
Consistent and Coherent Learning with

δ-Delay

Yohji Akama a and Thomas Zeugmann b

aMathematical Institute, Tohoku University, Sendai, Miyagi, 980-8578, Japan
bDivision of Computer Science, Hokkaido University, N-14, W-9, Sapporo

060-0814, Japan

Abstract

A consistent learner is required to correctly and completely reflect in its actual
hypothesis all data received so far. Though this demand sounds quite plausible, it
may lead to the unsolvability of the learning problem.

Therefore, in the present paper several variations of consistent learning are intro-
duced and studied. These variations allow a so-called δ-delay relaxing the consis-
tency demand to all but the last δ data.

Additionally, we introduce the notion of coherent learning (again with δ-delay)
requiring the learner to correctly reflect only the last datum (only the n−δth datum)
seen.

Our results are manyfold. First, we provide characterizations for consistent learn-
ing with δ–delay in terms of complexity and computable numberings. Second, we
establish strict hierarchies for all consistent learning models with δ-delay in depen-
dence on δ. Finally, it is shown that all models of coherent learning with δ-delay are
exactly as powerful as their corresponding consistent learning models with δ-delay.

Key words: Inductive inference, consistency, coherence, characterizations,
recursion theory

1 Introduction

Algorithmic learning has attracted much attention of researchers in various
fields of computer science. Inductive inference addresses the question whether

Email addresses: akama@math.tohoku.ac.jp (Yohji Akama),
thomas@ist.hokudai.ac.jp (Thomas Zeugmann).

Preprint submitted to Information and Computation 30 June 2008

or not learning problems may be solved algorithmically at all. Since the pio-
neering paper of Gold [10], there has been huge progress in the area (cf., e.g.,
Jain et al. [13], Osherson et al. [22] and the references therein). On the other
hand, several questions still deserve attention. One such question is consis-
tency. A consistent learner is required to correctly and completely reflect all
the data it has already seen during the learning process. It should be noted that
consistency is also a common requirement in PAC learning, machine learning
and statistical learning (cf., e.g., [1,19,26]).

For the sake of illustration, we may think of a typical classroom scenario where
we have a teacher and students. In this scenario, a consistent student can
always completely and correctly repeat what has been taught so far. However,
as experience shows, this is not always the case. Consequently, it is only natural
to ask whether or not this behavior of students constitutes an advantage or a
disadvantage.

We study this question in the setting of inductive inference of recursive func-
tions. In this setting is already known that, in general, inconsistent learners
are more powerful than consistent ones. Therefore, we consider the following
modification called consistent learning with δ-delay. In this framework, a stu-
dent consistently learning with δ-delay can always completely and correctly
repeat what has been taught so far except the last δ lectures.

Additionally, we introduce a new learning model called coherent learning.
Intuitively, a coherent student has a very good short term memory, i.e., she
can always completely and correctly repeat the content of the last lecture
but not necessarily the content of previous lectures. Again, we consider the
modification of coherent learning with δ-delay.

In order to be more precise, we proceed more formally. A main problem of
inductive inference is to synthesize “global descriptions” for the objects to
be learned from examples. Thus, one goal is the following. Let f be any com-
putable function from N into N. Given more and more examples f(0), f(1), . . .,
f(n), . . . a learning strategy is required to compute a sequence of hypotheses
h0, h1, . . . , hn, . . . the limit of which is a correct global description of the func-
tion f , i.e., a program that computes f . Since at any stage n of this learning
process the strategy knows exclusively the examples f(0), f(1), . . . , f(n), one
may be tempted to require the strategy to produce only hypotheses hn such
that for any x ≤ n the “hypothesis function” g described by hn is defined
and computes the value f(x). Such a hypothesis is called consistent. If a hy-
pothesis does not completely and correctly encode all information obtained so
far about the unknown object it is called inconsistent. A learner exclusively
outputting consistent hypotheses is called consistent. Requiring a consistent
learner looks quite natural at first glance. Why should a strategy output a
conjecture that is falsified by the data in hand?

2

But this is a misleading impression. One of the surprising phenomena dis-
covered in inductive inference of recursive functions is the inconsistency phe-
nomenon (cf., e.g., Barzdin [3], Blum and Blum [5], Wiehagen and Liepe [29],
Jantke and Beick [14] as well as Osherson, Stob and Weinstein [22] and the
references therein). That is, there are classes of recursive functions that can
only be learned by inconsistent strategies.

Naturally, the inconsistency phenomenon has been studied subsequently by
many researchers. The reader is encouraged to consult e.g., Jain et al. [13],
Freivalds, Kinber and Wiehagen [8], Fulk [9], Osherson et al. [22] and Wieha-
gen and Zeugmann [30,31] for further investigations concerning consistent and
inconsistent learning.

As already mentioned above, in the present paper we introduce and study
several variations of consistent learning that have not been considered in the
literature. That is, we introduce the notion of δ-delay to the types of consis-
tent learning mainly studied so far, i.e., to CONS (defined by Barzdin [3]),
R- CONS (introduced by Jantke and Beick [14]) and T - CONS (defined by
Wiehagen and Liepe [29]) (cf. Definitions 2, 3 and 4, respectively). These
definitions differ with respect to the set of admissible strategies, i.e., par-
tial recursive versus recursive and the consistency domain. In general, we are
interested in a relaxation of the demand to learn consistently that yields addi-
tional learning power for all model of consistent learning. Further motivation
is provided in Section 2.

Moreover, we define the notion of coherent learning. A learner is said to be
coherent if it correctly reflects the last datum received (say f(xn)), i.e., if
every hn output satisfies the requirement that the “hypothesis function” g
described by hn is defined on input xn and g(xn) = f(xn). Additionally, we
consider coherent learning with δ-delay. Then, coherent learning with δ-delay
means that every hn output satisfies that g(xn

.− δ) is defined and g(xn
.− δ) =

f(xn
.− δ) (cf. Definition 21); here a .− b denotes the arithmetic difference.

While consistent learning with δ-delay requires correctness for all but the
most recent δ data fed to the learner, coherence can be considered as the
other extreme. That is, now for all intermediate hypotheses just the function
value at argument n .− δ must be correctly reflected provided n ≥ δ.

Our results are manyfold. First, we provide characterizations for consistent
learning with δ-delay in terms of complexity (cf. Theorems 6 and 7) and in
terms of computable numberings (cf. Theorems 10, 11, and 12). Second, we
establish strict hierarchies for all consistent learning models with δ-delay in
dependence on δ, see Theorem 14 and Corollary 15.

Finally, it is shown that all models of coherent learning with δ-delay are exactly
as powerful as their corresponding consistent learning models with δ-delay, see

3

Theorem 22.

The paper is structured as follows. Section 2 presents notation and definitions.
The announced characterizations are shown in Section 3. In Section 4 we
prove three new infinite hierarchies for consistent learning with δ-delay. Then
we show the equivalence of coherent and consistent learning for all variants
defined (cf. Section 5). In Section 6 we discuss the results obtained and present
open problems.

2 Preliminaries

Unspecified notations follow Rogers [23]. N = {0, 1, 2, . . .} denotes the set
of all natural numbers. The set of all finite sequences of natural numbers is
denoted by N∗. For a, b ∈ N we define the arithmetic difference a .− b to be
a− b if a ≥ b and 0, otherwise.

The cardinality of a set S is denoted by |S|. We write ℘(S) for the power set
of set S. Let ∅, ∈, ⊂, ⊆, ⊃, ⊇, and # denote the empty set, element of,
proper subset, subset, proper superset, superset, and incomparability of sets,
respectively.

By P and T we denote the set of all partial and total functions of one variable
over N, respectively. The classes of all partial recursive and recursive functions
of one, and two arguments over N is denoted by P , P2, R, and R2, respec-
tively. Let f ∈ P, then we use dom(f) to denote the domain of the function
f , i.e., dom(f) = {x | x ∈ N, f(x) is defined}. By R{0,1} we denote the set of
all 0− 1 valued recursive functions (recursive predicates).

