
Clustering the Normalized Compression
Distance for Influenza Virus Data

Kimihito Ito1, Thomas Zeugmann2? and Yu Zhu2

1 Research Center for Zoonosis Control
Hokkaido University, N-20, W-10 Kita-ku, Sapporo 001-0020, Japan

itok@czc.hokudai.ac.jp
2 Division of Computer Science

Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan
{thomas,yuar}@mx-alg.ist.hokudai.ac.jp

Abstract. The present paper analyzes the usefulness of the normalized
compression distance for the problem to cluster the hemagglutinin (HA)
sequences of influenza virus data for the HA gene in dependence on
the available compressors. Using the CompLearn Toolkit, the built-in
compressors zlib and bzip2 are compared.
Moreover, a comparison is made with respect to hierarchical and spectral
clustering. For the hierarchical clustering, hclust from the R package is
used, and the spectral clustering is done via the kLine algorithm proposed
by Fischer and Poland (2004).
Our results are very promising and show that one can obtain an (almost)
perfect clustering. It turned out that the zlib compressor allowed for
better results than the bzip2 compressor and, if all data are concerned,
then hierarchical clustering is a bit better than spectral clustering via
kLines.

1 Introduction

The similarity between objects is a fundamental notion in everyday life. It is
also fundamental to many data mining and machine learning algorithms, and, in
particular to clustering algorithms. Often the similarity between objects is mea-
sured by a domain-specific distance measure based on features of the objects. For
defining the right domain-specific distance measure one needs special knowledge
about the application domain for extracting the relevant features beforehand.
Such an approach does not only cause difficulties, but includes a certain danger
or risk of being biased.

If one is pursuing the approach to design data mining algorithms based on
domain knowledge, then the resulting algorithms tend to have many parameters.
By using these parameters, one can then control the algorithms’ sensitivity to
certain features. Determining how relevant particular features are is often diffi-
cult and may require a certain amount of guessing. Expressing this differently,
? Supported by MEXT Grant-in-Aid for Scientific Research on Priority Areas under
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one has to tune the algorithms which is requiring domain knowledge and a larger
amount of experience. Furthermore, it may be expensive, error prune and time
consuming to arrive at a suitable tuning.

However, as a radically different approach, the paradigm of parameter-free
data mining has emerged (cf. Keogh et al. [11]). The main idea of parameter-free
data mining is the design of algorithms that have no parameters and that are
universally applicable in all areas.

The problem is whether or not such an approach can be realized at all. It
is only natural to ask how an algorithm can perform well if it is not based on
extracting the important features of the data and if we are not allowed to adjust
its parameters until it is doing the right thing. As expressed by Vitányi et al. [21],
if we a priori know the features, how to extract them, and how to combine them
into exactly the distance measure we want, we should do just that. For example,
if we have a list of cars with their color, motor rating, etc. and want to cluster
them by color, we can easily do that in a straightforward way.

So the approach of parameter-free data mining is aiming at scenarios where
we are not interested in a certain similarity measure but in the similarity between
the objects themselves.

The main goal of the present paper is to test the usefulness of this approach in
the domain of influenza viruses. Our data are gene sequences for the hemagglu-
tinin of influenza viruses. The hemagglutinin of influenza viruses is important,
since it is responsible for binding the virus to the cell it infects. So far, 16 subtypes
of influenza hemagglutinin are known. More details are given in Subsection 3.1.

The definite method used by biologists to determine the subtype of the in-
fluenza hemagglutinin is based on the antiserum that prevent the docking of the
virus. So intuitively, the similarity between the gene sequences for the hemag-
glutinin of influenza viruses should be large if they have the same subtype and
small if the have a different subtype. Therefore, it seems justified to test the
paradigm of parameter-free data mining in this domain.

The most promising approach to this paradigm uses Kolmogorov complexity
theory [13] as its basis. The key ingredient to this approach is the so-called nor-
malized information distance (NID) which was developed by various researchers
during the past decade in a series of steps (cf., e.g., [4, 12, 9]). The idea behind
it is quite intuitive. If two objects are similar then there should be a simple
description of how to transform each one of them into the other one. And con-
versely, if all descriptions for transforming each one of them into the other one
are complex, then the objects should be dissimilar.

