computer Science, 233); Springer,
1986; pp. 93 —112.

[5] v.z. Gathen, J.: Computing powers in parallel. STAM J. Comput. 16 (1987), 930—945. -

[6] Hasse, H.: Number Theory. (Grundlehren der mathematischen Wissenschaften).
Springer, 1980.

[7] Zeugmann, T.: Parallel algorithms. (Series: Eneyclopedia of Computer Science and
Technology). Marcel Dekker, New York (to appear)

H

Kurfassung

Es worden verbesserto parallele Algorithmen zur Berechnung der Inversen oder ciner
grolien Potenz einer Zahl fiir Module mit ausschlioBlich kleinon Primfaktoren vorgestellt.

Pesiome

HpeHCTaB.HGHbI YIAYULICHHBIEC TIAPaJlIeJabHbIe AJNTOPUTMBL BBIMHCJICHIA A oﬁpaTme
JIEMEHTOB W 0OJIBIINX CTeIIeHeil YHCeTT YIS MOJYJIel ¢ BCRINOUNTEAHHO MAITbIMIA IPOCTLI-
M COMHOMUTCITIAMMA .

Author’s address :

Th. Zeugmann
Humboldt-Universitit zu Berlin
Sektion Mathematik

Postfach 1297

1686 Berlin

German Democratic Republic

