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For EX- and BC-type identification, one-sided error probabilistic inference and 
reliable frequency identification on sets of functions are introduced. In particular, 
we relate the one to the other and characterize one-sided error probabilistic 
inference to exactly coincide with reliable frequency identification, on any set 9R. 
Moreover, we show that reliable EX and BC-frequency inference forms a new 
discrete hierarchy having the breakpoints 1, l/2, l/3, Et 1991 Academic Press. Inc 

1. INTB~DUCTION 

Inductive inference has its historical origins in the philosophy of science. 
Within the last two decades it has attracted much attention from computer 
scientists. The theory of inductive inference can be considered as a form of 
machine learning with potential applications to artificial intelligence 
(cf. Osherson et al., 1986). Nowadays inductive inference is a well- 
developed mathematical theory which has been the subject of collections of 
papers (cf. Barzdin, Ed., 1974, 1975, 1977) and of several excellent survey 
papers (cf. Angluin and Smith, 1983, 1986; Daley, 1986; Klette and 
Wiehagen, 1980). Part of the following work was suggested by an open 
problem presented in Daley (1986). 

As in previous studies, we deal with the synthesis of programs for recur- 
sive functions. An inductive inference machine (abbr. IIM) is a recursive 
device (deterministic, probabilistic, or pluralistic) which, when fed more 
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and more ordered pairs from the graph of some function, outputs more 
and more hypotheses, i.e., programs. There are many possible requirements 
on the sequence of all actually created programs. Considering deterministic 
and probabilistic IIM we shall study explanatory (EX, EX,,,) inference, 
where the sequence of programs has to converge to a single program 
correctly computing the function to be identified, as well as behaviorally 
correct (BC, BC,,,,) f in erence; i.e., all but finitely many programs have to 
satisfy the relevant correctness criterion. Furthermore, the correctness 
criteria range from absolute correctness to finite error tolerance. On the 
other hand, investigating pluralistic IIMs we shall distinguish between the 
following two cases: First, the sequence of programs is required to contain 
a particular correct hypothesis with a certain frequency (EX,,,). In the 
second case the sequence of programs is required to contain with a certain 
frequency correct but possibly distinct programs (BC,,,). The reader is 
encouraged to consult Case and Smith (1983), Pitt (1989), and Podnieks 
(1974, 1975) for further information. 

Moreover, we generalize the reliability notion originally introduced by 
Blum and Blum (1975) and Minicozzi (1976) to all these modes of iden- 
tification. For EX-type inference, an IIM works reliably on a certain set ‘$I 
of functions (e.g., the total functions or the recursive functions) if for every 
function from llJz the sequence of created programs does not converge to an 
incorrect solution. Hence the IIM itself recognizes whether its last 
hypothesis may be or may not be correct. In the latter case it performs a 
mind change; i.e., it outputs a program different from the previous one. 
Thereby the IIM A4 implicitly transmits an error message to the outside 
word. If A4 identifies some function from VJI then its sequence of error 
messages is finite, otherwise it is infinite. Thus our generalization works as 
follows: Instead of outputting programs, now the IIM M is required to 
output ordered pairs (i,, b), where the i, are the programs and b E { 0, 1). 
If b = 0, we interpret (i,, 0) as an error message. In other words, b = 1 
indicates that M trusts in its current hypothesis. If M does not identify 
some function from %II then it again produces an infinite sequence of error 
messages. Otherwise, the output sequence contains only finitely many error 
messages and among all created programs there are, with a certain 
frequency, correct ones. 

Transmitting this approach to probabilistic IIMs we get that on some 
function from YA all possible computations yield either an infinite sequence 
of error messages or a finite one, independently of the sequence of coin- 
flips. Furthermore, in the latter case, with a certain probability, there must 
occur sequences of programs satisfying the particular identification 
criterion. Hence, all uncertainty lies in the domain of identilication. Conse- 
quently we can interpret this type of probabilistic identification as one-sided 
error probabilistic inference. 
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In the present paper, first we extent Pitt’s (1984, 1989) unification results 
in characterizing one-sided error probabilistic inference to coincide with 
reliable frequency identification. Second we prove that the introduced 
reliability notion ensures the useful properties known for the ordinary case, 
i.e., closure under union and finite invariance (cf. Minicozzi, 1976). Third 
we investigate the power of reliable EX-type and BC-type frequency 
inference in comparing them with ordinary frequency identification. 
Thereby we obtain the strongest possible result, i.e., we show that there are 
classes that are reliable EX-identifiable on the set of all total functions with 
frequency l/(k + 1) not contained in BC&,& l/k), for all numbers k. This 
directly yields four infinite hierarchies. Finally we discuss open problems. 