Sometimes it will be suitable to identify a recursive function with the sequence
of its values, e.g., let α = (a0, . . . , ak) ∈ N∗, j ∈ N, and p ∈ R{0,1}; then we
write αjp to denote the function f for which f(x) = ax, if x ≤ k, f(k+1) = j,
and f(x) = p(x − k − 2), if x ≥ k + 2. Let g ∈ P, let δ ∈ N and α =
(a0, . . . , ak) ∈ N∗; we write α @δ g iff α is a δ–prefix of the sequence of values
associated with g, i.e., for any x such that x + δ ≤ k, g(x) is defined and
g(x) = ax. If δ = 0, then we refer to a δ–prefix as a prefix for short. If U ⊆ R,
then we denote by [U] the set of all prefixes of functions from U .

Every function ψ ∈ P2 is said to be a numbering. Furthermore, let ψ ∈ P2,
then we write ψi instead of λx.ψ(i, x) and set Pψ = {ψi | i ∈ N} as well as
Rψ = Pψ ∩ R. Consequently, if f ∈ Pψ, then there is a number i such that
f = ψi. If f ∈ P and i ∈ N are such that ψi = f , then i is called a ψ–program
for f . A numbering ϕ ∈ P2 is called a Gödel numbering (cf. Rogers [23]) iff
Pϕ = P , and for any numbering ψ ∈ P2, there is a c ∈ R such that ψi = ϕc(i)

4

for all i ∈ N. Göd denotes the set of all Gödel numberings. Furthermore, we
write (ϕ,Φ) to denote any complexity measure as defined in Blum [6]. That
is, ϕ ∈ Göd, Φ ∈ P2 and (1) dom(ϕi) = dom(Φi) for all i ∈ N and (2) the
predicate “Φi(x) = y” is uniformly recursive for all i, x, y ∈ N.

Furthermore, let NUM = {U | ∃ψ[ψ ∈ R2 ∧ U ⊆ Pψ]} denote the family of
all subsets of all recursively enumerable classes of recursive functions.

Moreover, using a fixed encoding 〈. . .〉 of N∗ onto N we write fn instead of
〈(f(0), . . . , f(n))〉, for any n ∈ N, f ∈ R.

The quantifier ∀∞ stands for “almost everywhere” and means “all but finitely
many.” Finally, a sequence (jn)j∈N of natural numbers is said to converge to
the number j iff all but finitely many numbers of it are equal to j. Next we
define some concepts of learning.

Definition 1 (Gold [10]) Let U ⊆ R and let ψ ∈ P2. The class U is said to
be learnable in the limit with respect to ψ iff there is a strategy S ∈ P such
that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,
(2) there is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N con-

verges to j.

If U is learnable in the limit with respect to ψ by a strategy S, then we write
U ∈ LIMψ(S). Let LIMψ = {U | U is learnable in the limit w.r.t. ψ}, and
let LIM =

⋃
ψ∈P2 LIMψ.

As far as the semantics of the hypotheses produced by a strategy S is con-
cerned, whenever S is defined on input fn, then we always interpret the num-
ber S(fn) as a ψ–number. This convention is adopted to all the definitions
below. Furthermore, note that LIMϕ = LIM for any ϕ ∈ Göd. In the above
definition LIM stands for “limit.”

Note that in Definition 1 no requirement is made concerning the intermediate
hypotheses output by the strategy S. The following definition is obtained from
Definition 1 by adding the requirement that S correctly reflects all but the
last δ data seen so far.

Definition 2 Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called
consistently learnable in the limit with δ-delay with respect to ψ iff there is a
strategy S ∈ P such that

(1) U ∈ LIMψ(S),
(2) ψS(fn)(x) = f(x) for all f ∈ U , n ∈ N and all x such that x+ δ ≤ n.

5

CONSδψ(S), CONSδψ and CONSδ are defined analogously to the above.

Note that for δ = 0 we get Barzdin’s [3] original definition of CONS. We
therefore usually omit the upper index δ if δ = 0. This is also done for all
other versions of consistent learning defined below. Moreover, we use the term
δ-delay, since a consistent strategy with δ-delay correctly reflects all but at
most the last δ data seen so far. If a strategy S learns a function class U in
the sense of Definition 2, then we refer to S as a δ-delayed consistent strategy.
If a strategy does not always works consistently with δ-delay we call it δ-
delayed inconsistent. The latter two conventions are applied mutatis mutandis
to Definitions 3 and 4 below.

In machine learning it is often assumed that learning algorithms are defined
on all inputs (cf., e.g., Kodratoff and Michalski [15] as well as Michalski et
al. [16,17]). On the one hand, this requirement is partially justified by a theo-
rem of Gold [10]. He showed the following. Let U ⊆ R; if U ∈ LIM(S) then
there exists a strategy S ′ ∈ R such that U ∈ LIM(S ′). That is, learning in
the limit is insensitive with respect to the requirement to learn exclusively
with recursive strategies. Therefore, it is natural to consider the two basic
variants of consistent learning where only recursive strategies are admissible.

Jantke and Beick [14] required recursive strategies but restricted the de-
mand to output exclusively consistent hypotheses to functions from the target
class U . The second basic variant was introduced by Wiehagen and Liepe [29].
Their definition requires a strategy to be defined and to be consistent on
every input. Therefore, we adopt both definitions to our scenario to learn
consistently with δ-delay.

Next, we modify CONSδ in the same way Jantke and Beick [14] changed
CONS, i.e., we add the requirement that the strategy is defined on every
input.

Definition 3 Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called
R–consistently learnable in the limit with δ-delay with respect to ψ iff there
is a strategy S ∈ R such that U ∈ CONSδψ(S).

R- CONSδψ(S), R- CONSδψ and R- CONSδ are defined analogously to the
above.

As mentioned above, in Definition 3 consistency with δ-delay is only demanded
for inputs that correspond to some function f from the target class U . In the
following definition we incorporate Wiehagen and Liepe’s [29] requirement on
a strategy to work consistently on all inputs into our scenario of consistency
with δ-delay.

Definition 4 Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called

6

T –consistently learnable in the limit with δ-delay with respect to ψ iff there
is a strategy S ∈ R such that

(1) U ∈ CONSδψ(S),
(2) ψS(fn)(x) = f(x) for all f ∈ R, n ∈ N and all x such that x+ δ ≤ n.

T - CONSδψ(S), T - CONSδψ and T - CONSδ are defined in the same way as
above.

Using standard techniques one can show that for all δ ∈ N and all learning
types LT ∈ {CONSδ, R- CONSδ, T - CONSδ} we have LTϕ = LT for every
ϕ ∈ Göd.

Note that another relaxation of the demand to learn consistently has been
proposed by Wiehagen [28]. Using the terminology of Daley [7] we say that
an error of commission occurs at an argument x if ψS(fn)(x) is defined and
ψS(fn)(x) 6= f(y). Furthermore, if ψS(fn)(x) is undefined then we have an error
of ommission at argument x. Now, Wiehagen [28] relaxed CONS by requiring
that ψS(fn)(x) does not make any error of commission for 0 ≤ x ≤ n, denoted
the resulting learning type by CONF , and called it conformity. Moreover,
Wiehagen [28] showed CONS ⊂ CONF ⊂ LIM. Fulk [9] then considered
the variation of CONF that corresponds to Wiehagen and Liepe’s [29] def-
inition of T - CONS and obtained T - CONF . Interestingly, when the set of
admissible strategies is restricted then conformity does not yield additional
learning power, i.e., we have T - CONF = T - CONS (cf. Fulk [9]).

Before proving our hierarchy results we characterize consistent learning with
δ-delay in terms of complexity and in terms of computable numberings, since
some of the results obtained will be very helpful to achieve the desired sepa-
rations.

