
Inconsistency can be Necessary for Learning in
Polynomial Time

Rolf Wiehagen∗

Humboldt–Universität

Institut für Theoretische Informatik

PSF 1297

O–1086 Berlin

wiehagen@informatik.hu-berlin.de

Thomas Zeugmann
TH Darmstadt

Institut für Theoretische Informatik

Alexanderstr. 10

W–6100 Darmstadt

zeugmann@iti.informatik.th-darmstadt.de

Abstract

In designing learning algorithms it seems quite reasonable to construct them in
a way such that all data the algorithm already has obtained are correctly and com-
pletely reflected in the hypothesis the algorithm outputs on these data. However,
this approach may totally fail, i.e., it may lead to the unsolvability of the learning
problem, or it may exclude any efficient solution of it. In particular, we present a
natural learning problem and prove that it can be solved in polynomial time if and
only if the algorithm is allowed to ignore data.

1. Introduction

The phenomenon of learning has attracted much attention of researchers in various
fields. When dealing with learning computer scientists are mainly interested in studying
the question whether or not learning problems may be solved algorithmically. Nowadays,
algorithmic learning theory is a rapidly emerging science (cf. Angluin and Smith (1983,
1987), Osherson, Stob and Weinstein (1986) and the references therein). Nevertheless, de-
spite the enormous progress having been made since the pioneering papers of Solomonoff
(1965) and of Gold (1965, 1967), there are still many problems that deserve special at-
tention. The global question we shall deal with may be posed as follows: Are all data of
equal importance a learning algorithm is fed with?

First we study this question in the setting of inductive inference. Then we ask whether
the insight obtained may be important when one has to solve learning problems that are
somehow closer to potential applications. We now want to explain this in some more
detail.

∗On leave at TH Darmstadt

1

One main problem of algorithmic learning theory consists in synthesizing ”global de-
scriptions” for the objects to be learnt from examples. Thus, one goal is the following.
Let f be any computable function from N into N . Given more and more examples
f(0), f(1), ..., f(n), ... a learning strategy is required to produce a sequence of hypotheses
h0, h1, ..., hn, ... the limit of which is a correct global description of the function f , i.e.,
a program that computes f . Since at any stage n of this learning process the strategy
knows exclusively the examples f(0), f(1), ..., f(n), it seems reasonable to construct the
hypothesis hn in a way such that for any x ≤ n the ”hypothesis function” g described
by hn is defined and computes the value f(x). Such a hypothesis is called consistent. In
other words, a hypothesis is consistent if and only if all information obtained so far about
the unknown object is completely and correctly encoded in this hypothesis. Otherwise,
a hypothesis is said to be inconsistent. Consequently, if the hypothesis hn above is in-
consistent, then there must be an x ≤ n such that g(x) 6= f(x). Note that there are two
possible reasons for g to differ from f on argument x; namely, g(x) may be not defined, or
the value g(x) is defined and does not equal f(x). Hence, if a hypothesis is inconsistent
then it is not only wrong at all but it is wrong on an argument for which the learning
strategy does already know the correct value. At first glance we are tempted to totally
exclude strategies producing inconsistent hypotheses ¿from our considerations. It might
seem that consistent strategies, i.e., strategies that produce always consistent hypotheses,
are the only reasonable learning devices.

Surprisingly enough this is a misleading impression. As it turns out, in a sense learning
seems to be the art of knowing what to overlook. Barzdin (1974) first announced that there
are classes of recursive functions that can be inferred in the limit but only by strategies
working inconsistently. This result directly yields the following questions:

(1) Why does it make sense to output inconsistent hypotheses?
(2) What kind of data, if any, the strategy should overlook?

As we shall see below the first question finds its preliminary answer in the fact that,
roughly speaking, there is no algorithm detecting whether or not a hypothesis is consis-
tent. Consequently, in general a strategy has no chance to effectively verify the consistency
of its previous guess with the new data it has been fed with. On the other hand, a strategy
cannot overcome this drawback by simply searching any consistent hypothesis, since it
has to converge in the limit, too. Therefore, in order to be really successful, intuitively
speaking, a strategy cannot take care whether all the information it is provided with is
actually correctly reflected by its current hypotheses. Answering the second question is
more complicated. However, an intuitively satisfying answer is provided by a character-
ization of identification in the limit in terms of computable numberings (cf. Wiehagen
(1978b), Theorem 8). This theorem actually states that a class U of recursive functions
can be learnt in the limit iff there are a space of hypotheses containing for each function
at least one program, and a computable ”discrimination” function d such that for any two
programs i and j the value d(i, j) is an upper bound for an argument x on which program
i behaves different than program j does. The key observation used in constructing the
strategy that infers any function from U is the following. Let i be the strategy’s last
guess and let f(0), ..., f(n) be the data now fed to it. If the strategy finds a program j
such that for all inputs x ≤ d(i, j) its output equals f(x), then program i cannot be a

2

correct one for function f . Then the strategy changes its mind from i to i + 1. In other
words, the strategy uses the data it receives for the purpose to find a proof for the possible
incorrectness of its actual hypothesis via some global property the space of all hypotheses
possesses.

