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Abstract

The present paper deals with with the learnability of indexed families
L of uniformly recursive languages from positive data. We consider the
influence of three monotonicity demands to the efficiency of the learning
process. The efficiency of learning is measured in dependence on the num-
ber of mind changes a learning algorithm is allowed to perform. The three
notions of monotonicity reflect different formalizations of the requirement
that the learner has to produce better and better generalizations when fed
more and more data on the target concept.

We distinguish between ezact learnability (£ has to be inferred with
respect to L), class preserving learning (£ has to be inferred with respect
to some suitable chosen enumeration of all the languages from L), and class
comprising inference (£ has to be learned with respect to some suitable
chosen enumeration of uniformly recursive languages containing at least
all the languages from £).

In particular, we prove that a relaxation of the relevant monotonicity
requirement may result in an arbitrarily large speed-up.

1. Introduction

The present paper deals with inductive inference of formal languages. Looking
at potential applications, Angluin (1980) started the systematic study of learning
enumerable families of uniformly recursive languages, henceforth called indezed
families. Recently, this topic has attracted much attention (cf., e.g., Shinohara
(1990), Kapur and Bilardi (1992), Lange and Zeugmann (1993a), Mukouchi
(1992), Wiehagen and Zeugmann (1994)).

Next we specify the information from which the target languages have to be
learned. Throughout this paper we exclusively consider learning from positive



data, or synonymously from text. A fezt of a language L is an infinite sequence
of strings that eventually contains all strings of L.

An algorithmic learner, henceforth called inductive inference machine (abbr.
ITM), takes as input initial segments of a text, and outputs, from time to time, a
hypothesis about the target language. The set G of all admissible hypothesis is
called hypothesis space. Furthermore, the sequence of hypotheses has to converge
to a hypothesis correctly describing the language to be learned, i.e., after some
point, the TTM stabilizes to an accurate hypothesis. If there is an IIM that learns
a language I from all texts for it, then L is said to be learnable from text in the
limit with respect to the hypothesis space G. Consequently, when dealing with
learning in the limit, we are faced with an ongoing inference process. If dy, ..., d;,
z =0,1,2,..., denotes the sequence of data the IIM A is successively fed, then
we use j; to denote the last hypothesis output by M, if any, on successive input
dy, ..., d,. Wesay that M changes its mind, or synonymously, M performs a mind
change, iff j; # jy4+1. The number of mind changes is a measure of efficiency
and has been introduced by Barzdin and Freivalds (1972). Subsequently, this
measure of efficiency has been intensively studied (cf., e.g., Barzdin, Kinber
and Podnieks (1974), Case and Smith (1983), Wiehagen, Freivalds and Kinber
(1984), Gasarch and Velauthapillai (1992)). However, all the mentioned papers
considered the learnability of recursive functions. Hence, it is only natural to ask
whether or not this measure of efficiency is of equal importance in the setting
of language learning. This is indeed the case as recently obtained results show

(cf., e.g., Mukouchi (1992), Lange and Zeugmann (1993b), Lange (1994)).

In this paper we study problems of higher granularity. In order to explain
them we have to describe the monotonicity constraints we are going to deal
with. The three notions of monotonicity reflect different formalizations of the
requirement that the learner has to produce better and better generalizations
when fed more and more data on the target concept (cf. Jantke (1991), Wiehagen
(1991)). Interpreting generalization in its strongest sense yields that the learner
is forced to produce an augmenting chain of languages, i.e., L; C L; in case
L; is hypothesized later than L;. This learning model is referred to as strong
monotonic inference. Restricting “better generalization” to the language L to
be learned results in demanding L; N L C L; N L provided L; is later guessed
than ;. Learning algorithms behaving thus are called monotonic.

Weakening the strong-monotonicity constraint in the same way as the monot-
onicity principle of classical logic is generalized to cumulativity yields weak-
monotonic learning, i.e., now the learner is required to behave strong-monot-
onically as long as it does not receive data contradicting its actual guess (cf. De-
finition 3).