A picture showing the relationships between all the concepts of iden- 
tification studied in the present paper is given at the end of Section 3. 

2. BASIC DEFINITIONS AND NOTATIONS 

Unspecified notations follow Rogers (1967). N = (0, 1,2, . ...} denotes the 
set of all natural numbers. The classes of all partial recursive and recursive 
functions of n variables over N are denoted by [FD” and Iw”, respectively. For 
n = 1 we omit the upper index. The classes of all partial and total functions 
over N are denoted by W and TF, respectively. Let f o PF; then we set 
Arg f = {x/f(x) is defined} and Val f = {f (x)/f(x) is defined). For n E N, 
we denote by T[F, and [w, the classes of all functions f E PF and f E P, 
respectively, for which card( N-Arg f) G n. The classes of all functions f E P 
and f E l!J[F with colinite domains are denoted by [w, and TF,, respectively. 
Let f, gE TF, and nE N; we write f(n) <g(n) if both f(n) and g(n) are 
defined and f(n) is not greater than g(n). Furthermore, for f, g E Uff * and 
HEN we write f =,g and f =*g iff card({x/f(x)#g(x)})<n and 
car4 {x/f(x) f g(x) > ) <co, respectively. Let fCg iff {(x,f(x))/xsArgf} 
E {(x3 dx))lx E Arg g}. 

BY cpo, ~1, (~2, . . . . we denote a fixed acceptable programming system of 
all (and only all) the partial recursive functions, and by @,, @,, @,, . . . . an 
associated computational complexity measure (cf. Machtey and Young, 
1978). IffE P and iE N are such that vi = f then i is called a program for ,f: 
If q,(x) is defined (written: q,(x),), we also say that q,(x) converges; 
otherwise q,(x) diverges (written q,(x) r ). 

Sometimes it will be suitable to identify a recursive function with the 
sequence of its values; e.g., O’lOm denotes the function ffor which f (i) = 1 
and f (x) = 0 for all x # i. Using a fixed effective encoding ( . . . ) of all finite 
sequences of natural numbers onto N we write fn instead of 
((f(O), . . ..f(n)>. for any nE N, fE PF, where f(x) is defined for all x~n. 
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Proper set inclusion is denoted by c in distinction from c; and by # 
we denote incomparability of sets. 

A sequence (.LJneN of natural numbers is said to be convergent to a 
number j iff j, =j for almost all II. 

Now we define several concepts of identification. In the sequel we deal 
only with the inference of everywhere defined functions, since this suffices 
to get the desired results. Unless otherwise stated, an IIM M is just a par- 
tial recursive function. Suppose an IIM M is given the graph of some func- 
tion f E U[F as input. We may suppose without loss of generality that f is 
given in its natural order (f (0) f (1) . ...) to M (cf. Blum and Blum, 1975). 

DEFINITION 1. Let a E N u ( * }, and let f E TIF. An IIM M EX”-iden- 
tifies f iff M(f”) is defined for any n E N, and the sequence (J4(f”)),,N 
converges to a number i such that ‘pi = J 

If M does EX”-identify f, we write f E EXa(M). The collection of EX”- 
inferrible sets is denoted by EX”; formally, EX” = ( U/3M [U 5 EX”(M)] }. 
For a = 0 we omit the upper index. 

EX-identification was originally introduced by Gold (1965) (so-called 
identification in the limit), whereas the a = * case was studied first by Blum 
and Blum (1975). Furthermore, Case and Smith (1983) have investigated 
EX”-identification for all a E N u { * 1, obtaining the hierarchy 

EXcEX’c ... c u EXUcEX*. 
USN 

Interesting results concerning the power of EX”-identification can also be 
found in Chen (1982). 

DEFINITION 2. Let %JI s %[F, and let a E N u { * 1. An IIM ME [w works 
EX”-reliably on the set 9JI iff for every function f E %R either the sequence 
WW-YL, N converges to a number i such that ‘pi =,f or it diverges. 

DEFINITION 3. Let a~fVu{*}, and let !JJI s TF. An IIM M reliably 
EX”-identifies f E U[F on the set 9JI iff M works EX”-reliably on the set YJI 
and M EX”-identifies J: 

If M does reliably EX”-identify f on the set YJI we write f E m-REX”(M). 
The collection of reliably on ‘DI EX”-identifiable sets is denoted by 
m-REX”. Again, for a = 0 we omit the upper index. 