3 Characterizations

Characterizations are a useful tool to get a better understanding of what
different learning types have in common and where the differences are. They
may also help to overcome difficulties that arise in the design of powerful
learning algorithms. For example, suppose we want to learn a class U with
respect to any fixed Gödel numbering ϕ. Then, a strategy may try to find a
program i such that ϕni = fn. Though this search will succeed, the strategy
may face serious difficulties to converge. These difficulties are caused by the
undecidability of the halting problem. When, on input fn, a strategy S has
found a program i as described above and then sees f(n + 1) it may try to
compute ϕi(n + 1) and, in parallel to find again an index, say j, such that

7

ϕn+1
j = fn+1. If it finds j and the computation of ϕi(n + 1) did not stop

yet, then the strategy is in trouble. In order to converge, it may further try
to compute ϕi(n + 1) thus risking that this try may fail to succeed or it
may output j instead. But of course, switching to a new hypothesis can only
be done finitely often, since otherwise S will not converge. Thus, additional
information concerning the computational complexity of the functions to be
learned can only help.

Alternatively, particularly designed numberings possessing properties that fa-
cilitate learning may also help to overcome the difficulties described above.
Furthermore, the sufficiency proofs of characterizations provide uniform learn-
ing methods that are suitable for all classes learnable under a given inference
constraint. We start with the complexity theoretic characterizations.

3.1 Characterizations in Terms of Complexity

First, we recall the definitions of recursive and general recursive operator. Let
(Fx)x∈N be the canonical enumeration of all finite functions.

Definition 5 (Rogers [23]) A mapping O : P → P from partial functions
to partial functions is called a partial recursive operator iff there is a re-
cursively enumerable set W ⊆ N3 such that for any y, z ∈ N it holds that
O(f)(y) = z if and only if there is an x ∈ N such that (x, y, z) ∈ W and f
extends the finite function Fx.

Furthermore, a partial recursive operator O is said to be general recursive iff
T ⊆ dom(O), and f ∈ T implies O(f) ∈ T.

A mapping O : P → P is called an effective operator iff there is a function
g ∈ R such that O(ϕi) = ϕg(i) for all i ∈ N. An effective operator O is said to
be total effective provided that R ⊆ dom(O), and ϕi ∈ R implies O(ϕi) ∈ R.

For more information about general recursive operators and effective operators
the reader is referred to [12,20,32]. If O is an operator which maps functions
to functions, we write O(f, x) to denote the value of the function O(f) at
the argument x. Any computable operator can be realized by a 3-tape Turing
machine T which works as follows: If for an arbitrary function f ∈ dom(O),
all pairs (x, f(x)), x ∈ dom(f) are written down on the input tape of T
(repetitions are allowed), then T will write exactly all pairs (x,O(f, x)) on
the output tape of T (under unlimited working time).

Let O be a general recursive or total effective operator. Then, for f ∈ dom(O),
m ∈ N we set: ∆O(f,m) =“the least n such that, for all x ≤ n, f(x) is defined
and, for the computation of O(f,m), the Turing machine T only uses the pairs

8

(x, f(x)) with x ≤ n; if such an n does not exist, we set ∆O(f,m) = ∞.”

For u ∈ R we define Ωu to be the set of all partial recursive operators O

satisfying ∆O(f,m) ≤ u(m) for all f ∈ dom(O). For the sake of notation,
below we shall use id + δ, δ ∈ N, to denote the function u(x) = x + δ for all
x ∈ N.

Note that in the following we use mainly ideas and techniques from Wieha-
gen [28] who proved theses theorems for the case δ = 0. Variants of these
characterizations for δ = 0 can also be found in Wiehagen and Liepe [29] as
well as in Odifreddi [21].

Furthermore, in the following we always assume that learning is done with
respect to any fixed ϕ ∈ Göd.

As in Blum and Blum [5] we define operator complexity classes as follows.
Let O be any computable operator; then we set

CO = {f | ∃i[ϕi = f ∧ ∀∞x[Φi(x) ≤ O(f, x)]]} ∩ R .

That is, a function f ∈ R belongs to the operator complexity class CO if it
possesses a program i computing it and the complexity Φi of program i is
bounded by O(f) almost everywhere.

In the following proofs we shall construct a-priori bounds for the computa-
tional complexity of the functions to be learned. For all functions in the target
class, these bounds are uniformly computable by using a computable opera-
tor which operates on a uniformly bounded range of the graph of the input
function. That is, for computing O(f, n) the operator needs only the function
values f(0), . . . , f(n + δ). Then we shall show that the knowledge of such a-
priori bounds for the computational complexity of the functions to be learned
suffices not only for their identification, but also for the synthesis of a program
having a complexity less than or equal to the upper bound almost everywhere.

First, we characterize T - CONSδ.

Theorem 6 Let U ⊆ R and let δ ∈ N; then we have: U ∈ T - CONSδ if and
only if there exists a general recursive operator O ∈ Ωid+δ such that O(R) ⊆ R
and U ⊆ CO.

Proof. Necessity. Let U ∈ T - CONSδ(S), S ∈ R. Then for all f ∈ R and all
n ∈ N we define O(f, n) = ΦS(fn+δ)(n).

Since ϕS(fn+δ)(n) is defined for all f ∈ R and all n ∈ N, by Condition (2) of
Definition 4, we directly get from Condition (1) of the definition of a com-
plexity measure that ΦS(fn+δ)(n) is defined for all f ∈ R and all n ≥ δ, too.
Moreover, for every t ∈ T and n ∈ N there is an f ∈ R such that tn = fn.

9

Hence, we have O(T) ⊆ R ⊆ T. Moreover, in order to compute O(f, n) the
operator O reads only the values f(0), . . . , f(n+δ). Thus, we have O ∈ Ωid+δ.

Now, let f ∈ U . Then the sequence (S(fn))n∈N converges to a correct ϕ–
program i for f . Consequently, O(f, n) = Φi(n) for almost all n ∈ N. There-
fore, we conclude U ⊆ CO.

Sufficiency. Let O ∈ Ωid+δ such that O(R) ⊆ R and U ⊆ CO. We have to
define a strategy S ∈ R such that U ∈ T - CONSδ(S). By the definition
of CO we know that for every f ∈ U there are i and k such that ϕi = f and
Φi(x) ≤ max{k, O(f, x)} for all x. Thus, the desired strategy S searches for
the first such pair (i, k) in the canonical enumeration c2 of N×N and converges
to i provided it has been found. Until this pair (i, k) is found, the strategy S
outputs auxiliary consistent hypotheses. For doing this, we choose aux ∈ R
such that for all α ∈ N∗, ϕaux(α) = α0∞.

S(fn) = “If n < δ then output aux (fn).
If n ≥ δ then compute O(f, x) for all x ≤ n .− δ. Search for the least z ≤ n
such that for c2(z) = (i, k) the conditions
(A) Φi(x) ≤ max{k, O(f, x)} for all x ≤ n .− δ, and
(B) ϕi(x) = f(x) for all x ≤ n .− δ
are fulfilled. If such a z is found, set S(fn) = i.
Otherwise, set S(fn) = aux (fn).”

Assume n ≥ δ. Since O ∈ Ωid+δ, the strategy can compute O(f, x) for all
x ≤ n .− δ and since c2 ∈ R, it also can perform the desired search effectively.
By Condition (2) of the definition of a complexity measure, the test in (A)
can be performed effectively, too. If this test has succeeded, then Test (B) can
also be effectively executed by Condition (1) of the definition of a complexity
measure. Thus, we get S ∈ R. Finally, by construction S is always consistent
with δ-delay, and if f ∈ U it converges to a correct ϕ–program for f . 2

Theorem 7 Let U ⊆ R and let δ ∈ N; then we have: U ∈ CONSδ if and
only if there exists a partial recursive operator O ∈ Ωid+δ such that O(U) ⊆ R
and U ⊆ CO.

Proof. The necessity is proved mutatis mutandis as in the proof of Theorem 6
with the only modification that O(f, n) is now defined for all f ∈ U instead
of f ∈ R. This directly yields O ∈ Ωid+δ, O(U) ⊆ R and U ⊆ CO.