As Jantke (1991) pointed out, the monotonicity requirements described above
reflect different degrees of non-monotonic reasoning that may be incorporated
into the learning process. However, it is well imaginable that the use of non-
monotonic reasoning does not only affect the learnability at all but also the
efficiency of learning. Kinber (1994) first studied this problem for learning re-



cursively enumerable languages. We continue along this line in the setting of
uniformly recursive languages.

Clearly, this question is directly related to the problem of what a natural
learning algorithm might look like. In particular, it is well imaginable that one
may succeed in designing a learning algorithm that fulfills a desirable monotonic-
ity demand. However, it seems to be interesting to know what price one might
have to pay concerning the resulting efficiency. Therefore, we study the influence
of different monotonicity constraints to the number of mind changes an TTM has
to perform when inferring a target indexed family. Then, the right question to
ask 1s whether a weakening of the monotonicity requirement may yield a speed-
up. Therefore, we always start with a target indexed family inferable under some
monotonicity constraint with an a prior: fixed number of mind changes. Then
we ask whether or not the least or some possible relaxation of the corresponding
monotonicity requirement might help to uniformly reduce the number of mind
changes. As we shall see, there is no unique answer to this problem.

2. Preliminaries

Let IN = {0,1,2, ...} be the set of all natural numbers. We set IN* = IN\ {0}.
Let ¢o, ¢1, ®2,... denote any fixed acceptable programming system of all
(and only all) partial recursive functions over IN, and let ®;, ®;, ®,,... be any
associated complezity measure (cf. Machtey and Young (1978)). Furthermore,
let k,z € IN. If pp(z) is defined (abbr. ¢i(z) |) then we also say that ¢p(z)
converges; otherwise, ¢y (z) diverges (abbr. i (z) T). By {-,-):IN x IN — IN we
denote Cantor’s pairing function, ie., (z,y) = ((z + y)? + 3z + y)/2 for all
z,y € IN.

In the sequel we assume familiarity with formal language theory (cf., e.g., Hop-
croft and Ullman (1969)). By ¥ we denote any fixed finite alphabet of sym-
bols. Let ¥* be the free monoid over ¥, and let ¥t = X* \ {¢}, where ¢
denotes the empty string. Any L C ¥* is called a language. Let L be a lan-
guage and ¢ = sg,S1,S82,... an infinite sequence of strings from ¥* such that
range(t) = {sy| k € IN} = L. Then ¢ is said to be a text for L or, synony-
mously, a positive presentation. Let L be a language. By tezt(L) we denote
the set of all positive presentations of L. Moreover, let ¢ be a text and let z € IN.
Then t, denotes the initial segment of ¢ of length = + 1, and ¢} its range, i.e.,
th ={sil k <z}

In this paper we deal with the learnability of indexed families defined as
follows: A sequence Lg, Ly, Lo, ... is said to be an indezed family provided all
languages L; are non-empty and membership in L; is uniformly decidable for all
j € IN. Note that the definition of an indexed family includes both, a description
for every language L;, and a particular enumeration of all the languages.

As in Gold (1967), we define an inductive inference machine (abbr. IIM)
to be an algorithmic device which works as follows: The IIM takes as its input
larger and larger initial segments of a text ¢ and it either requests the next input



string, or it first outputs a hypothesis, i.e., a number, and then it requests the
next input string.

At this point we have to clarify what space of hypotheses we should choose.
Since we exclusively deal with the learnability of indexed families £ = (L;)jem
we always take as hypothesis space an enumerable family of grammars G =
Go,G1,Ga, ... over the terminal alphabet X satisfying range(L) C {L(Gj)| j €
IN}, and require that membership in L(G};) is uniformly decidable for all j € IN
and all s € ¥*. When an ITM outputs a number j, we interpret it to mean that
the machine is hypothesizing the grammar ;. Let  be a text, and # € IN. Then
we use M (¢, ) to denote the last hypothesis produced by M when successively fed
ty. The sequence (M (t;))zemw is said to converge in the limit to the number
J if and only if either (M (¢;))zemw is infinite and all but finitely many terms of
it are equal to j, or (M (¢;))zemN is non-empty and finite, and its last term is j.
Now we are ready to define learning in the limit from positive data.