More formally the normalized information distance between two strings x

and y is defined as

NID(x,y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
, (1)

where K(x|y) is the length of the shortest program that outputs x on input y,
and K(x) is the length of the shortest program that outputs x on the empty
input. It is beyond the scope of the present paper to discuss the technical details
of the definition of the NID. We refer the reader to Vitányi et al. [21].
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The NID has nice theoretical properties, the most important of which is
universality. The NID is called universal, since it accounts for the dominant
difference between two objects (cf. Li et al. [12] and Vitányi et al. [21] and the
references therein).

In a sense, the NID captures all computational ways in which the features
needed in the traditional approach could be defined. Since its definition involves
the Kolmogorov complexity K( · ), the NID cannot be computed. Therefore, to
apply this idea to real-world data mining tasks, standard compression algo-
rithms, such as gzip, bzip2, or PPMZ, have been used as approximations of the
Kolmogorov complexity. This yields the normalized compression distance (NCD)
as approximation of the NID (cf. Definition 1).

In a typical data mining scenario we are given some objects as input. The
pairwise NCDs for all objects in question form a distance matrix. This matrix can
be processed further until finally standard algorithms, e. g., clustering algorithms
can be applied. This has been done in a variety of typical data mining scenarios
with remarkable success. Works of literature and music have been clustered
according to genre or author; evolutionary trees of mammals have been derived
from their mitochondrial genome; language trees have been derived from several
linguistic corpora (cf., e.g., [9, 11, 6, 7, 3]).

As far as virus data are concerned, Cilibrasi and Vitányi [8] used the SARS
TOR2 draft genome assembly 120403 from Canada’s Michael Smith Genome
Sciences Centre and compared it to other viruses by using the NCD. They used
the bzip2 compressor and applied their quartet tree heuristic for hierarchical
clustering. The resulting ternary tree showed relations very similar to those
shown in the definitive tree based on medical-macrobiological genomics analysis
which was obtained later (see [8] for details).

In the present paper we aim at a detailed analysis of the general method
outlined above in the domain of influenza viruses. More specifically, we are in-
terested in learning whether or not specific gene data for the hemagglutinin of
influenza viruses are correctly classifiable by using the concept of the NCD. For
this purpose we have chosen a set of 106 gene sequences from the National Center
for Biotechnology Information for which the correct classification of the hemag-
glutinin is known. As explained in Section 3, there are 16 subtypes commonly
called H1, . . . , H16. For these 106 gene sequences (or subsets thereof) we then
compute the NCD by using the CompLearn Toolkit (cf. [5]) as done in [8].

This computation returns a symmetric matrix D such that dij is the NCD
between the data entries i and j (henceforth called distance matrix). Further-
more, we study the influence of the compressor chosen and restrict ourselves
here to the zlib and bzip2 compressors which are the standard two built-in
compressors for the CompLearn Toolkit.

The next step is the clustering. Here of course the variety of possible algo-
rithms is large. Note that the CompLearn Toolkit contains also an implementa-
tion of quartet tree heuristic for hierarchical clustering. However, this heuristic is
computationally quite expensive and does currently not allow to handle a matrix
of dimension 106× 106. Therefore, we have decided to try the hierarchical clus-
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tering algorithm from the R package (called hclust) with the average option.
In this way we obtain a rooted tree showing the relations among the input data.

The second clustering algorithm used is spectral clustering via kLines (cf.
Fischer and Poland [10]). We have successfully applied this method before (cf.
[19, 18]) in settings where the NID is approximated by the so-called Google
distance or Web distance. In such settings we are given non-literal objects, i.e.,
essentially names and not the the literal objects themselves as in the present pa-
per. The Web distance is then based on computing probabilities by determining
the frequency of web pages for the individual names and those containing simul-
taneously two of the given names. We refer the reader to [21] for a comprehensive
explanation.

It should be noted that spectral clustering generally requires the transfor-
mation of the distance matrix into an adjacency matrix of pairwise similarities
(henceforth called similarity matrix). The clustering is then done by analyzing
its spectrum.