Summarizing the above discussion we see that the main reason for the superiority of
inconsistent strategies in the setting of inductive inference of recursive functions is caused
by the undecidability of consistency. However, it remained open whether this phenomenon
is of fundamental epistemological importance but of almost no pratical relevance. Dealing
with the latter problem requires a different approach. It might be well conceivable that
consistency is always decidable if one restricts itself to learning problems that are of inter-
est with respect to potential applications. Consequently, the superiority of inconsistent
strategies in this setting, if any, can only be established in terms of complexity theory.
What we present in the sequel is a partial solution to this problem. As it turned out, there
are ”natural” learning problems having the following properties: Though consistency is
decidable, they can be solved by a polynomial–time strategy if and only if the strategy
may work inconsistently.

Hence the inconsistency phenomenon does survive also in domains where consistency
is decidable. Moreover, the reason for the eventual superiority of inconsistent strategies
is in both settings in some sense the same. In both cases the learning algorithms cannot
handle the consistency problem. On the one hand, this inability has been caused by the
provable absence of any algorithm solving it, while, on the other hand, the consistency
problem is computationally intractable, provided P 6= NP . As far as we know the
result above is the first one proving the existence of learning problems that cannot be
solved in polynomial time by any consistent strategy in a setting where consistency is
decidable. Moreover, in our opinion it strongly recommends to take seriously inconsistent
learning strategies into consideration. This requires both, the elaboration of ”intelligent”
inconsistent techniques as well as finding criteria with the help of which one can decide
whether or not inconsistent strategies are appropriate. The inconsistent technique we
have applied consists in overlooking or ignoring data unnecessary for the strategy in order
to fulfil its learning task. Of course, this might not be the only such technique.

The paper is structured as follows. Section 2 presents notation and definitions. Section
3 deals with the inconsistency phenomenon in the setting of inductive inference of recursive
functions. The problem whether the inconsistency phenomenon is of any relevance in
the world of polynomial time computability is affirmatively exemplified in Section 4. In
Section 5 we discuss the results obtained and present open problems. All references are
given in Section 6.

2. Preliminaries

Unspecified notations follow Rogers (1967). N = {0, 1, 2, ...} denotes the set of all
natural numbers. The set of all finite sequences of natural numbers is denoted by N∗.
The classes of all partial recursive and recursive functions of one, two arguments over N
are denoted by P, P 2, R, and R2, respectively. R0,1 denotes the set of all 0 − 1 valued
recursive functions. Sometimes it will be suitable to identify a recursive function with

3

the sequence of its values, e.g., let α = (a0, ..., ak) ∈ N∗, j ∈ N, and p ∈ R0,1; then we
write αjp to denote the function f for which f(x) = ax, if x ≤ k, f(k + 1) = j, and
f(x) = p(x− k− 1), if x ≥ k+2. Furthermore, let g ∈ P ; we write α < iff α is a prefix of
the sequence of values associated with g, i.e., for any x ≤ k, g(x) is defined and g(x) = ax.
If U ⊆ R, then we denote by [U] the set of all finite prefixes of functions from U .

Any function ψ ∈ P 2 is called a numbering. Moreover, let ψ ∈ P 2, then we write ψi
instead of λxψ(i, x) and set Pψ = {ψi | i ∈ N} as well as Rψ = Pψ ∩ R. Consequently,
if f ∈ Pψ, then there is a number i such that f = ψi. A numbering ϕ ∈ P 2 is called a
Gödel numbering (cf. Rogers (1967)) iff Pϕ = P , and for any numbering ψ ∈ P 2, there is
a c ∈ R such that ψi = ϕc(i) for all i ∈ N . Göd denotes the set of all Gödel numberings.

Using a fixed encoding 〈...〉 of N∗ onto N we write fn instead of 〈(f(o), ..., f(n))〉, for
any n ∈ N, f ∈ R. Now we define some concepts of learning.

Definition 1. (Gold, 1965)
Let U ⊆ R and let ψ ∈ P 2. The class U is said to be learnable in the limit with respect to
ψ iff there is a strategy S ∈ P such that for any function f ∈ U ,

(1) for any n ∈ N , S(fn) is defined,

(2) there is a j ∈ N such that ψj = f and, for almost all n, S(fn) = j.

If U is learnable in the limit with respect to ψ by strategy S we write U ∈ LIMψ(S). Let
LIMψ = {U | U is learnable in the limit w.r.t. ψ}, and let LIM =

⋃
ψ∈P 2 LIMψ.

Note that LIMϕ = LIM for any Gödel numbering ϕ. Next we formally define consis-
tent learning.

Definition 2. (Barzdin, 1974)
Let U ⊆ R and let ψ ∈ P 2. The class U is called consistently learnable in the limit with
respect to ψ iff there is a strategy S ∈ P such that

(1) U ∈ LIMψ(S)

(2) ψS(fn)(x) = f(x) for any f ∈ U , n ∈ N and x ≤ n.

CONSψ(S), CONSψ and CONS are defined analogously as above.

Intuitively, a consistent strategy does correctly reflect all the data it has already seen.
Note that CONSϕ = CONS for any Gödel numbering ϕ. If a strategy does not always
work consistently, we call it inconsistent.