Definition 1. (Gold, 1967) Let £ be an indezed family, let L be a language,
and let G = (G})jew be a hypothesis space. An IIM M CLIM-identifies L
from text with respect to G iff for every text t for L, there exists a j € IN
such that the sequence (M(t;))rew converges in the limit to j and L = L(G;).

Furthermore, M CLIM —identifies L with respect to G if and only if, for each
L € range(L), M CLIM —identifies L with respect to G.

Finally, let CLIM denote the collection of all indezed families L for which
there are an IIM M and a hypothesis space G such that M C'LIM —identifies L
with respect to G.

In the above Definition LI M stands for “limit.” Furthermore, the prefix C'is
used to indicate class comprising learning, i.e., the fact that £ may be learned
with respect to some hypothesis space comprising range(£). The restriction of
CLIM to class preserving inference is denoted by LIM. That means LIM
is the collection of all indexed families £ that can be learned in the limit with
respect to a hypothesis space G = (G;)jen such that range(£) = {L(Gj)| j €
IN}. Moreover, if a target indexed family £ has to be inferred with respect to
the hypothesis space L itself, then we replace the prefix C' by F| i.e., FLIM
is the collection of indexed families that can be ezactly learned in the limit.
Finally, we adopt this convention in defining all the learning types below.

By the definition of convergence, whenever an IIM identifies the language
L, then it performs at most finitely many mind changes. However, the precise
number of mind changes may well vary from text to text as well as for every
language L € range(L). In particular, the number of allowed mind changes is
not required to be universally bounded for all L € range(L). Within the next
definition we consider the special case that the number of allowed mind changes
is universally bounded by an a prior: fixed number.

Definition 2. (Barzdin and Freivalds, 1972) Let £ be an indezed family,
let L be a language, let G = (G;);jew be a hypothesis space, and let k € INU {x}.
An ITM CLIMy —identifies L from text with respect to G iff



(1) M CLIM—identifies L from text with respect to G,

(2) for every text t for L the IIM M performs, when fed t, at most k (k =
*x means at most finitely many) mind changes, i.e., card({x | M(ty) #
Mtay)) < b,

Moreover, M C'LIMy—identifies L with respect to G if and only if, for each
L € range(L), M CLIMy—identifies L with respect to G.

CLIMj is defined in the same way as above.

Obviously, ALIM, = ALIM for all A € {E,¢,C}. Moreover, ALIMj is also
referred to as finite learning, X € {E,¢,C}, since the IIM is only allowed to
produce a single guess that cannot be changed later. Note that the learning
types ALIM}, do heavily depend on A € {E,¢,C'} (cf. Lange and Zeugmann
(1993b), Lange (1994)).

Next, we want to formally define strong-monotonic, monotonic and weak-
monotonic inference.

Definition 3. (Jantke, 1991; Wiehagen, 1991) Let L be a language, and
let G = (Gj)jen be a hypothesis space. An IIM M is said to identify the
language L from text with respect to G

(A) strong-monotonically
(B) monotonically

(C) weak-monotonically
uf

M CLIM —identifies L with respect to G and for every textt of L as well as
for any two consecutive hypotheses jy, jpyr which M has produced when fed t,
and tyqy, where k > 1,k € IN, the following conditions are satisfied:

(A) L(Gj.) € L(Gj,ya)
(B) L(ij) NLC L(sz+k) nrL

(C) if thyy CL(Gy,), then L(G,) € L(Gioy).

We denote by CSMON, CMON, CWMON the collection of all those indexed
families £ for which there are a hypothesis space G and an IIM inferring them
strong-monotonically, monotonically, and weak-monotonically from text with
respect to G. Note that the learning types ASMON, AMON, and AWMON do
heavily depend on A € {E,¢,C} (cf. Lange and Zeugmann (1993c)).

Finally, we use CSMON}, CMONy, CWMON;, where k € IN, to denote
the collections of all those indexed families £ for which there are a hypothesis
space G and an IIM inferring them strong-monotonically, monotonically, and
weak-monotonically from text with at most k mind changes with respect to G.