The results obtained for our data are generally very promising. Since we
know the true subtype of the hemagglutinin from the description of the gene
sequences used, we could determine the quality of the clustering obtained. Quite
often, we arrived at a perfect clustering independently of the compressor and
of the clustering method used. On the other hand, when including all data or
a rather large subset thereof, the clustering obtained is not perfect but the
number of errors made is still sufficiently small to make the results interesting.
Without going into details here, it can be said that the zlib compressor seems
more suitable in this setting than the bzip2 compressor (see Subsection 3.2 for
details).

2 Background and Theory

As explained in the Introduction, the theoretical basis for computing the distance
matrix is deeply based in Kolmogorov complexity theory. In the following we
assume the definition of the NID as shown in Equation (1). The definition of
the NID depends on the function K which is uncomputable. Thus, the NID is
uncomputable, too.

Using a real-word compressor, one can approximate the NID by the NCD
(cf. Definition 1). Again, we omit details and refer the reader to [21].

Definition 1. The normalized compression distance between two strings x and y

is defined as

NCD(x,y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
,

where C is any given data compressor.

Common data compressors are gzip, bzip2, zlib, etc. Note that the com-
pressor C has to be computable and normal in order to make the NCD a useful
approximation. This can be stated as follows.
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Definition 2 ([21]). A compressor C is said to be normal if it satisfies the
following axioms for all strings x, y, z and the empty string λ.

(1) C(xx) = C(x) and C(λ) = 0; (identity)
(2) C(xy) > C(x); (monotonicity)
(3) C(xy) = C(yx); (symmetry)
(4) C(xy) + C(z) 6 C(xz) + C(yz); (distributivity)

up to an additive O(log n) term, with n the maximal binary length of a string
involved in the (in)equality concerned.

These axioms are in various degrees satisfied by good real-world compressors
like bzip2, PPMZ and gzip, where the latter did not perform so well, as informal
experiments have shown (cf. [9]). Also note that in all cases the compressor-
specific window or block size determines the maximum usable length of the
arguments. As a matter of fact, for our data these axioms seem to be fulfilled.

For our investigations we used the built-in compressors bzip2 and zlib and
the ncd function from the CompLearn Toolkit (cf. [5]). After having done this
step, we have a distance matrix D =

(
dncd(x,y)

)
x,y∈X

, where X = (x1, . . . , xn) is
the relevant data list.

Next, we turn our attention to clustering. First, we shortly outline the hier-
archical clustering as provided by the R package, i.e., by the program hclust
(cf. [2]). Input is the (n×n) distance matrix D. The program uses a measure of
dissimilarity for the objects to be clustered. Initially, each object is assigned to
its own cluster and the program proceeds iteratively. In each iteration the two
most similar clusters are joint, and the process is repeated until only a single
cluster is left. Furthermore, in every iteration the distances between clusters are
recomputed by using the Lance–Williams dissimilarity update formula for the
particular method used.

The methods differ in the way in which the distances between clusters are re-
computed. Provided are the complete linkage method, the single linkage method,
and the average linkage clustering. In the first case, the distance between any
two clusters is equal to the greatest similarity from any member of one cluster to
any member of the other cluster. This method works well for compact clusters
but causes sensitivity to outliers. The second method pays attention solely to
the area where the two clusters come closest to one another. The more distant
parts of the clusters and the overall structure of the clusters is not taken into
account. If the total number of clusters is large, a messy clustering may result.

The average linkage clustering defines the distance between any two clusters
to be the average of distances between all pairs of objects from any member of
one cluster to any member of the other cluster. As a result, the average pairwise
distance within the newly formed cluster, is minimum.

Heuristically, the average linkage clustering should give the best results in our
setting, and thus we have chosen it (see also Manning et al. [14] for a thorough
exposition). Note that for hierarchical clustering the number k of clusters does
not to be known in advance.
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Next, the spectral clustering algorithm used is shortly explained. Spectral
clustering is an increasingly popular method for analyzing and clustering data
by using only the matrix of pairwise similarities. It was invented more than 30
years ago for partitioning graphs (cf., e.g., Spielman and Teng [20] for a brief
history and Luxburg [22] for a tutorial). Formally, spectral clustering can be
related to approximating the normalized min-cut of the graph defined by the
adjacency matrix of pairwise similarities [24]. Finding the exactly minimizing
cut is an NP-hard problem.