The only modification for the sufficiency part is to leave S(fn) undefined if
O(f, x) is not defined for some x ≤ n .− δ. Note that this can happen if and
only if f /∈ U . We omit the details. 2

Unfortunately, we do not know how to characterize R- CONSδ in terms of
complexity.

10

We finish this subsection by using Theorem 6 to show that T - CONSδ is closed
under enumerable unions. Looking at applications this is a favorable property,
since it provides a tool to build more powerful learners from simpler ones.

Theorem 8 Let δ ∈ N and let (Si)i∈N be a recursive enumeration of strate-
gies working T -consistently with δ-delay. Then there exists a strategy S ∈ R
such that

⋃
i∈N T - CONSδ(Si) ⊆ T - CONSδ(S). Furthermore, a program for

S can be found recursively from a program enumerating programs for all and
only (Si)i∈N.

Proof. The proof of the necessity of Theorem 6 shows that the construction of
the operator O is effective provided a program for the strategy is given. Thus,
we effectively obtain a recursive enumeration (Oi)i∈N of operators Oi ∈ Ωid+δ

such that Oi(R) ⊆ R and T - CONSδ(Si) ⊆ COi
.

Now, we define an operator O as follows. Let f ∈ R and x ∈ N. We set
O(f, x) = max{Oi(f, x) | i ≤ x}.

By construction, we directly obtain O ∈ Ωid+δ and O(R) ⊆ R. Furthermore,
it is easy to see that

⋃
i∈N T - CONSδ(Si) ⊆ CO. Hence, by Theorem 6 we can

conclude
⋃
i∈N T - CONSδ(Si) ⊆ T - CONSδ(S). 2

On the other hand, CONSδ and R- CONSδ are not even closed under finite
union. This is a direct consequence of a more general result Barzdin [2] showed,
i.e., there are classes U = {f | f ∈ R, ϕf(0) = f} and V = {α0∞ | α ∈ N∗}
such that U ∪ V /∈ LIM. Now, it is easy to verify U , V ∈ R- CONSδ and
thus U , V ∈ CONSδ for every δ ∈ N, but since U ∪V /∈ LIM we clearly have
U ∪ V /∈ R- CONSδ and U ∪ V /∈ CONSδ for all δ ∈ N.

Next, we continue with characterizations in terms of computable numberings.

3.2 Characterizations in Terms of Computable Numberings

As we shall see below, the differences and similarities between the different
versions of consistent learning with δ-delay can be completely expressed by dif-
ferent versions of decidable consistency conditions. Therefore, adapting ideas
from Wiehagen and Zeugmann [31], next we define these decidable consistency
conditions.

Definition 9 Let U ⊆ R and let ψ ∈ P2 be any numbering. We say that

(1) δ-delayed U–consistency with respect to ψ is decidable iff there is a pred-
icate cons ∈ P2 such that for every α ∈ [U] and all i ∈ N, cons(α, i) is
defined and cons(α, i) = 1 if and only if α @δ ψi.

11

(2) δ-delayed U–consistency with respect to ψ is R–decidable iff there is
a predicate cons ∈ R2 such that for every α ∈ [U] and all i ∈ N,
cons(α, i) = 1 if and only if α @δ ψi.

(3) δ-delayed consistency with respect to ψ is decidable iff there is a predicate
cons ∈ R2 such that for every α ∈ N∗ and all i ∈ N, cons(α, i) = 1 if
and only if α @δ ψi.

Note that the proofs below use ideas from Wiehagen [27] and from Wiehagen
and Zeugmann [31].

Theorem 10 Let U ⊆ R, then we have: U ∈ T - CONSδ if and only if there
exists a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ,
(2) δ-delayed consistency with respect to ψ is decidable.

Proof. Necessity. Let U ∈ T - CONSδϕ(S) where ϕ ∈ P2 is any Gödel number-
ing and S is a δ-delayed T –consistent strategy. Let

M = {(z, n) | z, n ∈ N, ϕz(x) is defined for all x ≤ n, S(ϕnz) = z}

be recursively enumerated by a function e. Then define a numbering ψ as
follows. Let i, x ∈ N, e(i) = (z, n) and set

ψi(x) =



ϕz(x), if x ≤ n

ϕz(x), if x > n and, for any y ∈ N such that n < y ≤ x,

ϕz(y) is defined and S(ϕyz) = z

undefined, otherwise.

For showing (1) let f ∈ U and n, z ∈ N be such that for all m ≥ n, S(fm) = z.
Clearly, ϕz = f . Furthermore, (z, n) ∈M . Let i ∈ N be such that e(i) = (z, n).
Then, by the definition of ψ, we have ψi = ϕz = f . Hence U ⊆ Pψ.

In order to prove (2) we define cons ∈ R2 such that for all α ∈ N∗, i ∈ N,
cons(α, i) = 1 if and only if α @δ ψi. Let α = (a0, . . . , ax) ∈ N∗ and i ∈ N. Let
e(i) = (z, n). Then define

12

cons(α, i) =



1, if x < δ

1, if δ ≤ x ≤ n and, for every y such that y + δ ≤ x, ay = ψi(y)

1, if δ ≤ x, x > n and, for every y ≤ min{n, x− δ}, ay = ψi(y),

and S(a0, . . . , ay) = z for every y ∈ N such that n < y + δ ≤ x

0, otherwise.

Since e(i) = (z, n) ∈ M , by construction we know that ϕz(m) is defined for
all m ≤ n and S(ϕnz) = z. Thus, we have ψi(m) = ϕz(m) for all m ≤ n.
Consequently, if x ≤ n, then for all y ≤ x it can be effectively tested whether
or not ay = ψi(y). Furthermore, S ∈ R implies that S(a0, . . . , ay) can be
computed for every y ∈ N such that n < y + δ ≤ x. Thus, if x > n the
condition S(a0, . . . , ay) = z can be effectively checked for every y ∈ N such
that n < y + δ ≤ x. Consequently, cons ∈ R2.

It remains to show that for every α ∈ N∗, i ∈ N, we have cons(α, i) = 1 if and
only if α @δ ψi.

First, assume cons(α, i) = 1. As long as x < δ, we have α @δ ψi for every
α = (a0, . . . , ax). If δ ≤ x ≤ n then we have α @δ ψi, since this has been
checked in the second case of the definition of cons .

Now, let δ ≤ x and x > n. Then for every y ≤ min{n, x − δ} it has been
checked that ay = ψi(y). Thus, as long as x− δ ≤ n we are done. If x− δ > n
then we furthermore know that

S(a0, . . . , ay) = z for every y ∈ N such that n < y + δ ≤ x . (1)

Since S is a δ-delayed T –consistent strategy, we have

ϕz(m) = am for all m such that m+ δ ≤ x . (2)

By construction ψi(x) = ϕz(x) for all x ≤ n. By (2) we can conclude that
ϕz(y) is defined for all y such that n < y + δ ≤ x. Finally, (1) implies that
S(ϕyz) = z for all y such that n < y + δ ≤ x. Thus, ψi(m) = ϕz(m) for all m
such that m+ δ ≤ x. Therefore, by (2) we get α @δ ψi.

Next, assume α @δ ψi. We have to show that cons(α, i) = 1. This is obvious
for all x < δ. If δ ≤ x and x + δ ≤ n then the definition of cons directly
yields cons(α, i) = 1. Finally, if n < x + δ then, by construction, we know
that ψi(m) = ϕz(m) for all m such that m + δ ≤ x, since otherwise ψi(m)

13

is not defined for n < m + δ ≤ x. Additionally, S(ϕyz) = z for all y with
n < y + δ ≤ x. Thus, S(a0, . . . , ay) = z for all y such n < y + δ ≤ x, and
consequently cons(α, i) = 1. This proves the necessity.