3. The Inconsistency Phenomenon

The inconsistency phenomenon has been discovered independently by Barzdin (1974)
and the Blums (1975). They observed that there are classes of recursive functions that are
inferrable in the limit but which cannot be learnt by any consistent strategy. Since both
papers do not contain a proof of this assertion, we present here a proof from Wiehagen
(1976) actually showing a somewhat stronger result than the one formulated in the next
theorem. We shall discuss this issue below.

4

Theorem 1. (Barzdin, 1974)
CONS ⊂ LIM

Proof. Let Uϕ = {f ∈ R | f = αjp, α ∈ N∗, j ≥ 2, p ∈ R0,1, ϕj = f}, where
ϕ ∈ Göd. Obviously, Uϕ ∈ LIM(S), where S(fn) is equal to the last value f(x) ≥ 2 from
(f(0), ..., f(n)) and 0, if no such value exists. For the purpose to prove that Uϕ /∈ CONS
we need the following claim.

Claim: Let ϕ ∈ Göd. For any α ∈ N∗, there is a f ∈ Uϕ such that α < f .

Indeed, by an implicit use of the Recursion Theorem (cf. Rogers (1967)) it is easy to
see that for any α ∈ N∗ and any p ∈ R0,1 there is a j ≥ 2 such that ϕj = αjp.

Now, suppose the converse, i.e., there is a strategy S ∈ P such that Uϕ ∈ CONSϕ(S).
By the claim we get that S ∈ R and that for any α ∈ N∗, α < ϕS(α). Thus, on any
α ∈ N∗, S always produces a consistent guess. Then, again by an implicit use of the
Recursion Theorem, let j ≥ 2 be any ϕ–number of the function f defined as follows:
f(0) = j, and for any n ∈ N ,

f(n+ 1) =

{
0 , if S(fn0) 6= S(fn)
1 , if S(fn0) = S(fn) and S(fn1) 6= S(fn)

In accordance with the claim and the assumption that S works consistently one
straightforwardly verifies that S(fn0) 6= S(fn) or S(fn1) 6= S(fn) for any n ∈ N . There-
fore the function f is everywhere defined and we have f ∈ Uϕ. On the other hand, the
strategy S changes its mind infinitely often when successively fed with f , a contradiction
to Uϕ ∈ CONSϕ(S).

q.e.d.

Note that the class Uϕ from the proof of Theorem 1 is even iteratively learnable in the
limit. We call a class U of recursive functions iteratively learnable iff there is a strategy
that learns any f ∈ U as follows: In step n the strategy exclusively gets its previous guess
produced in step n−1 as well as the new value f(n). By IT we denote the collection of all
classes U which can be learnt iteratively. In Wiehagen (1976) CONS ⊂ IT ⊂ LIM has
been proved. Recent papers give new evidence for the power of iterative learning (cf. e.g.
Porat and Feldman (1988), Lange and Wiehagen (1991), Lange and Zeugmann (1992)).

A closer look to the proof above shows that, in general, a strategy attempting to
consistently learn functions has to overcome two difficulties. First, it should avoid to
change too often its current guess that is eventually no longer consistent, to a definitely
consistent hypothesis, since this behavior may force the strategy to diverge. Second,
trusting that its current guess is consistent may eventually lead to an actually inconsistent
hypothesis, since the strategy cannot effectively prove consistency. Indeed, it turns out
that a class U is consistently learnable iff there is a suitable space of hypotheses ψ such
that the consistency problem restricted to U and ψ is effectively decidable. More precisely,
let U ⊆ R and let ψ be any numbering. We say that U–consistency is decidable with
respect to ψ iff there is a predicate cons ∈ P 2 such that for any α < U and any i ∈ N ,
cons(α, i) is defined and cons(α, i) = 1 if and only if α < ψi.

We say that consistency with respect to ψ is decidable iff there is a predicate cons ∈ R2

such that for any α ∈ N∗ and for any i ∈ N , cons(α, i) = 1 if and only if α < ψi.

5

Theorem 2. U ∈ CONS iff there is a numbering ψ ∈ P 2 such that

(1) U ⊆ Pψ

(2) U–consistency with respect to ψ is decidable.

Theorem 2 is a consequence of Theorem 9 from Wiehagen (1978b). Note that for an
arbitrary Gödel numbering, U -consistency is undecidable for any non–empty class U ⊆ R.

Furthermore, for many classes U ∈ CONS, the halting problem with respect to the
numbering ψ from Theorem 2 is undecidable. More exactly, let NUM = {U | U ⊆
R and there is ψ ∈ R2 such that U ⊆ Pψ} denote the family of all classes of recursive
functions that are contained in some recursively enumerable class of recursive functions.
Then we know that NUM ⊂ CONS (cf. Wiehagen (1976)). Furthermore, it turns out
that for any class U /∈ NUM , there are only spaces of hypotheses ψ such that U ⊆ Pψ
implies the undecidabilty of the halting problem with respect to ψ (cf. Lemma 3 below).
Moreover, it is justified to call the latter property a ”bad” one, since conversely the
decidability of the halting problem easily implies the consistent learnability in the limit
of all functions from Rψ with respect to ψ.