Reliably working IIMs were originally introduced and studied by Mini- 
cozzi (1976) and Blum and Blum (1975) in case a = 0, *. In Kinber and 
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Zeugmann (1985) the collections UIF-REX” and [W-REX” have been 
considered and the following hierarchy was pointed out: 

TF-REX c TF-REX’ c . . . c U TF-REX”cTF-REX* 
ueN 

n n n A 

[W-REX c [W-REX’ c . . c u F&REX” c E&REX* 
utN 

Next we consider behaviorally correct inference which has been intro- 
duced by Barzdin (1974) and which has been studied intensively in Case 
and Smith (1983). 

DEFINITION 4. Let a E N u { * }, and let f~ UF. An IIM A4 BC”-iden- 
tiliesfiff M(f”) is defined for all IZE N, and v~,~~, =,f, for almost all n. 

We write f~ BCa(M), if M does BC”-identify f and set 
BC”= { U/3M[UcBC”(M)]}. 

Case and Smith (1983) proved that 

EX*cBCcBC’c ... c u BC”cBC*, 
UEN 

where the first inclusion was first shown in Barzdin (1974). Moreover, Leo 
Harrington discovered that [w E BC* (cf. Case and Smith, 1983). The reader 
is also encouraged to consult Chen (1981) for more results concerning 
BC”-identification (e.g., the complexity of the synthesized programs). 

Now we introduce reliable BC”-identification. As already explained in 
the Introduction, we now require the IIM to output ordered pairs (i,, h), 
where b E (0, l}, instead of only outputting programs. If b = 0, then (i,, 6) 
is said to be an error message. 

DEFINITION 5. Let ‘$I c UF, and let a E N u { * }. An IIM ME iw works 
BC”-reliably on the set !JJI iff for every function fc’9Jl either the output 
sequence (i,, b,) satisfies (i,, b,) = (i,, 1) and vie =0 5 for almost all n, or 
there are infinitely many n such that (i,, b,) = (i,, , 0). 

In other words, either M does BC”-identify f or it produces infinitely 
many error messages. Note that we do not require (i,, 1) to imply ‘pi, =U f: 

DEFINITION 6. Let a E N u { * }, and let YJI G UF. An IIM M reliably 
BC”-identifies f E UF on the set 9JI iff M works BC”-reliably on ‘$I and M 
does BC”-identify f: 
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If M does reliably BC”-identify f on ‘33 we write f E %R-RBC”(M) and we 
denote by YJI-RBC” the collection of reliably BC”-inferrible sets on %I. 

Please note that it is not hard at all to encode the error messages into 
the current hypotheses; e.g., we may force the IIM to output on fn instead 
of (i,, 0) a program j, such that cpi,(x) 1 and cpi,(x) #f(x), for all x 6 n. On 
the other hand, our formalization is technically much more convenient. 

Next we deal with frequency identification due to Podnieks (1974). 

DEFINITION 7. Let 0 <p < 1, and let f E TIF. An IIM M BC-identifies f 
with frequency p iff M( f “) is defined for all n E h3 and 

Then we set BC,,,(p) = { U/S4 [M identifies every f E U with frequency 
PI). 

Podnieks (1974, 1975) shows that BC,,,( l/(n + 1)) c B&,,,( l/(n + 2)), 
for any n E IV. Moreover, he points out that the B&,,(p) hierarchy is dis- 
crete; i.e., given any p with l/n >p > l/(n + 1 ), then BC,,,,(p) = BC,,,( l/n). 
Pitt (1989) has introduced what is essentially the EX version of Podnieks’ 
BC-frequency identification, and he has proved that the analogous 
theorems are true. 

DEFINITION 8. Let 0 <p < 1, and let f E Tff An IIM M EX-identifies f 
with frequency p iff M(y) is defined for all n E N, and there is a particular 
program i such that 

lim inf card( (n/M(f”) = i, 0 6 n < k} ) 
BP k-m k 

and cpi=f: 
By EX,,,(p) we denote the collection of all function classes U that are 

EX-identifiable with frequency p. 

In order to introduce reliable frequency identification, the IIMs are again 
required to output pairs (i,, b,). Furthermore, looking at EX-frequency 
inference we require the particular program i computing the considered 
function to occur at least with frequency p. Moreover, the created output 
sequence is only allowed to contain finitely many error messages; i.e., the 
program i is at almost all places accompanied by b = 1. 