3. Results

In this section we study the problem whether or not any of the monotonicity
constraints defined above may be traded versus the efficiency of learning. Since
each monotonicity demand has its peculiarities, we handle each of them sepa-
rately in a special subsection. Moreover, in the following we exclusively consider
the case where at least one mind change is mandatory, since otherwise finite
learning is compared with some type of monotonic learning.

3.1. Strong-Monotonic Inference

We start our investigations with the strongest possible monotonicity con-
straint, i.e., with SMON and its variations.

Theorem 1. Let £ be an indezed family. Then, for every n € Nt we have:
(1) L ESMON,41\ ESMON,, implies L & CLIM,,
(2) £L € SMONp41\ SMON,, implies L ¢ CLIM,.

Proof. The proof is based on the following observations. Let M be any strong-
monotonic ITM, and let G = (G})jew be any hypothesis space such that M
witnesses £ € SMONp 41 with respect to G. Then the IIM M can be simulated
by an IIM M such that for all texts ¢ € ULEmnge(ﬁ) tezt(L) and all z € IN

(A) if M on input ¢, makes an output j, then ¢t} C L(G;,), i.e., M is consistent,
and if M(ty) # M(tz41), then ¥, € L(Gj,), i.e., M is conservative,

(B) M witnesses £ € SMON, 41 with respect to G, i.e., M performs at most
as many mind changes as M does (cf. Lange and Zeugmann (1993a)).

Let £ be any indexed family with £ € SMON,,+1 \ SMON,,. Furthermore,
let £ € SMON,41 be witnessed by M, where M is chosen in accordance with
(A) and (B). Since £ ¢ SMON,, there have to be an L € range(L) and a
text ¢ for L such that M changes its mind exactly n + 1 times when fed .
Let jo,...,jnt+1 denote the finite sequence of M’s mind changes produced on
t. Since M is strong-monotonic, consistent and conservative, we directly obtain
that L(Gjo) Cc---C L(Gjn+1) =TL.

Now, £ ¢ CLIM, is a direct consequence of Proposition 3.7 by Mukouchi
(1994). This proves Assertion (2). Finally, the same arguments apply in order
to prove Assertion (1). q.e.d.

The latter theorem allows the following interpretation. Relaxing the require-
ment to learn exactly (class preservingly) strong-monotonically as much as pos-
sible does not increase the efficiency. This is even true, if we are allowed to

choose an arbitrary class comprising hypothesis space provided that the target
indexed family is inferable in the sense of ESMON,11 (SMON,41), but cannot



be exactly (class preservingly) and strong-monotonically learned with at most n
mind changes for some n € IN. Hence, in the case considered in Theorem 1 the
possible efficiency of learning is completely determined by the topology of the
target indexed family.

Next we consider the class comprising case. Interestingly enough, now the
situation considerably changes. The following theorem shows that a suitable
choice of the hypothesis space may increase the efficiency of learning, even under
the strong-monotonicity constraint.

Theorem 2. For every n € INT there erists an indered family £ such that
L E(CSMON,41 NELIM,)\ CSMON,.

Proof. Due to the lack of space, we only sketch the main proof ideas. Consider
the n = 1 case. The first idea is to incorporate a non-recursive but recursively
enumerable problem in the definition of the target indexed family. Note that this
incorporation has to be done in a way such that membership in the enumerated
languages remains uniformly decidable. For that purpose, we used the halting
problem. Without loss of generality, we may assume that ®;(j) > 1 for all
J€IN.

The desired indexed family is defined as follows. Let k,7 € IN. We set
Lajy = {a*b?| z € IN*}. The remaining languages will be defined as follows.

Case 1. =®y(k) < j.

Then we set La(x jy+1 = La(r,j)4+2 = La(k,0)-

Case 2. ®p(k) < j.

Let n = @3 (k). Now we set: Lg(t jy41 = {a*b7] 1 <z <n}U{d*c"}, and

LS(k,j)+2 = LS(k,O) U {akd”}.