Sufficiency. Let ψ ∈ P2 be any numbering. Let cons ∈ R2 be such that for
all α ∈ N∗, i ∈ N, cons(α, i) = 1 iff α @δ ψi. Let U ⊂ Pψ. For learning
any function f ∈ U consistently with δ-delay, it suffices to define S(fn) =
min{i | cons(fn, i) = 1}. However, S would be undefined if, for f /∈ U , n ∈ N,
there is no i ∈ N such that fn @δ ψi. This difficulty is circumvented by the
following definition. Let ϕ ∈ Göd. Let aux ∈ R be such that for any α ∈ N∗,
ϕaux(α) = α0∞. Finally, let c ∈ R be such that for all i ∈ N, ψi = ϕc(i). Then,
for any f ∈ R, n ∈ N, define a strategy S as follows.

S(fn) =

 c(j), if I = {i | i ≤ n, cons(fn, i) = 1} 6= ∅ and j = min I

aux (fn), I = ∅ .

Clearly, S ∈ R and S outputs only δ-delayed consistent hypotheses. Now let
f ∈ U . Then, obviously, (S(fn))n∈N converges to c(min{i | ψi = f}). Hence,
S witnesses U ∈ T - CONSδϕ. 2

Next, we characterize R- CONSδ in terms of computable numberings.

Theorem 11 Let U ⊆ R, then we have: U ∈ R- CONSδ if and only if there
exists a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ,
(2) δ-delayed U–consistency with respect to ψ is R–decidable.

Proof. The proof is similar to that of Theorem 10. The only difference affects
the predicate cons . Though its formal definition remains unchanged, the prop-
erties of cons change. That is, now we get cons ∈ R2 such that for all α ∈ [U],
i ∈ N, cons(α, i) = 1 iff α @δ ψi. 2

Finally, we characterize CONSδ. Again the proof is analogous to the one of
Theorem 10 and therefore omitted.

Theorem 12 Let U ⊆ R, then we have: U ∈ CONSδ if and only if there
exists a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ,
(2) δ-delayed U–consistency with respect to ψ is decidable.

14

4 Hierarchy Results

In this section we study the problem whether or not the introduction of δ-
delay to consistent learning yields an advantage with respect to the learning
power of the defined learning types.

For answering this problem it is advantageous to recall the definition of reliable
learning introduced by Blum and Blum [5] and Minicozzi [18]. Intuitively, a
learner M is reliable provided it converges if and only if it learns.

Definition 13 (Blum and Blum [5], Minicozzi [18]) Let U ⊆ R, M ⊆
T and let ϕ ∈ Göd. The class U is said to be reliably learnable on M if there
is a strategy S ∈ R such that

(1) U ∈ LIMϕ(S), and
(2) for all functions f ∈ M, if the sequence (S(fn))n∈N converges, say to j,

then ϕj = f .

By M-REL we denote the family of all function classes that are reliably learn-
able on M.

In particular, we shall consider the cases where M = T and M = R, i.e.,
reliable learnability on the set of all total functions and all recursive functions,
respectively.

Our first theorem shows that incrementing δ yields more learning power for δ-
delayed T -consistent strategies in general. On the other hand, when restricted
to learning predicates, the learning capabilities of T - CONSδ are not enlarged.
Only classes of predicates contained in NUM can be identified by δ-delayed
T -consistent strategies.

Theorem 14 The following statements hold for all δ ∈ N:

(1) T - CONSδ ⊂ T - CONSδ+1,
(2)

⋃
δ∈N T - CONSδ ⊂ T-REL,

(3) NUM∩ ℘(R{0,1}) = T - CONSδ ∩ ℘(R{0,1}) = T-REL ∩ ℘(R{0,1}),
(4) T - CONSδ ∩ ℘(R{0,1}) ⊂ R-REL ∩ ℘(R{0,1}).

Proof. We first prove Assertion (1). Let δ ∈ N be arbitrarily fixed. Then
by Definition 4 we obviously have T - CONSδ ⊆ T - CONSδ+1. For showing
T - CONSδ+1 \ T - CONSδ 6= ∅ we use the following class. Let (ϕ,Φ) be any
complexity measure; we set

U (ϕ,Φ)
δ+1 = {f | f ∈ R, ϕf(0) = f, ∀x[Φf(0)(x) ≤ f(x+ δ + 1)]} .

15

Claim 1. U (ϕ,Φ)
δ+1 ∈ T - CONSδ+1.

The desired strategy S is defined as follows. Let aux ∈ R be the function
defined in the sufficiency proof of Theorem 6. For all f ∈ R and all n ∈ N we
set

S(fn) =


f(0), if n ≤ δ or n > δ and Φf(0)(y) ≤ f(y + δ + 1)

and ϕf(0)(y) = f(y) for all y ≤ n .− δ .− 1

aux (fn), otherwise.

Now, by construction one easily verifies U (ϕ,Φ)
δ+1 ∈ T - CONSδ+1(S). This proves

Claim 1.

Claim 2. U (ϕ,Φ)
δ+1 /∈ T - CONSδ.

In order to show this claim, it is technically advantageous to have the following
notations. For two finite sequences of natural numbers σ and τ , let σ�τ denote
the concatenation of σ and τ . For all g ∈ P , m ∈ N, such that, for all k < m,
g(k) is defined, let g[m] denote g(0) � . . . � g(m − 1). Note that g[0] denotes
the empty sequence. For all g ∈ P , m < n ∈ N, such that, for all k with
m ≤ k ≤ n, g(k) is defined, let g[m,n] denote g(m) � . . . � g(n− 1).

Suppose the converse. Then there must be a strategy S ∈ R such that U (ϕ,Φ)
δ+1 ∈

T - CONSδϕ(S). We continue by constructing a function f belonging to U (ϕ,Φ)
δ+1

but on which S fails. By Kleene’s recursion theorem (cf. Rogers [23], Exercise
11-4) find e ∈ N such that for all x ∈ N

ϕe(x) =



e, if x < δ + 1 ,

Φe(x− δ − 1) + 1, else if x is divisible by δ + 1 and

S(ϕe[x]) = S(ϕe[x] � Φe[x− δ − 1, x]) ,

Φe(x− δ − 1), otherwise.

We set f = ϕe. By induction it is easy to see that f is total and f ∈ U (ϕ,Φ)
δ+1 .

By the definition of a complexity measure, we conclude Φe ∈ R, too.

By our supposition, S learns U (ϕ,Φ)
δ+1 and S is δ-delayed consistent. Conse-

quently, there must exist a t0 ∈ N such that (i) t0 is divisible by δ + 1,
(ii) ϕS(f [t0]) = f , and (iii) S(f [m]) = S(f [t0]) for all m > t0. We distinguish
the following cases.

Case 1. f(t0) = Φe(t0 − δ − 1) + 1

Then by (ii) we have

16

ϕS(f [t0])(t0) = f(t0) = Φe(t0 − δ − 1) + 1 . (3)

Furthermore, by construction we have S(f [t0]) = S(f [t0] � Φe[t0 − δ − 1, t0]).
Since S is δ-delayed consistent we get

f(t0) = ϕS(f [t0]�Φe[t0−δ−1,t0])(t0) = Φe(t0 − δ − 1) ,

a contradiction to (3). Thus, this case cannot happen.

Case 2. f(t0) = Φe(t0 − δ − 1)

We show

f [t0] � Φe[t0 − δ − 1, t0] = f [t0 + δ + 1] . (4)

Since both sequences have the same length, the following shows the equality.

For 0 ≤ x < t0 the equality is obvious. For x = t0 we have the equality by the
assumption of Case 2.

Finally, let t0 < x ≤ t0 + δ. By (i) we know that t0 is divisible by δ + 1.
Thus, x is not divisible by δ + 1. Hence, by the definition of f we know that
f(x) = Φe(x− δ − 1), and the equality is shown.

On the other hand, by (4) and (iii) we get S(f [t0]) = S(f [t0]�Φe[t0−δ−1, t0]).
Consequently, by construction of f we must have f(t0) = Φe(t0 − δ − 1) + 1,
a contradiction.

So, Case 2 cannot happen either, and thus U (ϕ,Φ)
δ+1 /∈ T - CONSδ.

This proves Claim 2. Assertion (1) now follows from Claim 1 and 2.