Lemma 3. Let U ⊆ R and let U /∈ NUM . Then, for any numbering ψ ∈ P 2 satisfying
U ⊆ Pψ, the halting problem with respect to ψ is undecidable.

Proof. Let U ⊆ R and let U /∈ NUM . Furthermore, let ψ ∈ P 2 be any numbering
such that U ⊆ Pψ. Suppose, the halting problem with respect to ψ is decidable. Hence
there is a function h ∈ R2 such that for any i, x ∈ N , h(i, x) = 1 iff ψi(x) is defined. Then
define a numbering ψ̃ by effectively filling out the ”gaps” in ψ as follows:

ψ̃i(x) =

{
ψi(x) , if h(i, x) = 1

0 , otherwise

Obviously, for any i ∈ N , if ψi ∈ R then ψ̃i = ψi. Hence U ⊆ Pψ̃. However, ψ̃ ∈ R2 and
consequently, U ⊆ Pψ̃ does imply U ∈ NUM , a contradiction.

q.e.d.

Therefore, Theorem 2 offers a possibility to compensate the undecidability of the halt-
ing problem with respect to ψ by the decidability of U–consistency. One can even show
that there are classes U ∈ CONS\NUM such that [U] = N∗. By Theorem 2 and Lemma
3 this yields the existence of numberings ψ with undecidable halting problem and decid-
able consistency problem. Note that the latter assertion is a pure numbering theoretical
result proved by learning theoretical observations (though it can also be proved directly).

Lemma 4. There is a class U ⊆ R such that

(1) U ∈ CONS

(2) U /∈ NUM

(3) [U] = N∗

Sketch of proof. Let (ϕ,Φ) be any complexity measure (cf. Blum (1967)). We modify
Φ to Φ̂ in a way such that

6

1. (ϕ, Φ̂) is again a complexity measure,

2. for any α ∈ N∗, there is an i ∈ N such that ϕi ∈ R and α < Φ̂i.

Now let U = {Φ̂i | ϕi ∈ R}. Then U ∈ CONSΦ̂, since for any i, x, y ∈ N the predicate

”Φ̂i(x) = y” is uniformly decidable. Furthermore, U /∈ NUM , since otherwise R ∈ NUM .
Finally, [U] = N∗ by construction.

q.e.d.

Corollary 5. There is a numbering ψ with [Rψ] = N∗ such that

(1) The halting problem with respect to ψ is undecidable.

(2) The consistency problem with respect to ψ is decidable.

Proof. Let U ⊆ R be a class in accordance with Lemma 4. Furthermore, let ψ be a
numbering chosen accordingly to Theorem 2. Then (1) is an immediate consequence of
Lemma 3, and (2) follows from Theorem 2, assertion (2), taking into account that, by
construction, [Rψ] = N∗.

q.e.d.

Finally in this section we want to point out that a natural weakening of consistency
does not suffice to learn any class inferrable in the limit.

Definition 3. (Wiehagen, 1978a)
Let U ∈ R, ψ ∈ P 2. U is called conformly learnable in the limit with respect to ψ iff there
is a strategy S ∈ P such that

(1) U ∈ LIMψ(S),

(2) for any function f ∈ U and any n, x ∈ N such that x ≤ n, either ψS(fn)(x) = f(x)
or ψS(fn)(x) is not defined.

Intuitively, a conform strategy is never allowed to output a hypothesis that indeed
computes a wrong value at an argument x which is less than the length of the initial
segment seen so far. By CONFψ we denote the collection of classes U ⊆ R that are
conformly identifiable with respect to ψ. Finally, let CONF denote the union of all
families CONFψ where ψ ∈ P 2. The following theorem is due to Wiehagen (1978a).

Theorem 6.
CONS ⊂ CONF ⊂ LIM

The reader is encouraged to consult Jantke and Beick (1981), Zeugmann (1983) and
Fulk (1989) for further investigation concerning consistent and conform identification.

4. Inconsistency and Polynomial Time

The results presented in the previous section may lead to the impression that the in-
consistency phenomenon may be far beyond any practical relevance, since it has been

7

established in a setting where both, the halting and the consistency problem are undecid-
able in general. Therefore now we ask whether the inconsistency phenomenon does survive
in more realistic settings, i.e., in settings where consistency is decidable. Moreover, in or-
der to be consequently realistic we additionally restrict ourselves to deal exclusively with
learning strategies that are polynomial time computable. Then, of course, the superiority
of inconsistent strategies, if any, has to be established in terms of complexity theory. We
present a learning problem in a realistic setting which is generally consistently solvable
but which cannot be solved consistently in polynomial time, unless P 6= NP . The desired
goal is achieved by elaborating an algorithm inconsistently solving the same learning prob-
lem in polynomial time. As far as we know this is the first learning problem for which
the announced properties are rigorously proved. In our opinion, this result gives strong
evidence of taking seriously inconsistent learning strategies into consideration.