The transformation of the distance matrix into a similarity matrix is done by
using a suitable kernel function. In our experiments we have used the Gaussian
kernel function, i.e.,

k(x,y) =
(
exp(−

1
2
d(x,y)2/(2 · σ2))

)
, (2)

where σ is the kernel width. As pointed out by Perona and Freeman [17], there
is nothing magical with this function. Moreover, it is most commonly used. An
advantage of using the Gaussian kernel function is that the resulting similarity
matrix is positive definite.

So, the remaining problem is a suitable choice for σ. Unfortunately, the per-
formance of spectral clustering heavily depends on this σ. In the experiments,
we compute the mean value of the entries of the distance matrix D and then set
σ = mean(D)/

√
2. In this way, the kernel is most sensitive around mean(D).

Though we are not aware of a theoretical result supporting this choice, it worked
remarkably well and further studies are needed to explore the properties of this
choice.

The final spectral clustering algorithm for a known number of clusters k is
stated below.

Algorithm Spectral Clustering
Input : data list X = (x1, x2, . . . , xn), number of clusters k

Output : clustering c ∈ {1 . . .k}n

1. for x,y ∈ X, compute the distance matrix D =
(
dncd(x,y)

)
x,y∈X

2. compute σ = mean(D)/
√

2
3. compute the similarity matrix A =

(
exp(− 1

2d(x,y)2/(2 · σ2))
)

4. compute the Laplacian L = S− 1
2 AS− 1

2 , where Sii =
∑

j Aij and Sij = 0 for
i 6= j

5. compute top k eigenvectors V ∈ Rn×k

6. cluster V using kLines [10]

3 Experiments and Results

In this section we describe the data used, the experiments performed and the
results obtained.
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3.1 Influenza Viruses - The Data Set

We shortly describe the data set used. For any relevant background concerning
the biological aspects of the influenza viruses we refer the reader to Palese and
Shaw [16] and Wright et al. [23].

Influenza viruses were probably a major cause of morbidity and mortality
world wide. Large segments of the human population are affected every year.
The family of Orthomyxoviridae is defined by viruses that have a negative-sense,
single-stranded, and segmented RNA genome. There are five different genera in
the family of Orthomyxoviridae: the influenza viruses A, B and C; Thogotovirus;
and Isavirus. Influenza A viruses have a complex structure and possess a lipid
membrane derived from the host cell (cf. Figure 1).
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Fig. 1. Influenza A virus

Biologists classify influenza A viruses primarily by their hemagglutinin (HA)
subtypes and neuraminidase (NA) subtypes. So far, 16 subtypes of HA are known
and commonly denoted by H1, . . . , H16. In addition to these HA types, biologists
distinguish 9 NA subtypes denoted by N1, . . . , N9.

Influenza A viruses of all 16 hemagglutinin (H1-H16) and 9 neuraminidase
(N1-N9) subtypes are maintained in their nature host, i.e., the duck. Of these
duck viruses, H1N1, H2N2 and H3N2 subtypes jumped into human population,
and caused three pandemics in the last century. Therefore, in the experiments
performed we have exclusively selected data of influenza viruses that have been
obtained from viruses hosted by the duck.

The complete genome of these influenza viruses has 8 segmented-genes. Of
these 8 genes, here we are only interested in their HA gene, since HA is the major



Clustering the Normalized Compression Distance for Influenza Virus Data 137

target of antibodies that neutralize viral infectivity, and responsible for binding
the virus to the cell it infects. The corresponding gene is found on segment 4.

Each datum consists of a sequence of roughly 1800 letters from the alphabet
{A, T , G, C}, e.g., looking such as

AAAAGCAGGGGAATTTCACAATTAAA . . . TGTATATAATTAGCAAA.
These gene sequences are publicly available from the National Center for

Biotechnology Information (NCBI) which has one of the largest collections of
such sequences (cf. [15]).