Taking into account that a strategy working T -consistently with δ-delay con-
verges when successively fed any function f if and only if it learns f , we
directly get T - CONSδ ⊆ T-REL for every δ ∈ N. Furthermore, as shown in
Minicozzi [18], T-REL is closed under recursively enumerable union. There-

fore, setting U =
⋃
δ∈N U

(ϕ,Φ)
δ+1 we can conclude U ∈ T-REL. But obviously

U /∈ T - CONSδ for any δ. This proves Assertion (2).

For showing Assertion (3), we prove that for every operator O ∈ Ωid+δ there
is a monotone operator Ô ∈ Ωid+δ such that O(f, x) ≤ Ô(f, x) for all f ∈ R
and all x ∈ N. Here, we call an operator monotone if, for all f, g ∈ R and
∀x[f(x) ≤ g(x)] implies ∀x[O(f, x) ≤ O(g, x)]. This can be seen as follows.
Let α = (α0, . . . , αm) and β = (β0, . . . , βm) be any tuples of length m + 1
from N∗. We write α ≤ β if αi ≤ βi for all i = 0, . . . ,m. Now, let O ∈ Ωid+δ.

17

We define

Ô(β, x) = max{O(α, x) | |α| = |β| = x+ δ + 1, α ≤ β} .

Since the operator O, for computing the value O(α, x), just needs the values
α0, . . . , αx+δ, we see that Ô is properly defined, and, by its definition, Ô ∈
Ωid+δ, Ô is monotone, and O(f, x) ≤ Ô(f, x) for all f ∈ R and all x ∈ N.

By Theorem 6, for every class U ∈ T - CONSδ ∩℘(R{0,1}) there is an operator

O ∈ Ωid+δ such that O(R) ⊆ R and U ⊆ CO. Let Ô be the monotone
operator constructed for O. Consequently, for every function f ∈ U there
is a ϕ–program i such that ϕi = f and ∀∞x[Φi(x) ≤ Ô(1∞, x)]. Thus, by
the Extrapolation Theorem we can conclude U ∈ NUM (cf. Barzdin and
Freivalds [4]).

The same ideas can be used to show 1 the remaining part for T-REL (cf.
Grabowski [11]). Hence, Assertion (3) is shown.

Finally, Assertion (4) is an immediate consequence of Assertion (3) and The-
orems 2 and 3 from Stephan and Zeugmann [25] which together show that
NUM∩ ℘(R{0,1}) ⊂ R-REL ∩ ℘(R{0,1}). This completes the proof. 2

Together with Theorem 8 the proof of Theorem 14 allows for a nice corollary.

Corollary 15 For all δ ∈ N we have:

(1) CONSδ ⊂ CONSδ+1,
(2) R- CONSδ ⊂ R- CONSδ+1.

Proof. We use U (ϕ,Φ)
δ+1 from the proof of Theorem 14 and V = {α0∞ | α ∈ N∗}.

Clearly, U (ϕ,Φ)
δ+1 , V ∈ T - CONSδ+1 and hence, by Theorem 8 we also have

U (ϕ,Φ)
δ+1 ∪ V ∈ T - CONSδ+1. Consequently, U (ϕ,Φ)

δ+1 ∪ V ∈ R- CONSδ+1 and

U (ϕ,Φ)
δ+1 ∪ V ∈ CONSδ+1. It remains to argue that U (ϕ,Φ)

δ+1 ∪ V /∈ CONSδ. This
will suffice, since R- CONSδ ⊆ CONSδ.

Suppose the converse, i.e., there is a strategy S ∈ P such that U (ϕ,Φ)
δ+1 ∪ V ∈

CONSδ(S). By the choice of V we can directly conclude that S ∈ R and
that S has to work consistently with δ-delay on every fn, f ∈ R and n ∈ N.
But this implies U (ϕ,Φ)

δ+1 ∪ V ∈ T - CONSδ(S), a contradiction to U (ϕ,Φ)
δ+1 /∈

T - CONSδ. 2

1 Of course, Grabowski’s [11] result that T-REL ∩ ℘(R{0,1}) = NUM∩ ℘(R{0,1})
directly implies Assertion (3) by using Assertion (2). We included the part
T - CONSδ ∩ ℘(R{0,1}) = NUM ∩ ℘(R{0,1}) here to make the paper more self-
contained and for explaining the basic proof ideas.

18

A closer look at the proof of Corollary 15 shows that we have even proved the
following corollary shedding some light on the power of our notion of δ-delay.

Corollary 16 T - CONSδ+1 \ CONSδ 6= ∅ for all δ ∈ N.

On the one hand, the Corollary 16 shows the strength of δ-delay. On the
other hand, the δ-delay cannot compensate for all the learning power that is
provided by the different consistency demands on the domain of the strategies.

Theorem 17 R- CONS \ T - CONSδ 6= ∅ for all δ ∈ N.

Proof. The proof uses the class U = {f | f ∈ R, ϕf(0) = f} of self-describing
functions. Obviously, U ∈ R- CONS(S) as witnessed by the strategy S(fn) =
f(0) for all f ∈ R and all n ∈ N. Now, assuming U ∈ T - CONSδ for some
δ ∈ N would directly imply that U ∪ V ∈ T - CONSδ for the same δ (here V
is the class defined in the proof of Corollary 15) by Theorem 8. But this is a
contradiction to U ∪ V /∈ LIM as shown in Barzdin [2]. 2

Corollary 16 and Theorem 17 together imply the following incomparabilities.

Corollary 18 T - CONSδ # CONSµ and T - CONSδ # R- CONSµ for all
δ, µ ∈ N provided δ > µ.

Next we show the analogue to Theorem 17 for R- CONSδ and CONS.

Theorem 19 CONS \ R- CONSδ 6= ∅ for all δ ∈ N.

Proof. The proof uses the class U = {f | f ∈ R, either ϕf(0) = f or ϕf(1) = f}
and ideas from Wiehagen and Zeugmann [31]. As shown in [31], U ∈ CONS.

It remains to show that U /∈ R- CONSδ for all δ ∈ N. Let δ ∈ N be arbitrarily
fixed. Suppose there is a strategy S ∈ R such that U ∈ R- CONSδϕ(S) .

Applying Smullyan’s Recursion Theorem, cf. Smullyan [24], we construct a
function f ∈ U such that either S changes its mind infinitely often when
successively fed fn or there is an x ∈ N such that ϕS(fx) violates the δ-delay
consistency condition. Since both cases yield a contradiction to the definition
of R- CONSδ, we are done. The wanted function f is defined as follows. Let
h and s be two recursive functions such that for all i, j ∈ N, ϕh(i,j)(0) =
ϕs(i,j)(0) = i and ϕh(i,j)(1) = ϕs(i,j)(1) = j. For any i, j ∈ N, x ≥ 2, we
proceed inductively.

Suspend the definition of ϕs(i,j). Define ϕh(i,j) for more and more arguments
via the following procedure. Note that (A) and (B) can be effectively checked,
since S ∈ R.

(T) Test whether or not (A) or (B) happens

19

(A) S(ϕxh(i,j)) 6= S(ϕxh(i,j)0
δ+1),

(B) S(ϕxh(i,j)) 6= S(ϕxh(i,j)1
δ+1).

If (A) happens, then let ϕh(i,j)(x + 1) = · · · = ϕh(i,j)(x + δ + 1) = 0, let
x := x+ δ + 2, and goto (T).
In case (B) happens, set ϕh(i,j)(x + 1) = · · · = ϕh(i,j)(x + δ + 1) = 1, let
x := x+ δ + 2, and goto (T).
If neither (A) nor (B) happens, then define ϕh(i,j)(x

′) = 0 for all x′ > x, and
goto (∗).

(∗) Set ϕs(i,j)(n) = ϕh(i,j)(n) for all n ≤ x, and ϕs(i,j)(x
′) = 1 for all x′ > x.

By Smullyan’s Recursion Theorem [24], there are numbers i and j such that
ϕi = ϕh(i,j) and ϕj = ϕs(i,j). Now we distinguish the following cases.

Case 1. The loop in (T) is never left.