DEFINITION 9. Let W c TIF, and let 0 <p < 1. An IIM ME Iw reliably 
BC-identifies (EX-identifies) f E [w on the set YJI with frequency p iff 
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(1) for all g E ‘3.R either the output sequence (M( g”)),, N contains 
only finitely many error messages and M BC-identifies (EX-identifies) g 
with frequency p OY in the sequence (M(g”)),, N error messages occur 
infinitely often, and 

(2) A4 BC-identifies (EX-identifies) f with frequency p. 
If M does reliably BC-identify (EX-identify) f on the set W with 

frequency p we write f E %R-RBC,,,(p)(M) (f~ %I-REX,,(p)(M)). 
Furthermore we set YJI-RBC,,,,(p) = { U/3M[Uz YJI-RBC,,,(p)(M)]}, 
and analogously define !IJI-REX,,,(p). 

Next we define team inference, which was originally introduced by 
Smith (1982). A team is a finite collection of IIMs. A team (M,, . . . . M,) 
successfully BC-infers (EX-infers) a set U G [w if, for each fo U, some 
team member Mj successfully BC-identifies (EX-identifies) f: Furthermore 
we set BC team(n) = { U/j(M,, . . . . M,)[Uc_ BC(M1, . . . . M,)] ), and declare 
analogously EXt,,,(n). 

Smith (1982) proves that B&.,,(~)c B&&n + 1) as well as 
EXt,,,(n) c EXteam(n + 1) for any n 3 1. The unifying results stating that 
BC,,,( l/n) = BC1,Bm(n) and EX,,,(l/n) = EXteam(n) are due to Pitt (1989). 
Note that it is not meaningful to consider teams of BC”-reliably working 
IIMs as well as of EX”-reliably working IIMs, since the classes !D2-REX” 
(cf. Minicozzi, 1976) and !IJI-RBC” (cf. Proposition 1) are closed under 
enumerable union. However, reliable frequency identification is a powerful 
tool combining the advantages of reliability with those of bounded non- 
determinism, as we shall show. 

Finally, in this section we define one-sided error probabilistic inference. 
For the sake of intuition as well as for any mathematical background the 
reader is referred to Pitt (1984, 1989). 

A probabilistic IIM P is simply a deterministic IIM which is allowed to 
flip a “t-sided coin.” For any fixed sequence S of coin-flips P behaves like 
a deterministic IIM, which we denote by Ps. We again require P”, for any 
sequence S of coin-flips, to output ordered pairs (i,, b,). 

DEFINITION 10. Let W G TIF, and let 0 <p < 1. An one-sided error 
probabilistic IIM P on YJI BC-identities (EX-identifies) f B [w with probabil- 
ity p iff 

(1) for all g E W and all sequences S of coin-flips the output sequence 
u%“)L, N satisfies either (a) or (p). 

(@I V”k”)),, N contains only finitely many error messages (inde- 
pendently of S) and the probability (taken over all sequences S) that Ps 
BC-identifies (EX-identifies) g is greater than or equal to p. 
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(/I) in the sequence (PS(g”)),,N error messages occur infinitely 
often (again independently of S). 

(2) The sequence (PS(f”)),,M fulfills (a). 

If P does BC-identify f on %R with one-sided error probability p, 
we write f E %R-RBC,,,,(p)(P) and set IIJI-RBC,,,,(p) = { U/3P[ U G 

~-RB’&,(PW’H 1. 1 n an analogous way we define %R-REX,,,,(p)(P) 
and YJ&REX,,,,(p). 

In the sequel we shall study the unknown relationships between the 
above defined modes of inference. 

3. RESULTS 

3.1. One-Sided Error Probabilistic Inference and Reliable Frequency Iden- 
tification 

In this section we extend Pitt’s (1984) unification results to show that 
one-sided error probabilistic inference is exactly the same as reliable 
frequency identification. Moreover, as an immediate consequence from the 
theorem below one gets that, if there is any hierarchy for reliable frequency 
identification, then it must be a discrete one. As it turns out, Pitt’s techni- 
ques of proof are powerful enough to show the desired results. Please note 
that if one is only interested in the discretness result concerning reliable 
frequency identification then shorter proofs can be obtained by applying 
Podnieks’ (1975) techniques. However, since it is our goal to get more 
general theorems, we shall follow Pitt. Because Pitt’s proofs work mutatis 
mutandis in our setting we shall describe only the minor changes which 
have to be made. Therefore, the reader is advised first to consult Chapters 2 
and 3 of Pitt (1989). 