When analyzed by biologists the definite method to determine the correct HA
subtype is based on the antiserum that prevent the docking of the virus. Some-
times biologists also compare the actual sequence to already analyzed sequences
and produce a guess based on the Hamming distance of the new sequence to the
analyzed ones.

As explained in the Introduction, the primary goal of the investigations un-
dertaken is to cluster the sequences correctly with respect to their HA subtype.
In order to achieve this goal with collected from each subtype up to 8 examples.
The reason for choosing at most 8 sequences from each type has been caused by
their availability. While for some subtypes there are many sequences, there are
also subtypes for which only very few sequences are available. The extreme case
is the subtype H16 for which only one sequence is in the data base. Figure 2
shows the number of sequences chosen.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

8 8 8 8 8 8 8 7 8 8 8 8 2 4 4 1

Fig. 2. Number of sequences for each subtype

It should be noted that most of these sequences are marked as complete
cds, but some are also marked as partial cds by the NCBI. For a complete
list of the data description we refer the reader to

http://www-alg.ist.hokudai.ac.jp/106Data description.html .
For the ease of presentation, below we use the following abbreviation for the

data entries. Instead of giving the full description, e.g.,

>gi|113531192|gb|AB271117| /Avian/4 (HA)/H10N1/Hong Kong/1980/// In-
fluenza A virus (A/duck/Hong Kong/938/80(H10N1)) HA gene for hemagglu-
tinin, complete cds.

we refer to this datum as H10N1AB271117 for short.
Among the available files, there were two files containing only a very short

partial sequence of the gene, i.e., H7N1AM157391 and H10N4AM922160 (483
and 80 letters, respectively). So, we did not consider these two files, since they
do not seem to contain enough information.
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3.2 Results

All experiments have been performed under SuSE Linux. As already mentioned,
for the hierarchical clustering we used the open source R package (cf. [2]).

The Algorithm Spectral Clustering from Section 2 has been realized by per-
forming Step 1 via the CompLearn function ncd (cf. [5]). Steps 2 through 6 have
been implemented in GNU Octave, version 2.1.72 (cf. [1]). It should be noted
that ncd assigns 0.000000 to all elements on the main diagonal of the distance
matrix (Version 1.1.5).

By performing our experiments we aimed to answer the following questions.
First, does the NCD provide enough information to obtain a correct clustering
for the virus data? Second, does the rather large number of clusters (recall that
we 16 HA types) cause any problems? Third, do the answers to the first and
second question depend on the compressor and clustering, respectively, chosen?

To get started and for the sake of comparison, we used the subset containing
all data belonging to H1, H2, and H3, i.e., a total of 24 sequences (cf. Figure 2).

Using the maketree program from the CompLearn Toolkit, we get the follow-
ing clustering (cf. Figures 3 and 4). As Figures 3 and 4 show, the data are clearly
and correctly separated into three clusters. However, the intra-cluster dissimilar-
ities clearly differ from inter-cluster dissimilarities in Figure 3, i.e., for the zlib
compressor, while there is no such clear difference for the bzip2 compressor (cf.
Figure 4).