Then ϕi ∈ R and ϕi(0) = i. Since ϕj = ij, and hence a finite function, we
obtain ϕi ∈ U . Moreover, in accordance with the definition of the loop (T), on
input ϕni the strategy S changes its mind infinitely often and thus does not
learn ϕi.

Case 2. The loop in (T) is left.

Then there exists an x such that S(ϕxh(i,j)) = S(ϕxh(i,j)0
δ+1) = S(ϕxh(i,j)1

δ+1).
Moreover, we have ϕh(i,j) = ϕi, ϕs(i,j) = ϕj and, by (∗), ϕi(n) = ϕj(n) for all
n ≤ x. Additionally, by construction we know that ϕi(0) = i and ϕj(1) = j as
well as ϕi, ϕj ∈ R. Since in particular ϕi(x+ 1) 6= ϕj(x+ 1), we get ϕi 6= ϕj.
Consequently, both functions ϕi and ϕj belong to U .

Now, we see that S(ϕxi) = S(ϕxj) = S(ϕxi 0
δ+1) = S(ϕxi 1

δ+1) and additionally

ϕi(x+ 1) = · · · = ϕi(x+ δ + 1) = 0

ϕj(x+ 1) = · · · = ϕj(x+ δ + 1) = 1 .

Let k = S(ϕxj) and distinguish the following subcases.

Subcase 2.1. ϕk(x+ 1) is not defined or ϕk(x+ 1) is defined and ϕk(x+ 1) /∈
{0, 1}.

Then, since we also have k = S(ϕxi 0
δ+1) = S(ϕxi 1

δ+1) the δ-delay consistency
condition is violated on both inputs ϕxi 0

δ+1 and ϕxi 1
δ+1 to S, a contradiction

to U ∈ R- CONSδϕ(S).

Subcase 2.2. ϕk(x+ 1) is defined and ϕk(x+ 1) ∈ {0, 1}.

First, let ϕk(x+ 1) = 0. Then we know that ϕk(x+ 1) 6= ϕj(x+ 1) = 1. Thus,

20

the hypothesis k which is also output on input ϕxj 1
δ+1 (recall that ϕxi = ϕxj)

is violating the δ-delay consistency condition.

The case ϕk(x + 1) = 1 is handled analogously. Therefore, we get again a
contradiction to U ∈ R- CONSδϕ(S), and thus there is no strategy S ∈ R
such that U ∈ R- CONSδϕ(S). 2

Finally, putting Theorem 17 and 19 together we directly arrive at the following
corollary.

Corollary 20 T - CONSδ ⊂ R- CONSδ ⊂ CONSδ for all δ ∈ N.

5 Coherence and Consistency

Next, we introduce coherent learning (again with δ-delay). While our consis-
tency with δ-delay demand requires a strategy to correctly reflect all but at
most the last δ data seen so far, the coherence requirement only demands to
correctly reflect the value f(n .− δ) on input fn.

As already mentioned at the end of Section 2 another relaxation of consistency
is conformity. A conform strategy is only allowed to make errors of ommission
for the function values it has already seen. But of course, as Wiehagen’s [28]
result CONS ⊂ CONF ⊂ LIM shows, in general it is impossible for a
strategy to find out whether or not it makes an error of ommission for the
function values it has already received.

Therefore, in this section we look at the other extreme. What is the knowledge
worth to know that always a particular function value already seen is correctly
reflected. Clearly, if it is always the same one, then this knowledge is useless,
since this value can also be patched in the sequence of hypotheses without
altering its convergence. The same trick works mutatis mutandis for any finite
fixed set of positions. This observation led to our definition of coherent learning
with δ-delay presented below.

Definition 21 Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called
coherently learnable in the limit with δ-delay with respect to ψ iff there is a
strategy S ∈ P such that

(1) U ∈ LIMψ(S),
(2) ψS(fn)(n

.− δ) = f(n .− δ) for all f ∈ U and all n ∈ N such that n ≥ δ.

COHδ
ψ(S), COHδ

ψ and COHδ are defined analogously to the above.

Now, performing the same modifications to coherent learning with δ-delay as

21

we did in Definitions 3 and 4 to consistent learning with δ-delay results in the
learning types R- COHδ and T - COHδ, respectively. We therefore omit the
formal definitions of these learning types here.

Using standard techniques one can show that for all δ ∈ N and all learning
types LT ∈ {COHδ, R- COHδ, T - COHδ} we have LTϕ = LT for every
ϕ ∈ Göd.

Next, we study the problem whether or not the relaxation to learn coherently
with δ-delay instead of demanding consistency with δ-delay does enhance the
learning power of the corresponding learning types introduced in Section 2.

If we look again at the teacher student scenario described in the Introduc-
tion, then the answer should be intuitively clear. A coherent student always
correctly remembers the content of the last lecture. Supposing we have ac-
cess to coherent students s0, s1, . . . , sn having attended lecture 0, 1, 2, . . . , n,
respectively, we can correctly reconstruct the content of all these n lectures by
asking student si about lecture i, i = 0, . . . , n. So, coherent learning should be
exactly as powerful as consistent learning. Now, it should also be clear that
this intuition extends when the δ-delay is included. Consequently, the main
technical problem is then the simulation of the coherent students.

Theorem 22 Let δ ∈ N be arbitrarily fixed. Then we have

(1) CONSδ = COHδ,
(2) R- CONSδ = R- COHδ,
(3) T - CONSδ = T - COHδ.

Proof. By definition, we obviously have CONSδ ⊆ COHδ, R- CONSδ ⊆
R- COHδ and T - CONSδ ⊆ T - COHδ.

For showing the opposite directions we can essentially use in all three cases the
same idea. Let δ ∈ N, ϕ ∈ Göd, U ⊆ R and any strategy Ŝ be arbitrarily fixed
such that U ∈ LTϕ(Ŝ), where LT ∈ {COHδ, R- COHδ, T - COHδ}. Next, we
define a strategy S as follows. Let f ∈ R and let n ∈ N. On input fn do the
following.

1. Compute Ŝ(f 0), . . . , Ŝ(fn) and determine the largest number n∗ ≤ n such
that Ŝ(fn

∗−1) 6= Ŝ(fn
∗
).

2. Output the canonical ϕ–program i computing the following function g:
g(x) = f(x) for all x ≤ n∗, and
g(x) = ϕŜ(fn∗)(x) for all x > n∗.

First, we show that S learns U consistently with δ-delay.

By construction, we have ϕS(fn)(x) = f(x) for all x ≤ n∗, and thus S is

22

consistent on all data f(0), . . . , f(n∗). If n − n∗ ≤ δ, we are already done.
Finally, if n − n∗ > δ, then we exploit the fact that Ŝ works coherently with
δ-delay and that Ŝ(fn

∗+k) = Ŝ(fn
∗
) for all k = 1, . . . , n − n∗. Thus, for all

k ∈ {1, . . . , n− n∗ − δ} we get

ϕS(fn)(n
∗ + k) =ϕŜ(fn∗)(n

∗ + k) = ϕŜ(fn∗+δ+k)(n
∗ + k) = f(n∗ + k) . (5)

Since in this case Ŝ(fn) is defined for all f ∈ U and all n ∈ N, we can directly
conclude that S(fn) is defined for all f ∈ U and all n ∈ N, too. Moreover, by
assumption we know that Ŝ learns f and thus S also learns f . This proves
Assertion (1).

If Ŝ ∈ R, then so is S and thus Assertion (2) follows.

Finally, if Ŝ ∈ R and Ŝ works T –coherently, then we directly get S ∈ R and
S is T –consistent, since now (5) is true for all f ∈ R. This completes the
proof. 2

6 Conclusions and Future Work

Looking for possible relaxations for the demand to learn consistently we have
introduced the notions δ-delay and of coherent learning. As our results show,
coherent learning with δ-delay has the same learning power as consistent learn-
ing with δ-delay for all versions considered. Thus, coherence is in fact no
weakening of the consistency demand.