The setting we want to deal with is the learnability of pattern languages introduced by
Angluin (1980). Subsequently, Shinohara (1982) dealt with polynomial time learnability
of subclasses of pattern languages. Nix (1983) outlined interesting applications of pattern
inference algorithms. Recently, Kearns and Pitt (1989) as well as Ko, Marron and Tzeng
(1990) studied intensively the learnabilty of pattern languages in the PAC–learning model.

So let us define what are a pattern and a pattern language. Let Σ = {a, b, ..} be any
non–empty finite alphabet containing at least two elements. Furthermore, let X = {xi |
i ∈ N} be an infinite set of variables such that Σ∩X = ∅. Patterns are non–empty strings
from Σ ∪X, e.g., ab, ax1ccc, bx1x1cx2x2 are patterns. L(p), the language generated by
pattern p is the set of strings which can be obtained by substituting non–null strings from
Σ∗ for the variables of the pattern p. Thus aabbb is generable from pattern ax1x2b, while
aabba is not. Pat and PAT denote the set of all patterns and of all pattern languagues
over Σ, respectively. In order to deal with the learnability of pattern languages we have
to specify from what information the learning strategies should do their task. Following
Gold (1967) we distinguish between learning from text and from informant. Formally, let
L ⊆ Σ∗; we call a mapping I : N → Σ∗ × {+,−} informant of L iff

(1) For any w ∈ Σ∗, there are an n ∈ N and λ ∈ {+,−} such that I(n) = (w, λ).

(2) For any n ∈ N, w ∈ Σ∗, and λ ∈ {+,−}, if I(n) = (w, λ) then w ∈ L iff λ = +.

Let Info(L) denote the set of all informants of L. Furthermore, for I ∈ Info(L) and n ∈ N ,
let In = cod(I(0), ..., I(n)), where cod denotes an effective and bijective mapping from
the set of all finite sequences of elements from Σ∗ × {+,−} onto N . Finally, we set In =
{w ∈ Σ∗ | there are i ≤ n, λ ∈ {+,−}s.t. I(i) = (w, λ)}, and I+

n = In ∩ L, I−n = In \ I+
n .

Any mapping T from N onto L is called a text for L. By Text(L) we denote the set of
all texts for L. The sets Tn, T

+
n as well as T−n are defined analogously as above.

Intuitively, a text for L generates the language L without any information concerning
the complement of L, whereas an informant of L decides L by informing the strategy
whether or not any word from Σ∗ belongs to L. Note that we allow a text and an
informant to be non–effective.

Definition 4. PAT is called learnable in the limit from informant (abbr. PAT ∈
LIM − INF) iff there is an effective strategy S from N into Pat such that for any

8

L ∈ PAT and any I ∈ Info(L),

(1) for any n ∈ N , S(In) is defined, and

(2) there is a p ∈ PAT such that L(p) = L and for almost all n ∈ N , S(In) = p.

Definition 5. PAT is called consistently learnable in the limit from informant (abbr.
PAT ∈ CONS − INF) iff there is an effective strategy S from N into Pat such that

(1) PAT ∈ LIM − INF by S

(2) for any L ∈ PAT , I ∈ Info(L) and n ∈ N , I+
n ⊆ L(S(In)) and I−n ∩ L(S(In)) = ∅.

Note that a consistent learning strategy is required to correctly reflect both, the positive
as well as the negative data it has already seen. Next we sharpen Definition 4 and 5 by
additionally requiring polynomial time computability of S.

Definition 6. PAT is called (consistently) learnable in the limit ¿from informant in
polynomial time (abbr. PAT ∈ Poly −LIM − INF (PAT ∈ Poly −CONS − INF)) iff
there are a strategy S and a polynomial pol such that

(1) PAT ∈ LIM − INF (PAT ∈ CONS − INF) by S, and

(2) for any L ∈ PAT, I ∈ Info(L) and n ∈ N ,
time to compute S(In) ≤ pol(length(In)).

Learning from text is analogously defined in replacing everywhere ”informant” by
”text”. However, one point should be stated more precisely, i.e., consistent learning on
text does only require consistency with the data contained in the text. In order to have
an example illuminating the difference we could define a strategy that initially outputs x1.
Since L(x1) contains any string over Σ but the empty one, this hypothesis is consistent on
text for any finite input. However, since the strategy has to converge, it cannot maintain
this hypothesis ad infinitum. Finally, we use LIM − TXT , CONS − TXT as well as
Poly − CONS − TXT to denote the corresponding learning types on text.

Now we can precisely state the result mentioned above.

Theorem 7.

(1) PAT ∈ CONS − INF

(2) PAT /∈ Poly − CONS − INF , provided P 6= NP.

(3) PAT ∈ Poly − LIM − INF

Sketch of proof. Assertion (1) is proved in applying Gold’s (1967) enumeration tech-
nique. Therefore, let (pi)i∈N be any fixed effective enumeration of Pat. Let L ∈ PAT ,
let I ∈ Info(L) be any informant, and let n ∈ N . Define S(In) to be the first pattern p
in the enumeration of Pat satisfying I+

n ⊆ L(p) and I−n ∩ L(p) = ∅. Since membership
for pattern languages is uniformly decidable (cf. Angluin (1980)), S is computable. Due

9

to the definition of S, consistency is obvious. Moreover, the strategy converges to the
first pattern in the enumeration that generates the language L to be learnt. Note that S
cannot be computed in polynomial time, unless P = NP , since membership for pattern
languages is NP–complete (cf. Angluin (1980)).

