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Abstract

The subset-sum problem is, for given positive
integers a0, . . . , an−1, and M , to find a subset
of the ai that sums up to M. There are known
low-density attacks enabling us to solve almost
all subset-sum problems of density d < 0.9408 in
polynomial time. In this paper, we review these
methods and perform computer experiments to
compare algorithms to solve subset-sum prob-
lems using the L3-algorithm.

1. Introduction

Knapsack cryptosystems are cryptosystems whose

security is based on the difficulty of the subset-sum

problem. Merkle–Hellman knapsack cryptosystem is

one of the first practical public key cryptosystems. It

is not used anymore, because it has been broken.

Lagarias and Odlyzko [2] proposed an attack for

the Merkle–Hellman knapsack cryptosystem in 1985.

They showed that almost all subset-sum problems

of density d < 0.645 are efficiently solvable. Later,

Coster et al. [1] improved this method.

They reduced subset-sum problems to the problem

to find a shortest vector in a lattice (SVP). Here, lat-

tices are sets of all integral combinations of linearly

independent vectors. SVP is NP-hard, but by using

the L3-algorithm, proposed by Lenstra et al. [3], SVP

can be approximated in polynomial time.

In [2], the authors confirmed that their method be-

haves well using the L3-algorithm. However, in their

experiments the dimension was at most 50 because

the performance of computers at that time was not

as high as current. In this paper, we compare these

algorithm with L3-algorithm in higher dimensions.

In Section 2, we recall some basic knowledge of

subset-sum problems and lattices. In Section 3, we

recall previous results by Lagarias and Odlyzko[2] and

by Coster et al. [1]. In Section 4, a computer experi-

ment is done to compare these algorithms, where we

use the L3-algorithm to compute a reduced basis.

2. Preliminaries

We recall some basic knowledge about the subset-

sum problem and lattices.
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2.1. Subset-Sum Problems

Definition 1. The subset-sum problem is the prob-

lem, given a0, . . . , an−1 ∈ N and M ∈ N as inputs, to

find x0, . . . , xn−1 ∈ {0, 1} such that
∑n−1

i=0 xiai = M.

We call a0, . . . , an−1 in Definition 1 weights. The

subset-sum problem is known to be NP-complete.

Definition 2. For a subset-sum problem with weights

a0, . . . , an−1, its density d is defined by

d := n/ log2(max
i

ai).

Regarding the density, it is known that if ai are

chosen at random, when density is significantly larger

than 1 then the subset-sum problem has many so-

lutions in general, and when the density is approxi-

mately 1 then the most difficult problem arise.

2.2. Lattices

Definition 3. Let b1, . . . , bn ∈ Rm be n linearly inde-

pendent vectors. Then, a lattice generated from these

vectors is defined as

L(b1, . . . , bn) :=

{
n∑

i=1

xibi | xi ∈ Zm

}
.

In Definition 3, the vectors b1, . . . , bn are called a

basis of the lattice.

The L3-algorithm is a polynomial time algorithm

to transform the input basis to a basis called LLL

reduced basis. These input and output bases generate

the same lattice. Regarding LLL reduced bases, the

following theorem is important:

Theorem 1. If b1, . . . , bn is a LLL reduced basis of

a lattice L with parameter 1/4 < δ < 1, then

∥b1∥ ≤ (2/
√
4δ − 1)n−1 min

x∈L\{0}
∥x∥.

This theorem states that the first basis vector in an

LLL reduced basis is an approximation the shortest

vector in the lattice up to an exponential factor.

3. Previous Results
3.1. Lagarias and Odlyzko’s Method

Lagarias and Odlyzko [2] proposed an algorithm

to solve low-density subset-sum problems. Their ap-

proach was as follows: For given a0, . . . , an−1, and M ,



we form the lattice with the basis:
b0
b1
...

bn−1
bn

 :=


1 0 · · · 0 Na0
0 1 · · · 0 Na1

. . .
...