On the other hand, we could establish three new infinite hierarchies of consis-
tent learning in dependence on the delay δ.

The figure below summarizes the achieved separations and coincidences of the
various coherent and consistent learning models investigated in this paper.

Moreover, we showed characterization theorems for CONSδ and T - CONSδ in
terms of complexity and in terms of computable numberings. These theorems
provide a first explanation for the increase in learning power caused by the
δ-delay. Looking at the characterizations in terms of computable numberings,
we see that differences between CONSδ, R- CONSδ and T - CONSδ have
been traced back to the decidability of different consistency-related decision
problems.

Our characterizations in terms of complexity express the difference between
CONSδ and T - CONSδ by different sets of admissible operators, i.e., O(U) ⊆
R versus O(R) ⊆ R. Moreover, the power of the δ-delay is nicely reflected by

23

T - COH ⊂ T - COH1 ⊂ · · · ⊂ T - COHδ ⊂ T - COHδ+1 ⊂ · · · ⊂ T-REL

T - CONS ⊂ T - CONS1 ⊂ · · · ⊂ T - CONSδ ⊂ T - CONSδ+1 ⊂ · · · ⊂ T-REL

∩ ∩ ∩ ∩ ∩

R- COH ⊂ R- COH1 ⊂ · · · ⊂ R- COHδ ⊂ R- COHδ+1 ⊂ · · · # R-REL

R- CONS ⊂R- CONS1 ⊂ · · · ⊂R- CONSδ ⊂R- CONSδ+1 ⊂ · · · # R-REL

∩ ∩ ∩ ∩ ∩

COH ⊂ COH1 ⊂ · · · ⊂ COHδ ⊂ COHδ+1 ⊂ · · · ⊂ LIM

CONS ⊂ CONS1 ⊂ · · · ⊂ CONSδ ⊂ CONSδ+1 ⊂ · · · ⊂ LIM

Fig. 1. Hierarchies of consistent learning with δ-delay

the amount of data needed to compute O(f, n), i.e., O ∈ Ωid+δ. Furthermore,
the characterization for T - CONSδ proved to be very useful for showing the
closure of T - CONSδ under recursively enumerable unions.

Thus, it would be nice to find also a characterization forR- CONSδ in terms of
complexity. This seems to be a challenging problem. The difficulty here is that
the conditions U ⊆ CO and O ∈ Ωid+δ cannot be changed. Varying O(R) ⊆
R to O(U) ⊆ R explains the difference between T - CONSδ and CONSδ.
Consequently, the only parameter allowing a further variation is the domain
of the admissible operators. In order to characterize R- CONSδ one should
demand dom(O) = R, O(U) ⊆ R and U ⊆ CO. While these requirements can
easily be shown to be necessary, it is hard too see their sufficiency, since an
R-consistent learner with δ-delay must output a hypothesis on every input.

Acknowledgements

The authors heartily thank the anonymous referees for their careful reading
and the many valuable comments made. In particular we are grateful to one
referee for proposing a simplified proof for Claim 2 in Theorem 14.

References

[1] M. Anthony and N. Biggs. Computational Learning Theory. Cambridge Tracts
in Theoretical Computer Science (30). Cambridge University Press, Cambridge,

24

1992.

[2] J. M. Barzdin. Dve teoremy o predel~nom sinteze funkciĭ. In J. M. Barzdin,
editor, Teori� Algoritmov i Programm, volume I, pages 82 – 88. Latvian State
University, 1974.

[3] J. M. Barzdin. Inductive inference of automata, functions and programs.
In Proc. of the 20-th International Congress of Mathematicians, Vancouver,
Canada, pages 455–460, 1974. (republished in Amer. Math. Soc. Transl. (2)
109, 1977, pp.107- 112).

[4] J. M. Barzdin and R. V. Freivalds. On the prediction of general recursive
functions. Soviet Math. Dokl., 13:1224–1228, 1972.

[5] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Inform. Control, 28(2):125–155, June 1975.

[6] M. Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14(2):322–336, 1967.

[7] R. P. Daley. On the error correcting power of pluralism in BC-type inductive
inference. Theoret. Comput. Sci., 24(1):95–104, 1983.

[8] R. Freivalds, E. B. Kinber, and R. Wiehagen. How inductive inference strategies
discover their errors. Inform. Comput., 118(2):208–226, 1995.

[9] M. A. Fulk. Saving the phenomenon: Requirements that inductive inference
machines not contradict known data. Inform. Comput., 79(3):193–209, 1988.

[10] E. M. Gold. Language identification in the limit. Inform. Control, 10(5):447–
474, 1967.

[11] J. Grabowski. Starke Erkennung. In R. Linder and H. Thiele, editors,
Strukturerkennung diskreter kybernetischer Systeme, volume 82, pages 168–184.
Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin,
1986.

[12] J. P. Helm. On effectively computable operators. Zeitschrift für mathematische
Logik und Grundlagen der Mathematik (ZML), 17:231–244, 1971.

[13] S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems that Learn:
An Introduction to Learning Theory, second edition. MIT Press, Cambridge,
Massachusetts, 1999.

[14] K. P. Jantke and H.-R. Beick. Combining postulates of naturalness in inductive
inference. Elektronische Informationsverarbeitung und Kybernetik, 17(8/9):465–
484, 1981.

[15] Y. Kodratoff and R. Michalski, editors. Machine Learning: An Artificial
Intelligence Approach, volume III. Morgan Kaufmann, Los Altos, California,
1990.

25

[16] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning:
An Artificial Intelligence Approach, volume I. Morgan Kaufmann, Los Altos,
California, 1983.

[17] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning:
An Artificial Intelligence Approach, volume II. Morgan Kaufmann, Los Altos,
California, 1986.

[18] E. Minicozzi. Some natural properties of strong identification in inductive
inference. Theoret. Comput. Sci., 2(3):345–360, 1976.

[19] T. M. Mitchell. Machine Learning. WCB/McGraw-Hill, Boston, Massachusetts,
1997.

[20] P. Odifreddi. Classical Recursion Theory. North Holland, Amsterdam, 1989.

[21] P. Odifreddi. Classical Recursion Theory, Vol. II. North Holland, Amsterdam,
1999.

[22] D. N. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction
to Learning Theory for Cognitive and Computer Scientists. MIT Press,
Cambridge, Massachusetts, 1986.

[23] H. J. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted, MIT Press 1987.

[24] R. M. Smullyan. Theory of formal systems, volume 47 of Annals of Mathematics
Studies. Princton University Press, Princeton, New Jersey, USA, 1961.

[25] F. Stephan and T. Zeugmann. Learning classes of approximations to non-
recursive functions. Theoret. Comput. Sci., 288(2):309–341, 2002.

[26] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, Berlin, 2nd
edition, 2000.

[27] R. Wiehagen. Characterization problems in the theory of inductive inference.
In Automata, Languages and Programming Fifth Colloquium, Udine, Italy, July
17-21, 1978, volume 62 of Lecture Notes in Computer Science, pages 494 – 508,
Berlin, 1978. Springer-Verlag.

[28] R. Wiehagen. Zur Theorie der Algorithmischen Erkennung. Dissertation B,
Humboldt-Universität zu Berlin, 1978.

[29] R. Wiehagen and W. Liepe. Charakteristische Eigenschaften von erkennbaren
Klassen rekursiver Funktionen. Elektronische Informationsverarbeitung und
Kybernetik, 12(8/9):421–438, 1976.

[30] R. Wiehagen and T. Zeugmann. Ignoring data may be the only way to learn
efficiently. J. of Experimental and Theoret. Artif. Intell., 6(1):131–144, 1994.

[31] R. Wiehagen and T. Zeugmann. Learning and consistency. In Algorithmic
Learning for Knowledge-Based Systems, volume 961 of Lecture Notes in
Artificial Intelligence, pages 1–24. Springer, 1995.

26

[32] T. Zeugmann. On the nonboundability of total effective operators. Zeitschrift
für mathematische Logik und Grundlagen der Mathematik (ZML), 30:169–172,
1984.

27