Next we have to show that there is no strategy at all consistently learning PAT that is
computable in polynomial time, if P 6= NP . This part of the proof is done by showing the
NP–hardness of an appropriate problem defined below. For any information concerning
reducibility as well as NP–complete problems the reader is referred to Garey and Johnson
(1979). First we define the following decision problem SEP . Let W+, W− ⊆ Σ∗. We say
that W+, W− are separable iff there is a pattern p such that W+ ⊆ L(p) and W−∩L(p) =
∅. SEP denotes the problem of deciding whether any W+, W− ⊆ Σ∗ are separable.
Moreover, by CSEP we denote the problem of constructing a separating pattern p for
any given W+, W− that are separable. The proof of assertion (2) is completed via the
following lemmata.

Lemma A. (Ko, Marron, Tzeng, 1990)
3− SAT is polynomial time reducible to SEP .

Lemma B. CSEP is NP–hard.

Proof of Lemma B. Let C3 − SAT denote the problem to construct a satisfying as-
signment to any satisfiable instance from 3− SAT .
Claim 1. C3− SAT ∈ P implies 3− SAT ∈ P

Assume there is an algorithm A having a running time that is bounded by some
polynomial pol in the length of its input, and that, moreover, on input C returns a
satisfying assignment of C, if C is satisfiable. Now let C be any instance of 3 − SAT .
Start A on input C. Since any polynomial is time constructable, we we may combine
A with a clock, i.e., we can efficiently stop A on input C after at most length(C) steps
of computation. Then two cases are possible. Either A returns nothing. Consequently,
C cannot be satisfiable. Otherwise A outputs an assignment ass within the given time
bound. Then one can check in polynomial time whether or not ass indeed satisfies C. In
case it does, we know that C is satisfiable. In case it does not C is again not satisfiable,
since otherwise A fails.

Note that we cannot prove the NP–hardness of CSEP in the same manner as in
showing claim 1, since membership for pattern languages isNP–complete, i.e., one cannot
check in polynomial time whether a pattern eventually returned on input (W+,W−) does
indeed separate these sets. However, we overcome this difficulty in showing the following
claim.
Claim 2. CSEP ∈ P implies C3− SAT ∈ P

In accordance with Lemma A let red be any polynomial time reduction of 3 − SAT
to SEP . Suppose, there is an algorithm B solving CSEP in polynomial time. Now let
C be any satisfiable instance of 3 − SAT . The wanted satisfying assignment may be
computed as follows. First, compute red(C) = (W+,W−). Since C is satisfiable, we get
that (W+,W−) are separable. Next compute p = B(W+,W−). Finally, let ass be the
assignment contructed to p in the proof of the ”only–if” direction of Lemma A. Since
red is computable in time bounded by a polynomial in the length of C, the length of

10

(W+,W−) is bounded by a polynomial in the length of C, too. Consequently, ass is
polynomial time computable. Hence, C3− SAT ∈ P , if CSEP ∈ P .

Finally, Claim 1 and 2 directly yield Lemma B.

The proof of assertion (2) is completed by showing the next claim.
Claim 3. PAT ∈ Poly − CONS − INF implies CSEP ∈ P .

Suppose PAT ∈ Poly − CONS − INF by some strategy S. Let W+, W− be any
two separable sets, and let p be any pattern separating them. Let I ∈ Info(L(p)) be an
arbitrary informant such that, for some n, I+

n = W+ and I−n = W−. In accordance with
the definition of separabilty, I obviously exists. Consequently, S(In) has to be defined,
and furthermore, q = S(In) has to be a pattern separating W+, W−, too. Finally, S is
polynomial time computable. Hence we get CSEP ∈ P .

It remains to prove assertion (3). In Lange and Wiehagen (1991) PAT ∈ Poly−LIM−
TXT has been shown. The corresponding strategy witnessing PAT ∈ Poly−LIM−TXT
works by ”overlooking” data, i.e., it ignores all but the actually shortest strings of the
language to be learnt. It turns out that sufficiently many really shortest strings of a
pattern language do suffice to learn it. From these remaining strings a hypothesis is
generated in time that is even polynomial in the length of these strings. However, it is
most of the time inconsistent, while being correct in the limit. Let S denote the strategy
from Lange and Wiehagen (1991) proving PAT ∈ Poly − LIM − TXT . We define a
strategy S̃ witnessing PAT ∈ Poly − LIM − INF as follws: On any input In we set
S̃(In) = S(I+

n). This proves the theorem.

Note that S̃ even works semi–consistently, since I−n ∩ L(S̃(In)) = ∅ is valid for all
n ∈ N . Moreover, S̃ works iteratively as S does.

q.e.d.