0 0 · · · 1 Nan−1
0 0 · · · 0 NM

 , (1)

where N is an integer such that N >
√
n/2. If the

subset-sum problem has a solution x0, . . . , xn−1, the

lattice has a vector

x :=
n−1∑
i=0

xibi + bn = (x0, . . . , xn−1, 0).

Furthermore, it is considerably short. Lagarias and

Odlyzko [2] proved the following theorem:

Theorem 2. Given subset-sum problem instance, if

a0, . . . , an−1 are randomly chosen and the density

d < 0.645, above lattice has a vector x as a short-

est nonzero vector with sufficiently high probability.

We can use L3-algorithm to find a shortest nonzero

vector in a lattice. We can find the solution of subset-

sum problems by finding the vector x in the LLL re-

duced basis.

3.2. CJLOSS Method

Coster et al. [1] improved Lagarias and Odlyzko’s [2]

method. They made important changes to the lattice

basis shown in (1). The vector bn is replaced by

bn = (1/2, 1/2, . . . , 1/2, NM) ,

where N is an integer such that N >
√
n/2. If a

subset-sum problem has a solution x0, . . . , xn−1, the

lattice has the vector

x̂ :=
n−1∑
i=0

xibi + bn = (x0 − 1/2, . . . , xn−1 − 1/2, 0) .

The length of the vector is
√
n/2. It is also consider-

ably short. They proved the following theorem:

Theorem 3. Given subset-sum problem instance, if

a0, . . . , an−1 are randomly chosen and the density

d < 0.9408, above lattice has a vector x̂ as a shortest

nonzero vector with sufficiently high probability.

4. Computer Experiments

We performed a computational test to compare

algorithms in Section 3: Lagarias–Odlyzko algo-

rithm, and the CJLOSS algorithm. We used an In-

tel(R) CoreTM i7-2620M CPU @ 2.70GHz and NTL

10.3.0 [4] for the L3-algorithm.

In the tests we fixed the dimension n of subset-

sum problems and the bit length b of weights. Then

we generated a0, . . . , an−1 ∈ {1, . . . , 2b} uniformly at

random, and generated x0, . . . , xn−1 ∈ {0, 1} at ran-

dom such that xi = 1 for exactly n/2 of the xi’s. For

generated subset-sum problems, we constructed lat-

tice bases, and then we permuted the order of vectors

in the bases. After that, we ran L3-algorithm on the

bases. By permuting the order of vectors in bases,

the L3-algorithm outputs different reduced bases. If

we found a desired form vector in the basis, the run

was a success and halted. If we could not find a solu-

tion, repeat these steps at most 10 times.
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Figure1 Comparing the LO and CJLOSS algorithms

The results are in Fig. 1. As the dimension was

higher, the density of solved subset-sum problems de-

creased in both of algorithms. This is mentioned in

[2], and they conjectured the density of solved subset-

sum problems goes to 0 as n goes to infinity. This

result also suggests it. Success rates of the CJLOSS

algorithm are higher than of the Lagarias-Odlyzko al-

gorithm, as well in high dimensions.

In all results, the density of solved subset-sum prob-

lems fall much below the theoretical bound in high

dimensions. The density of almost all of subset-sum

problems are solved seems to be in inverse proportion

to dimension. It is considered that the L3-algorithm

can find much short vectors in low dimensions, but its

performance degrades as the dimension goes higher.

To find a shortest vector, further devising may be

needed.

References

[1] M. J. Coster, A. Joux, B. A. LaMacchia, A. M.
Odlyzko, C.-P. Schnorr, and J. Stern. Improved
low-density subset sum algorithms. computational
complexity, 2(2):111–128, 1992.

[2] J. C. Lagarias and A. M. Odlyzko. Solving low-
density subset sum problems. Journal of the Asso-
ciation for Computing Machinery, 32(1):229–246,
Jan. 1985.

[3] A. Lenstra, H. Lenstra, and L. Lászlo. Factoring
polynomials with rational coefficients. Mathema-
tische Annalen, 261:515–534, 1982.

[4] V. Shoup. A library for doing number theory. ver-
sion 10.3.0. http://www.shoup.net/ntl.