Let P be any one-sided probabilistic IIM which is, without loss of 
generality, equipped with a two-sided coin, and realized by a Turing 
machine, and let fo TF. Then 2,, denotes the infinite complete binary 
computation tree which represents all the possible computations of P on 
input J 

Now we are ready to present the first theorems. 

THEOREM 1. Let nE N, and let llJl GT[F. Furthermore, let UE 
%R-RBC,,,(p) with 1 >p > l/(n + 1). Then 

(1) there is an IIM A4 reliably BC-identqying U on ‘%N with frequency 
l/n; 
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(2) for any f E (I the sequence ( (ik, bk)ke N of M’s hypotheses on f has 
the property that there is some r E (0, . . . . n - 1 } such that (pik = f, for almost 
all k with k ES r mod II. 

Proof The proof essentially coincides with Pitt’s (1989) proof that 
B&,,(p) = BC,,,,(l/n). Hence we describe only the IIM which will 
reliably identify U on !lJI with frequency l/n, thereby satisfying (2). 

Let U E !IJI-RBC,,,,(p)(P). The idea underlying our construction is quite 
similar to the idea used by Pitt to show that B&,,(p) = B&,,(n). We 
first ensure that for any f E W in which P produces infinitely many error 
messages (remember that this happens independently of the sequence of 
coin-flips) each team member also outputs infinitely many error messages. 
On the other hand, if P outputs only finitely many error messages on f e ‘9Jl 
(again independently of the coin-flips) then each team member behaves 
exactly as in Pitt’s team. 

This modification is achieved as follows: 
We introduce an auxiliary parameter d having the initial value 1. The 

computation tree 2,, is now constructed stepwise; i.e., for f E 9.R and 
k = 1, 2, 3, . . . . the ith team member builds the finite computation tree 2, 
just consisting of the first k levels of 2,, Then it first tests whether each 
path in 2, contains at least d error messages. If the test is fulfilled, Mj out- 
puts (k, 0) and increments d, i.e., d : = d + 1. Otherwise it tries to compute 
a new hypothesis by inspecting all nodes at level k. This actually requires 
the installation of a time regime in order to effectively execute instruction 
4 in Pitt’s definition of the team member M,. If no new hypothesis can be 
computed within the given time then Mi(f ‘) = Mi(f ‘- I). For completness 
we define Mi(f ‘) : = (0,O). 

NOW it is obvious that Mi produces infinitely many error messages if P 
behaves thus. Suppose that P outputs only a finite number of error 
messages. Let d,, be the least number of error messages taken over all paths 
in 2,,. Consequently, for d> d,, the test introduced above cannot be 
satisfied. Moreover, in accordance with the definition of !IJ&RBC,,,i, the 
IIM P must infer J: Hence Mi behaves in the limit as Pitt’s ith team mem- 
ber does. Since in general not every team member identifies f, only those 
ones that infer f behave reliably on ‘5X, i.e., at least one team member. 
However, the desired IIM can now be defined. A4 simply outputs the 
hypotheses of the team members MO, . . . . M,- i in a rotating order. Suppose 
M, identifiesf: Then ‘pi, =f, for almost all k with k s r mod n. Q.E.D. 

THEOREM 2. Let !IXlc TIF, no N, and let UE~JI-RB&,(~) with lap> 
l/(n + 1). Then there is an IIM A4 reliably BC-identifying U with frequency 
I/n. Moreover, the output sequence ((ik, bk))ks N of M’s hypotheses has for 
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any f E U the property that there is an r E { 0, . . . . n - 1) such that ‘ps = f for 
almost all k = r mod n. 

Proof. The theorem is shown in the same way as Pitt (1989) proves his 
theorem stating B&,(p) c BCteam(n), with the following minor differences. 

Let fe8J& and let kefV. Suppose UE%JGRBC,,,(~)(M’). If M'(fk)= 
(ik, 0) then each team member M,, . . . . M, _ i straightforwardly outputs 
(ik, 0). Otherwise the team behaves exactly as Pitt’s team does, but accom- 
panies each guess with b, = 1. Finally, the wanted IIM M again outputs the 
hypotheses of the team members in a rotating order. Q.E.D. 

COROLLARY 3. Let W G T[F. Then m-RBC,,,,( I/n) = LIJZ-RBC&( l/n), 
for any number n 2 1. 