At this point some remarks are mandatory. It should be mentioned that any consis-
tent strategy S, independently of how complex it is, may be trivially converted into an
inconsistent one that works in quadratic time. This is done as follows. On input In, one
simulates S on input I1, I2,...,In no more than n steps, and outputs S(Ik), where k is the
largest number y ≤ n for which S(Iy) is computable within at most n steps.

However, it is obvious that this simulation technique does not yield any advantage. It
does neither increase the efficiency of the learning algorithm, if one sums up all steps of
computation until the learning task is successfully solved; nor does it enlarge the learning
power. What we are looking for are ”intelligent” inconsistent techniques. In our opin-
ion, Lange and Wiehagen’s (1991) refined strategy behaves thus by the following reasons.
First, it avoids membership tests at all. Second, it computes its current hypothesis iter-
atively. Third, the test whether or not it should eventually change its mind is extremely
simple and may be executed in linear time. Moreover, the algorithm yielding an eventually
new hypothesis performs exclusively syntactical or formal manipulations over strings.

Finally, let Poly −CONS −LEXINF (Poly −CONS −LEXTXT) be the learning
type obtained from Poly − CONS − INF (Poly − CONS − TXT) by restricting the
information presentation from any informant I ∈ Info(L) (any text T ∈ Text(L)) to the
lexicographically ordered one (cf. Definition 6). Furthermore, let S be a strategy such
that PAT ∈ LIM−INF (LIM−TXT) by S. Then, for any L ∈ PAT and D ∈ Info(L)

11

∪ Text(L), let

Conv(S,D) = the least number m such that for all n ≥ m, S(Dn) = S(Dm)

denote the stage of convergence of S on D.

We have been surprised to obtain the following theorem. It actually states that the
inconsistent learning strategy of Lange and Wiehagen (1991) may behave both, i.e., con-
sistently and efficiently, if it receives the crucial information on the language to be learnt
in an appropriate order.

Theorem 8

(1) There are a strategy S̃ and a polynomial pol such that

(i) PAT ∈ Poly − CONS − LEXINF by S̃,

(ii) for any p ∈ Pat, there is an Ip ∈ Info(L(p)) such that

– S̃ works consistently on Ip,

– Σ
Conv(S,Ip)
n=0 time to compute S̃(Inp) ≤ pol(length(p)).

(2) There are a strategy S and a polynomial pol such that

(i) PAT ∈ Poly − CONS − LEXTXT by S,

(ii) for any p ∈ Pat, there is a Tp ∈ Text(L(p)) such that

– S works consistently on Tp,

– Σ
Conv(S,Tp)
n=0 time to compute S(T np)) ≤ pol(length(p)).

Sketch of proof. Assertion (1), part (i) is proved using the strategy S̃ from the proof of
Theorem 7, assertion (3) above. Then part (i) follows by Lemma 2 of Lange and Wiehagen
(1991). Part (ii) directly follows from Theorem 2, assertion (3) of Lange and Wiehagen
(1991).

The first part of assertion (2) is an immediate consequence of the proof of Theorem 1
in Lange and Wiehagen (1991), while the second follows as above.

q.e.d.

We conjecture that Theorem 7 remains valid for CONS − TXT . Assertion (1) has
been proved by Angluin (1980). As already mentioned above, the strategy from Lange
and Wiehagen (1991) directly yields (3). Consequently, the only part not yet proved is
(2). One reason why (2) seems to be easier provable for informant than for text is the
following. A strategy working consistently on informant has to work ”hard” at any step
of the learning process, while a consistent strategy on text may output x1 for a while.

5. Conclusions

We have investigated the problem of consistent versus inconsistent learning. In spite of
the remarkable power of consistent learning it turns out that this power is not universal.

12

There are learning problems which can be exclusively solved by inconsistent strategies,
i.e., by strategies that do temporarily incorrectly reflect the behavior of the unknown
object on data for which the correct behavior of the object is already known at the
current stage of the learning process. This phenomenon has been investigated in a ”highly
theoretical” setting, namely in inductive inference of recursive functions. In this setting
the seemingly senseless work of inconsistent strategies could be completely explained by
the undecidability of consistency.

However, it turned out that the inconsistency phenomenon is also valid in more realistic
situations, namely in domains where consistency is always decidable and the learning
strategies have to work in polynomial time. The reason is quite anologous to that in
the setting of arbitrary recursive functions. Providing P 6= NP , the NP-hardness of
problems can prevent learning strategies to produce consistent hypotheses in polynomial
time.

Moreover, we conjecture that an analogous effect can be shown for incremental learning
of finite classes of finite objects such as Boolean functions.

And we conjecture that there are learning problems even solvable consistently in poly-
nomial time, but solvable (much) faster inconsistently.

In any case, we regard the results obtained as giving strong evidence to take fast
inconsistent strategies seriously into account.

Finally, the presented results do suggest directions of further research such as

1. finding fast inconsistent learning techniques

2. deriving conditions yielding that a given learning problem has no fast consistent
solution, but a fast inconsistent one.

Acknowledgement

Substantial part of this work has been performed while the first author was visiting
TH Darmstadt. He is grateful indebted to Rüdiger Reischuk and Wolfgang Bibel for
providing inspiring working conditions.

Furthermore, both authors would like to acknowledge fruitful discussions with Andreas
Jakoby and Christian Schindelhauer.