It is easy to see that £ = (L.),em is an indexed family. Whenever ®(k) |,
the main problem for any strong-monotonic IIM consists in learning the finite
language L3y ,(x))+1 With at most one mind change. Hence, for proving £ €
CSMO N3, another ingredient is required, i.e., a suitable choice of a hypothesis
space. A suitable hypothesis space £ = (ii)ie]N can be defined as follows: For
all k,7 € N and z € {0,1,2}, we set:

~ { ﬂne]NLS(k,n)+z; lf] = Oa

L3k jy4+2 = I .

3(k,j)+25 otherwise.

Now, it is not hard to define an IIM which C'SM ONy-learns £ with respect
to £. Moreover, the following IIM M ELIM;-learns £. Let L € range(L),
t € text(L), and z € IN.

IIM M: “On input ¢, do the following: Determine the unique k such that
a*b™ € t} for some m € IN. Test whether or not ¢t} C L3(z,0)- In case it
is, output 3(k,0), and request the next input.

Otherwise, goto (A).



(A) Compute n = @ (k). In case that a¥c® € ¢}, output 3(k,n) + 1, and
request the next input.
Otherwise, output 3(k,n) + 2, and request the next input.”

The harder part is to show that £ ¢ CSMON;. As long as only class preserving
hypothesis spaces are allowed, it is intuitively obvious that any IIM M strong-
monotonically learning £ has to solve the halting problem. However, we have
additionally to show that none of the possible choices of the hypothesis space may
prevent M to recursively handle the halting problem. Suppose, there are a class
comprising hypothesis space G for £, and an IIM M witnessing £ € CSMON;
with respect to G. Then, we can define the following effective procedure solving
the halting problem.

“Let k € IN, and let ¢ be the lexicographically ordered text for La( o). For
z=0,1,..., compute M(¢,) until the minimal index z is found such that M, on
successive input ¢, outputs its first guess, say j. Then test whether &5 (k) < z+1.
If it is, output (k) |. Otherwise, output ¢ (k) 1.”

It remains to show that the procedure defined above correctly works. Ob-
viously, if the output is ¢z(k) |, then @i (k) is indeed defined. Suppose, the
procedure outputs ¢y (k) 1 but ¢x(k) is defined. Hence, @ (k) is defined, too.
Let y = ®¢(k). By construction, y > z+ 1. Since M is a strong-monotonic ITM,
one easily verifies that L(G;) ¢ range(L). Furthermore, M has to infer L o)
from its lexicographically ordered text. Hence, there has to be an m > z such
that M(t,) = r and L(G,) = L3(x,0)- Therefore, M performs at least one mind
change when seeing %,,. Finally, due to our construction, there is a language
L' € range(L) such that ¢}, C L" and L' # Ly, o), namely L' = Ly, o U{a*av}.
Consequently, ,, may be extended to a text for L’ on which M has to perform
an additional mind change, a contradiction.

The cases n > 1 may be proved using the same “lifting” technique as in Lange

and Zeugmann (1993b). q.e.d.

At this point it is only natural to ask whether the latter theorem generalizes
to all indexed families from CSMON, 11\ CSMON,, not belonging to SMON.

The negative answer is provided by our next theorem.

Theorem 3. For all n € IN, there exists an indezed family L such that
(1) LeCSMON,1 \ SMON,
(2) L¢ ELIM,.

Theorem 3 directly yields the problem whether or not Theorem 2 can be
strengthened, i.e., whether or not the number of mind changes that can be
traded versus the strong-monotonicity constraint is bounded by one. The answer
is provided by our next theorem.

Theorem 4. For every n € INt there exists an indexed family L such that
L E(CSMON,41 NEMON;)\ CSMON,.



Proof. Again, we only sketch the proof using the n = 2 case, thereby ex-
plaining the proof technique developed. The main idea is to suitably iterate the
proof technique presented in the demonstration of Theorem 2. Therefore, we
incorporate one more halting problem into the definition of the indexed family
L witnessing £ € CSMON3z\ CSMON>, and £L € EMON;. This is done as
follows. Without loss of generality, we may assume that ®;(j) > 1 for all j € IN.
We set Lk, k,,5) = {al®1%2)p? | 2 € INT} for all ky, ko, j € IN. In order to define
the remaining languages of £ we distinguish the following cases.

Case 1. =y, (k1) < J.