libcomplearn version 0.9.2
tree score S(T) = 0.998896

compressor: zlib
zliblevel: 9

Username: unknown

k0 H1N9CY035248

k4

k21

k1

H1N9CY017275

k20

k2

H1N5CY004498

H1N5CY014968

H1N6CY004458

k7

H1N1AF091309

H1N1D10477

H1N1U47310

k3k6

k13

H3N2D21171

k14

k12

H3N3AB292410

H3N2AB277754

H3N2CY006026

k8

k16k18

H3N2M73771

H3N3CY005936

H3N1CY005943
H3N2EU74652

k11

k15

k5

H2N2L11136
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H2N2L11128

k17

k10
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H2N4CY003984

H2N3L11138

H2N2L11137

k19
H2N1CY021125

H2N1CY017693

0.682

0.470

0.265

0.227
0.235

0.095

0.576

0.8860.594

0.276

0.579

0.752

0.255

0.370 0.684

0.913

0.530

0.692

0.752

0.465

0.378

0.506

0.253

0.910

Fig. 3. Classification of HA sequences;
compr.: zlib

libcomplearn version 0.9.2
tree score S(T) = 0.994397

compressor: bzip
blocksize: 9

workfactor: 200
bzverbosity: 0

Username: unknown

k0 H3N2M73771

H3N3CY005936

k16

k9

H3N1CY005943

H3N2EU74652

k18

k14

k12

k4

k21

k8

k3

k2

H2N2L11136H2N3CY014710

H2N2L11128

k1

H2N4CY003984

k10

H2N3L11138

H2N2L11137

k6

H2N1CY017693

H2N1CY021125 H1N9CY035248

k13

k11

H1N9CY017275

k15

k7

k19

k17

H1N5CY004498

H1N5CY014968
H1N6CY004458

H1N1AF091309

H1N1D10477

H1N1U47310

H3N2D21171

k20
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H3N3AB292410

H3N2CY006026

0.600

0.665

0.817

0.869

0.731

0.796

0.798

0.728

0.671

0.752

0.615
0.860

0.804

0.729

0.606

0.599

0.597

0.434

0.785

0.837

0.808

0.609

0.759

0.799

Fig. 4. Classification of HA sequences;
compr.: bzip2

Using hclust we obtained the trees shown in Figure 5 and 6 for the matrix D

computed for the compressor zlib and bzip2, respectively. As Figures 5 and 6
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show, we obtained a correct clustering into three clusters independently of the
compressor used.
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Fig. 5. Clustering all HA sequences for H1
through H3 via hclust; compr.: zlib
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Fig. 6. Clustering all HA sequences for H1
through H3 via hclust; compr.: bzip2

Next, we tried our algorithm Spectral Clustering for the same data set. After
having computed the matrix D, we get the following order of the data

H2N4CY003984, H3N1CY005943, H3N2AB277754, H1N9CY017275,
H1N9CY035248, H3N3CY005936, H2N2L11128, H2N2L11136,
H2N2L11137, H2N1CY017693, H2N1CY021125, H2N3L11138,
H1N6CY004458, H1N1D10477, H2N3CY014710, H3N2EU74652,
H3N2CY006026, H1N1AF091309, H1N1U47310, H3N3AB292410,
H3N2D21171, H3N2M73771, H1N5CY004498, H1N5CY014968

Since spectral clustering is a hard clustering method, it has to return for each
data entry just one class label. Assigning canonically the clusters 1, 2, and 3 to
the HA subtypes H1N..., H2N..., and H3N..., respectively, we therefore should
get the sequence

2 3 3 1 1 3 2 2 2 2 2 2 1 1 2 3 3 1 1 3 3 3 1 1

which was indeed returned for both compressors. Note that σ = 0.56078 and
σ = 0.57329 for the zlib and bzip2 compressor, respectively.

Next, we tried all HA sequences for H1 through H8 and from H9 through
H16. The reason for this partition has been caused by the different number of
sequences available. Recall that there are only two sequences for H13 and only
one sequence for H16 (cf. Figure 2).

For H1 through H8 the hierarchical clustering was error free for the zlib
compressor but not for bzip2 compressor (1 error) (see Figures 8 and 9 in the
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Appendix). Interestingly, for H9 through H16 the tree obtained for the zlib
compressor contains 4 errors, while the one obtained for bzip2 compressor has
only one error.

Our spectral clustering algorithm returned a perfect clustering for all HA
sequences for H1 through H8 for both compressors. On the other hand, for all
sequences from H9 through H16 the results differed with respect to the compres-
sor used.

For the zlib compressor we obtained 5 errors and for the bzip2 compressor
the number of errors was 7 when using for σ the mean as described above.
However, it is well-known that spectral clustering is quite sensitive to the kernel
width σ. So, we also tried to vary it a bit around the mean by rounding it to two
decimal digits and then changing the second one. For zlib the mean was 0.60873
and after two variations we found σ = 0.59 which resulted in just one error, i.e.,
H16 was classified as H13. For the bzip2 compressor such an improvement could
not be obtained.