6. References

[1] Angluin, D., (1980), Finding Patterns Common to a Set of Strings, Journal of
Computer and System Sciences 21, 46 - 62

[2] Angluin, D. and C.H. Smith, (1983), Inductive Inference: Theory and Methods,
Computing Surveys 15, 3, 237 - 269

[3] Angluin, D. and C.H. Smith, (1987), Formal Inductive Inference, In Encyclopedia of
Artificial Intelligence, St.C. Shapiro (Ed.), Vol. 1, pp. 409 - 418, Wiley-Interscience
Publication, New York

13

[4] Barzdin, Ya.M., (1974), Inductive Inference of Automata, Functions and Programs,
Proc. Int. Congress of Math., Vancouver, pp. 455 - 460

[5] Blum, M., (1967), Machine Independent Theory of Complexity of Recursive Func-
tions, Journal of the ACM 14, 322 -336

[6] Blum, L. and M. Blum, (1975), Toward a Mathematical Theory of Inductive Infer-
ence, Information and Control 28, 122 - 155

[7] Fulk, M.,(1988), Saving the Phenomena: Requirements that Inductive Inference
Machines Not Contradict Known Data, Information and Computation 79, 193 - 209

[8] Garey, M.R. and D.S. Johnson, (1979), Computers and Intractability, A Guide to
the Theory of NP–completness, Freeman and Company, San Francisco

[9] Gold, M.E., (1965), Limiting Recursion, Journal of Symbolic Logic 30, 28 - 48

[10] Gold, M.E., (1967), Language Identification in the Limit, Information and Control
10, 447 - 474

[11] Jantke, K.P. and H.R. Beick, (1981), Combining Postulates of Naturalness in In-
ductive Inference, Journal of Information Processing and Cybernetics (EIK) 17, 465
- 484

[12] Kearns, M. and L. Pitt, (1989), A Polynomial–time Algorithm for Learning k–
variable Pattern Languages From Examples. In Proc. 2nd Annual Workshop on
Computational Learning Theory, R. Rivest, D. Haussler, and M.K. Warmuth (Eds.),
pp. 57 - 70, Morgan Kaufmann Publishers Inc.

[13] Ko, Ker–I, Marron, A. and W.G. Tzeng, (1990), Learning String Patterns and Tree
Patterns From Examples, Proc. 7th Conference on Machine Learning, pp. 384 -
391

[14] Lange, S. and R. Wiehagen, (1991), Polynomial–Time Inference of Arbitrary Pattern
Languages, New Generation Computing 8, 361 - 370

[15] Lange, S. and T. Zeugmann, (1991), Monotonic versus Non-monotonic Language
Learning, in Proc. 2nd International Workshop on Nonmonotonic and Inductive
Logic, December 1991, Reinhardsbrunn, to appear in Lecture Notes in Artificial
Intelligence

[16] Lange, S. and T. Zeugmann, (1992), Types of Monotonic Language Learning and
Their Characterization, Proc. 5th Annual Workshop on Computational Learning
Theory, Morgan Kaufmann Publishers Inc.

[17] Nix, R.P., (1983), Editing by Examples, Yale University, Dept. Computer Science,
Technical Report 280

[18] Osherson, D., Stob, M. and S. Weinstein, (1986), Systems that Learn. An In-
troduction to Learning Theory for Cognitive and Computer Scientists, MIT-Press,
Cambridge, Massachusetts

14

[19] Porat, S. and J.A. Feldman, (1988), Learning Automata from Ordered Examples,
in Proc. First Workshop on Computational Learning Theory, D. Haussler and L.
Pitt (Eds.), pp. 386 - 396, Morgan Kaufmann Publishers Inc.

[20] Rogers, H.Jr., (1967), Theory of Recursive Functions and Effective Computability,
Mc Graw–Hill, New York

[21] Shinohara, T., (1982), Polynomial Time Inference of Extended Regular Pattern
Languages, RIMS Symposia on Software Science and Engineering, Kyoto, Lecture
Notes in Computer Science 147, pp. 115 - 127, Springer–Verlag

[22] Solomonoff, R., (1964), A Formal Theory of Inductive Inference, Information and
Control 7, 1 - 22, 234 - 254

[23] Wiehagen, R., (1976), Limes–Erkennung rekursiver Funktionen durch spezielle Stra-
tegien, Journal of Information Processing and Cybernetics (EIK) 12, 93 - 99

[24] Wiehagen, R., (1978a), Zur Theorie der algorithmischen Erkennung, Dissertation
B, Humboldt–Universität zu Berlin

[25] Wiehagen, R., (1978b), Characterization Problems in the Theory of Inductive In-
ference, Proc. 5th Colloquium on Automata, Languages and Programming, Udine,
July 17 - 21, G. Ausiello and C. Böhm (Eds.), Lecture Notes in Computer Science
62, pp. 494 - 508, Springer-Verlag

[26] Zeugmann, T., (1983), A–posteriori Characterizations in Inductive Inference of Re-
cursive Functions, Journal of Information Processing and Cybernetics (EIK) 19, 559
- 594

15