Proof. Due to Theorem 1 we have W-RBC,,,,( l/n) z !Il&RBC,,,( l/n). 
In order to prove the other inclusion, first we apply Theorem 2. Without 
loss of generality we may assume that the desired probabilistic IIM P is 
equipped with an n-sided coin. P flips the coin once and obtains, with 
probability l/n, a particular value r E (0, . . . . n - 1 }. Then it outputs only the 
guesses (ik, bk) with k zz r mod n. 

The rest is obvious. Q.E.D. 

Finally, in this section we show that Theorems 1 and 2 as well as 
Corollary 3 remain valid if reliable BC-frequency identification is replaced 
by reliable EX-frequency inference. 

THEOREM 4. Let nEN, and let 93 c U[F. Furthermore, let UE 

%&REX,,,,,(p) with 1 >p > l/(n + 1). Then 

(1) there is an IIM M reliably EX-identifying U on YJI with frequency 

l/n; 

(2) for any fc U the sequence ((ik, bk))kcN of M’s hypotheses on f is 
such that there are some r E (0, . . . . n - 1 > and j E N satisfying ik = j and ‘pi = f 
for almost all k with k E r mod n. 

Proof. The proof mainly follows Pitt’s (1989) demonstration of the 
theorem, which actually states that EX,,,,(p) c EXteam(n), except for the 
same minor changes we made in proving Theorem 1. That means the 
desired machine A4 again simulates the EX-team M,, . . . . M,- i. Each Mi 
first tests whether any path in Zk exceeds a certain threshold d of error 
messages. In case it does, Mi outputs (k, 0), increments d, and continues on 
f . k+ ’ Otherwise it works exactly as Pitt’s machine Mi does. Finally, A4 out- 
puts the guesses of the team members in a round-robin fashion. We omit 
the details Q.E.D. 
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THEOREM 5. Let 9Jl G UIF, n E N, and let UE%N-REX~,&) with 
1 3p > 1 (n + 1). Then there is an IIM A4 reliablv EX-inferring U with fre- 
quency l/n. Moreover, the output sequence ((ik, bk))ks N of M’s hypotheses 
on any f E U behaves such that there are an r E (0, . . . . n - 1) and a jg N 
satisfying ik = j and vi = f for almost all k z r mod n. 

Proof: Using Pitt’s (1989) proof of Theorem stating that 
EX,,,(p) s EX,,,,( ) n our theorem is shown in adding the following: 

Let f E %R, and let kE N. Assume UEW-REX,,,(p)(M’), for some 
IIM M’. If A4'(fk) = (ik, 0) then each team member M,, . . . . M, _, again 
straightforwardly outputs (ik, 0). Otherwise, the team works as Pitt’s team 
does, but accompanies each guess i, with b, = 1. The desired IIM M now 
simulates the team and outputs its hypotheses in rotating order. Q.E.D. 

COROLLARY 6. Let ‘9Jl c T[F. Then YJ&REX,,,,( l/n) = ‘%R-REX,,,(l/n) 
for any number n 3 1. 

One-sided error probabilistic inference is thus completely characterized. 
Consequently, in the sequel it suffices to deal with frequency identification. 

3.2. Closure Properties 

In this section we show that the reliability notions introduced above 
preserve the closure properties originally pointed out by Minicozzi (1976) 
for reliable EX-identification. For all a E N u { * ) the WI-REX” case has 
already been handled in Kinber and Zeugmann (1985). Thus it remains to 
deal with Il;n-RBC,,,( l/n), !JJL-RBC”, and ‘9JI-REXf,,q( l/n). 

The following proposition states that any reliable inference is closed 
under recursively enumerable unions. 

PROPOSITION 1. Let !lJl E T[F, and let ID E {RBC,,,,(l/n), RBC”, 
REX,,,(l/n)/nal, nEFV, aENu (*}}. Furthermore, let (IV,),.,, be a 
recursive enumeration of IIMs working in the sense of m-ID. Then there 
exists an IIM A4 such that m-ID(M) = U;, N mm-ID(Mj). 