As a possible explanation we conjecture that one needs a certain minimum
of available sequences in order to arrive at a correct spectral clustering. Trying
all HA sequences for H1 through H12 kind of confirmed this conjecture, since
we again obtained a perfect spectral clustering for both compressors.

For the hierarchical clustering, the tree obtained for the zlib compressor is
correct, but the the one obtained for the bzip2 compressor has one error. These
trees are shown in the Appendix.

Finally, we tried all data. Again hierarchical clustering was best for the zlib
compressor and showed only 2 errors. For the bzip2 compressor, we obtained 3
errors (see the Appendix for details). On the other hand, the best result we could
obtain for spectral clustering had 5 errors (for both compressors). In Figure 7
we show the clustering obtained for the zlib compressor for σ = 0.63, where c0
is the desired classification and sp the one returned from the spectral clustering
algorithm (partitioned into six groups).

c0 = 7 7 14 2 11 12 12 3 7 10 10 5 9 9 9 3 1 1 9 11
sp = 7 7 14 2 11 12 12 3 7 10 10 5 9 9 9 3 1 1 9 11

c0 = 11 5 3 7 5 2 2 2 4 10 5 8 12 2 2 4 4 4 11 9
sp = 11 5 3 7 5 2 2 2 4 10 5 8 12 2 2 4 4 4 11 9

c0 = 10 2 6 6 6 5 1 1 4 10 7 4 8 15 2 9 9 16 10 14
sp = 10 2 13 13 6 5 1 1 4 10 7 4 8 15 2 9 9 3 10 14

c0 = 14 7 7 6 14 7 8 8 12 12 11 15 3 15 5 11 3 1 1 8
sp = 14 7 7 6 14 7 8 8 12 12 11 15 3 15 5 11 3 1 1 8

c0 = 4 3 3 6 12 10 4 5 3 6 13 13 12 1 1 11 12 8 11 10
sp = 4 3 3 6 12 10 4 5 3 6 13 13 12 1 1 11 12 8 11 10

c0 = 5 9 15 8 6 6
sp = 5 9 15 8 13 13

Fig. 7. Clustering all HA sequences via Spectral Clustering ; compr.: zlib
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So, the errors occur at positions 43, 44, 58, 105, and 106 and affect H6 which
is four times assigned to H13 and one time H16 which got in the H3 cluster. We
omit further details due to the lack of space.

Note that one can also compute the sum square error (s.s.e.) of all eigenvalues
with respect to their means in order to determine quite reliably from the eigen-
values of the Laplacian the number k of clusters (cf. Poland and Zeugmann [19]
for details).

4 Conclusions

The usefulness of the normalized compression distance for clustering the HA
type of virus data for the HA gene for it (segment 4) has been demonstrated.
Though we just used the built-in compressors zlib and bzip2 the results are
(almost) correct when clustering the resulting distance matrix for the whole data
set with hclust or spectral clustering via kLines. What is also remarkable in
this context is the robustness with respect to the completeness of the data. As
mentioned above, some data contain only a partial cds but this did not influence
the quality of the clustering as the results, e.g., H1N1U47310 and H3N2D21171
have only 1000 letters.

We have not reported the running time here, since it is still in the range of
several seconds. Though the quartet tree algorithm by Cilibrasi and Vitányi [8]
returns a high quality classification, it lacks scalability, since it tries to optimize
a quality function, a task which is NP-hard. So, even for the small example
including the 24 data for H1, H2, and H3 resulting in (24×24) distance matrix, it
took hours to find the resulting (very good) clustering. In contrast, the clustering
algorithms used in this study scale nicely at least up to the amount of data for
which the distance matrix is efficiently computable, since they have almost the
same running time as the ncd algorithm.
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Appendix

Here we show the results obtained for the remaining data.
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Fig. 8. Clustering of all HA sequences for H1 through H8 via hclust; compr.: zlib
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Fig. 9. Clustering of all HA sequences for H1 through H8 via hclust; compr.: bzip
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Fig. 10. Clustering of all HA sequences via hclust; compr.: zlib
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Fig. 11. Clustering of all HA sequences via hclust; compr.: bzip