Then we set Ly(x, k,y j)41 = La(ky ko j)42 = Lagry k)43 = La(ry ka,0)-

Case 2. @y, (k1) < j.

Let n = &y, (k1). Weset Lagx, i, j)+1 = {atf%206% | 1 < 2 < n}u{alkikalcny.
Furthermore, we distinguish the following subcases.

Subcase 2.1. =Py, (ka) < j.

Then let Lygk, ky5)42 = Lagry k2,5)43 = Laghy k2,0)-
Subcase 2.2. By, (k2) < J.

Let m = @y, (ks), and » = n + m. We set:

Lagky kaj)2 = {a*vk2)p? | 1 < 2 < r} U {al®1*2)dr} ) and

Laky kaj)43 = La(ky koy0) U {atF0 520 en}
Now, it is easy to see that £ = (L,).emw constitutes an indexed family. It

remains to show that £ fulfills the stated requirements. As in the proof of
Theorem 2 one proves mutatis mutandis that L € EMONy, and £L € CSMONs3.

The remaining part, i.e., £ ¢ CSMON,, is much harder to prove. For that
purpose we need some additional insight into the behavior of every ITM that
learns £. In particular, we are mainly interested in knowing how every I1TM
inferring £ behaves when successively fed the lexicographically ordered text for
L4k, k,,0y- The desired information is provided by the following lemma.

Lemma 1. Let G = (Gj)jew be any class comprising hypothesis space for L
and let M be any IIM witnessing L € CLIM with respect to G. Then we have:
For all ko there are numbers ky,z,j € IN such that M(t,) = j, and By, (k1) >
z+1 and @, (k1) |, where t is the lezicographically ordered text of Lk, kay0)-

Suppose the converse. Then there is a ks such that for all k1, z,j we have:
M(tz) = j implies @, (k1) <z + 1 or Pp, (k1) 1.

Assuming the latter statement we have the following claim.

Clatm. Provided the latter statement is true, any program for M may be
used to obtain non-effectively an algorithm deciding “¢y, (k1) |.”

By assumption, there is a ko such that for all ky,z,j: If M(¢;) = j, then
either @, (k1) < 2+ 1 or @y, (k1) 1. Using this ky we can define the following
algorithm A deciding the halting problem for all k; € IN.



Algorithm A: “On input k; execute (Al) and (A2).

(A1) Generate successively the lexicographically ordered text t of Ly, 1, 0)
and simulate M until the first hypothesis j is produced.
Let 2o be the least = such that M(¢;) = j.

(A2) Test whether ®, (k1) < zo + 1.
In case it is, output “er, (k1) |.”
Otherwise, output “pg, (k1) 1” and stop.”

First we observe that M has to infer Ly, r, 0y from its lexicographically or-
dered text ¢. Hence, M should eventually output a hypothesis 7 when fed ¢.
Furthermore, Instruction (A2) can be effectively accomplished, too. Hence, A
is an algorithm and the execution of (A1) and (A2) must eventually terminate.
Finally, by assumption we immediately obtain the correctness of A’s output.
This proves the claim. Since the halting problem is algorithmically undecidable,
the lemma follows.

Lemma 2. L ¢ CSMON-.

Suppose the converse, i.e., there exist a hypothesis space G = (G} );jen and
an [TM M that C'SMONy—learns £ with respect to G. Then we can prove the
following lemma.

Lemma 3. Given any hypothesis space G = (G;);jew and any program for M
witnessing L € CSMQON,y, one can effectively construct an algorithm deciding
the halting problem.

Let K = {k| vr(k) |} and let jo, j1,72, ... be any fixed effective enumeration
of K. We define an algorithm B as follows.

Algorithm B: “On input ks execute (B1) and (B2).