ProoJ: In essence we transform Minicozzi’s (1976) basic idea into our 
setting. Let (Mi)iE N be a recursive enumeration of IIMs working in the 
sense of W-ID, and let f E %R. If a machine Mj identifies the function f then 
Mj(fk) = (ik, 1) for almost all k. On the other hand, each machine Mj not 
inferring the function f produces infinitely many error messages, i.e., 
Mj(fk) = (ik, 0) infinitely often. The wanted IIM M identifying Ui, N %H- 
ID(M,) searches for an enumerated machine that eventually identifies the 
function f as follows: 

The machine A4 dovetails the computation of more and more outputs of 
the enumerated machines. Moreover, the IIM M counts for each machine 

643,9x-9 
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Mi already included into the computation the number of successively 
produced hypotheses that uniformly contain a 1 in its second component. 
This number is called weight. As long as a machine Mi trusts in its current 
guesses the weight successively increments. If Mi produces an error message 
then the weight of the IIM Mi reduces to zero. After having read the initial 
segment f" of the function f the machine M favors from the first k 
enumerated machines that one which actually has the greatest weight. In 
case the maximal weight is taken by at least two IIMs Mi and Mj the 
machine M chooses that one which has the smallest index. 

We formally define the IIM A4 as follows: 
LetfeSJ3, and k~fV. 

M( f k, : = “Compute in parallel 

- 

Mk-l(f”),Mk-I(fl), 

Mk(f “) 

and assign to each IIM Mi, i < k, its weight, i.e., the greatest m <k - i 
satisfying the condition that every guess of M,(fkpi-"), 
A&(fk-i--mfl),..., Mi(fk- i, uniformly contains a 1 in its second com- 
ponent. Choose w(k) to be the smallest i 6 k such that the IIM Mj has 
the greatest weight. 

In case all considered machines have weight zero, output (k, 0). If not: 
If w(k) = w(k - l), then output Mw,(k)(fk-W(k)). Otherwise output 

(k, O).” 
Note that M outputs an error message at least in case it favors a new 

machine possibly inferring f: 
Now let f E ‘9JI and assume f E YJI-ID(M,) for some j. Hence there is an j, 

such that M,(f “) = (jk, 1) for any k 2 j,. Consequently, 44,‘s weight grows 
continously for k > j,. Moreover, any machine Mi not identifying f outputs 
infinitely many hypotheses of the form (i,, 0). Therefore, after computing 
an error message Mi has weight zero. Thus, for almost all k the machine 
M must favor exactly one of the Mj’s inferring f, i.e., M( fk) = Mj(fkpj). 
Hence A4 identifies f, since the linite delay does not affect the frequency. On 
the other hand, if no machine recognizes f EIlJZ then either all machines 
under consideration have weight zero, or w(k) # w(k - 1) infinitely often. 
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The latter follows from the fact that every Mi produces an infinite number 
of error messages. In both cases, M also outputs an error message. Hence 
M works ID-reliably on YR. Q.E.D. 

The next proposition states that reliable identification is closed under 
finite variance. For any class UE (w, let [IV] = {g/gE Iw, 3fl-f~ U, 
f =*ba. 

PROPOSITION 2. Let 1132 G Tff, and let ID E (RBCr,,J l/n), RBC”, 
REX,,,,(l/n)/n> 1, no N, a~ N u { *}}. Then UE‘ZR-ID implies [U] E 
W-ID. 

ProoJ The proof is analogously done as in Minicozzi (1976). Therefore 
we omit the proof here. Q.E.D. 

3.3. Hierarchy Results 

The main goal of this section consists in clarifying the basic identification 
power of reliable frequency inference on sets %I, We confine ourselves to 
consider exclusively the cases Y.JI = %[F and %R = [w, since they are of basic 
interest. We start with several fundamental observations that give a first 
answer to the question of what actually can and cannot be reliably inferred 
with a certain frequency. Above all, in accordance with our theorems in 
Section 3.1, it generally s&ices to deal with the discrete frequencies 1, l/2, 
l/3, . . . . Note that by definition U[F-REX,,( l/n) E T[F-RBC,,,( l/n) E 
[W-RBC,,,( l/n), for any number n Z 1. In order to obtain results as sharp 
as possible we proceed in the sequel almost always as follows: Studying the 
power of reliable frequency inference we deal, whenever appropriate, with 
UIF-REX,,,( l/n) or Uff-RBC,,,,(l/n); whereas its limitations are shown in 
dealing with lR-RBCrreq( l/n). 

First of all, we point out that reliable frequency identification is generally 
less powerful than the ordinary frequency inference. 

THEOREM 7. EX\IW-RBC,,,(l/n) #@for every number n 2 1. 

Proof: Podnieks’ (1974) BC-frequency hierarchy theorem directly 
implies that [w I$ BC,,,(l/ n ) , and hence iw # R-RBC,,,( l/n), for any n 2 1. 