(B1) For z =0, 1, 2,... successively compute the lexicographically ordered
texts t/0, ¢/t 192 . for La(jo ka0)s La(jy k2,0) -+ Lagj, ks,0) Of length
z+ 1, respectively. Then, dovetail the simulation of M on successive
input of each of these initial segments until the first initial segment
tir (r,z < z) and the first hypothesis j are found such that

(1) M(ty) =,
(a2) @,Gi0) > +1.
(* By Lemma 1, the execution of (B1) has to terminate *)

(B2) Let f =4 (jr ko) and n = ®; (j,). Furthermore, we define #,,, as

follows:
fn+y =a'b, ..., dIbtY L dTbn, df ) JSn ) L af bt
:?j: y—s?gngs

n=—1

For y = 0, 1, 2, ... execute in parallel ($1) and (32) until (43) or
(54) happens.
(B1) Test whether @, (k2) <n+y.



(82) Compute jpyy = M(tpyy).

(B3) ®p,(k2) < n+yis verified. Then output “py,(k2) |.”

(#4) In (32) a hypothesis j,i, = M(t,4,) is computed such that
a’b"+! € L(G;,,,). Then output “pp, (ko) 17 and stop.”

We omit the proof of B’s termination and correctness. q.e.d.

Note that the proof of the latter theorem directly allows the following corol-
lary.

Corollary 5. EMON; \ SMON # §.
3.2. Monotonic Inference

This subsection deals with monotonic inference, and possible relaxations of
the monotonicity requirement. But there is a peculiarity which we point out
with the following theorem.

Theorem 6. ALIM; = AMON; for all A € {F,¢,C},

Proof. Let £ be any indexed family such that £ € ALIM,, where A €
{E,e,C}. Hence, there are a hypothesis space G = (G)jew and an IIM M
that ALIM;—infers £ with respect to G. Consequently, when fed any text of
any language L € range(L) the IIM M performs at most one mind change.
Suppose, first M outputs k, and then it changes its mind to j. Hence, j has to

be a correct guess for L, i.e., we have L = L(G};). Therefore, we directly obtain
L(Gy)NL C L(Gj)NL = L. Hence, M monotonically infers L. q-e.d.

Next we show that the monotonicity constraint can be traded versus efficiency.
This is even true, if the relaxation is as weak as possible, i.e., if the requirement
to learn monotonically is relaxed to weak-monotonic inference.

Theorem 7. For every n € IN, n > 2 there exists an indexed family such
that
L E(EMONp4+1 N EWMON,)\ CMON,.

Proof. For the sake of presentation, we consider the case n = 2. The extension
to all n > 3 may be easily obtained by applying the lifting technique of Lange and
Zeugmann (1993b). The desired indexed family is defined as follows. Initially,
we set Lo = {a}*. For all k € IN, we set Lazy1 = Lo U {a*b}. By convention,
a® equals the empty string. In order to define the remaining languages we
distinguish the following cases:

Case 1. ®p(k) 1.

We set L3k+3 = L3k+2 = L3k+1'

Case 2. D(k) |.

Then, let n = ®(k), and let Ly ={a?| 1 <z <n}U{d"b}. We set:

Lagys = Ly U {a*c"}, Lagyz = Ly U {a¥cn, akdn}.



After a bit of reflection it is not hard to see that £ = (L.).emw is an indexed
family that 1s EM ON3 as well as EWMO Ny-learnable.

It remains to show that £ € C M ON,. Suppose there are a hypothesis space G
and an IIM M such that M C'M O Ny-learns £ with respect to G. By assumption
M, in particular, infers the language Ly from its text ¢ = a, a?, a3, ... Thus,
there has to be a least index z such that M (t,) = j and L(G}) = Lo. Given this
index z the following recursive predicate 1) solves the halting problem.

Let k& € IN; the desired predicate i 1s defined as follows.
(k) = “Execute Instructions (A) and (B).
(A) Form=1, 2, ... simulate M, when fed

togiom =a, ..., a1 d¥b, a, ..., a™, until the first y is found such
=t,
that j.414y = M(t:414y) and a®b € L(Gj, ..., )-
(B) Test whether or not ®¢(k) < z+ 1+ y. In case it is, output 1.
Otherwise, output 0.”

Obviously, if m tends to infinite then the limit t of fz+1+m constitutes a text for
Lsk4+1. Since M has to infer the language Lsgy1 from f, it is easy to verify that
the procedure defined above terminates for every k € IN. Hence, 1 is recursive.
It remains to show that ¢ (k) is undefined, if ¢/(k) = 0. Suppose the converse,
e, (k) =0 and ¢r (k) is defined. Therefore, ®r(k) =n > z+ 1+ y.

Recall that M has already performed at least one mind change when fed
fz+1+y, namely from j to j,414y. Since M monotonically infers Lzpy: from ¢
and a*b € L(Gj,,,,,), we obtain L(Gj ,,,,) 2 Laks1. Otherinse, M violates
the monotonicity constraint when inferring Lsk41 from its text ¢. Consequently,
L(Gj, 114,) # Lars2. Now, taking L’s definition into account, it follows that
t,4+14y may also serve as an initial segment of a text for the language Lspio
because @y (k) = n > z+ 1+ y. Finally, since Lagqo C Lagys, it is easy to verify
that {z+1+y can be extended to a text for Lsy43 such that M has to perform at
least two additional mind changes in order to infer Lsiys from this particular
text. This contradicts our assumption that M monotonically infers £ with at
most two mind changes. Therefore, ¢, (k) is undefined, if (k) = 0. Hence, the
predicate ¥ solves the halting problem for the ¢-system. q.e.d.

Refining mutatis mutandis the latter proof analogously as the demonstration
of Theorem 2 has been extended to show Theorem 4, one obtains the following
result.

Theorem 8. For every n > 2 there exists an indezed family such that
L E(EMONp 1 N EWMONy)\ CMON,,.

The latter theorems allow the following interpretation. Removing the con-
straint to learn monotonically may considerably increase the efficiency of the
learning process.



3.3. Weak-Monotonic Learning

Finally, we consider weak-monotonic learning. Possible relaxations include
learning in the limit. We start with the following results which shed considerable
light on the power of learning with at most one mind change.

Theorem 9.
(1) MON; \ EWMON # 0,
(2) ELIM;\ WMON # 0,
(3) CMON; \ WMON # §.

Proof. Lange and Zeugmann (1993b) proved LIM; \ EWMON # ), and
recently Lange (1994) shows CLIM; \ WMON # . Combining these results
with Theorem 6 we directly get Assertion (1) and (3). Finally, for a proof of
Assertion (2) we refer the reader to Lange (1994). q-e.d.

Consequently, relaxing the weak-monotonicity constraint may considerably
increase the inference capabilities. However, the latter theorem dealt with in-
dexed families that are themselves not weak-monotonically learnable. Therefore,
it is only natural to ask whether or not there are indexed families that can be
weak-monotonically inferred within an a priort bounded number of mind changes
and that are learnable in the limit with less mind changes. The affirmative
answer is provided by our next theorem. In particular, we show that uncon-
strained ITMs may be much more efficient than weak-monotonic machines. In
Kinber (1994) a similar result concerning the learnability of classes of recursively
enumerable languages has been shown. Modifying the construction underlying
Kinber’s proof the following result can be achieved.

Theorem 10. For every n € IN, n > 2, there ezxists an indezed family L
such that

L € (ELIMy; N CWMON, ;1)\ CWMON,.

For a detailed proof of the above theorem the interested reader is referred
to Lange and Zeugmann (1994) which is a substantially revised version of the
present paper. Up to now, it remains open whether or not a similar speed-up
can be achieved in the exact and class preserving case, too.

We conclude this section with some remarks which may orient further inves-
tigations. As our results show a relaxation of the corresponding monotonicity
demands may sometimes yield a significant speed-up of the learning process.
Hence, it seems highly desirable to investigate necessary and sufficient condi-
tions Cesmon, Cmon, and Cymon allowing assertions of the following type.

Let LT as well as LT’ be any learning type, and let £ € LT. Then one may
learn £ more efficiently in the sense of LT’ if and only if Cj4 is satisfied but Cy
is not.



Moreover, it would be very interesting to relate possible relaxations of our
monotonicity requirements to problems studied in complexity theory. Recently,
such an approach has been undertaken concerning consistent and inconsistent
learning resulting in a proof for the superiority of an inconsistent learning algo-
rithm (cf. Wiehagen and Zeugmann, 1994). We will see what the future brings
concerning these problems.
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