We set U= {f/feR, cp f(o) =f}. Assume that UE [W-RBC,,,( l/n). Then 
Proposition 2 implies that [U] E IW-RBC,,,( l/n), which is a contradiction 
because [U] = [w. On the other hand, UE EX. Q.E.D. 

As an immediate consequence one gets: 

COROLLARY 8. For any number n B 1: 

(1) R-RE&,,,(lln) = EX,,,(lIn), 

(2) ~-RBGr,,(l/n) = JGr,,(lIn). 
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Next we ask whether %%REX,,,(l/n) is always properly contained in 
m-RBC,,,( l/n). The affirmative answer is given by the following theorems 
which, beyond that, lead to a much deeper insight into the capabilities of 
reliable frequency inference. 

THEOREM 9. %[F-RBC\EX* # $Z? 

Proof: In the sequel we mainly use Gold’s (1965) diagonal arguments. 
Showing that EX c BC Barzdin (1974) has refined Gold’s (1965) proof 
technique in such a way that he gets a BC-inferrible function class. 
Barzdin’s (1974) technique is powerful enough to prove the theorem. 

We interprete every partial recursive function as an IIM. As was already 
shown by Gold (1965), there is an effective procedure g E [w such that 
EX*((p,) E EX*((p,,,,) and (POE [w, for every ie N. For convenience we set 
Mi : = ‘pgcij for every in N. Let i be given. Now we define a class Ui such 
that Ui$ EX*(M;). We set f,(O) = i. Compute ni, = Mi( (i)). 

For k = 1, 2, 3, . . . . check by dovetailing whether (CI) or (p) happens: 

ta) Mi(<i1k)) Zni,, 

(B) Mi(<iok))Zni,. 

If neither (CI) nor (p) happens we set Ui= {iOm, il O” >. Consequently, 
Ui#EX*(Mi). Now suppose a k, is found satisfying (CI) or (p). 

If (a) happens, then delinef.(x) = 1, for 1 <x< k,. 
If (fl) happens, then define fj(x) = 0, for 1 < x 6 k, . 
In both cases continue as follows: 
Compute ni, = Mi(ffl). For k = 1, 2, 3, . . . . check in dovetailing whether 

(a) or (/?) happens: 

(Co ~i(G-i(O)~~~fi(k,) lkN+ni,> 

(B) M;((f,(0)..‘~(k,)Ok))#niz. 

In case neither (CI) nor (p) happens we set Ui= (fi(0) . ..fi(k.) O”, 

f,(O)....L(k,) 1”). Then we again get Ui $ EX*(M,). If a k, is found which 
fulfills (c() or (a) proceed as follows: 

Suppose (c() happens. Define L(x) = 1, for k, + 1 <x d k, + k, + 1. 
Incase(/?)happensdefinefi(x)=0,fork,+1<x<k,+k,+1. 
Iterate the construction. Now assume infinitely many k, are found 

satisfying the relevant conditions (~1) or (b). Then fie [w and the sequence 
C”i(fl))neN does not converge . Hence in this case we set Ui= {fi} 
yielding Ui# EX*(M;). Finally, let U= uis rm Ui. Thus Uq! EX*. 

It remains to prove UE TF-RBC(M), for some IIM M. Let fe U[F and let 
ne N. We define: 

M(f”)=“Simulate the construction of U,,,, in computing just the first 
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f(n) 
ij coincides with 

f(O) f(l) 

-... f------ 

the values re- 

presented by this 

branch 

FIGURE 1 

II levels of the tree which actually represents the possible structure of 
u f(O,. This finite tree has at most two branches since one branch will be 
deleted whenever the relevant (c() or (p) happens. If the initial segment 
f(O). . .f(n) turns out to be different from all branches just existing then 
output (n, 0). 

Otherwise, output (e, l), where e is a canonical program of the 
following function q. For every x < n we set q(x) =f(.u). The algorithm 
computing 11 for x > il works as follows: 

Continue to completely simulate the construction of U,,,,,. Two cases 
are possible. 

Case 1. No relevant (a) or (B) happens. Then the values of 4 are 
equal to thoses represented by this branch (cf. Fig. 1). 

Case 2. The relevant (a) or (B) happens. Remember that one branch 
corresponds to the computation performed in (a) while the other one 
corresponds to the computation performed in (/I). Now we have to 
distinguish between the following subcases: 

Subcase 2.1. The branch coinciding with q(x), for all x <n, 
represents the computation performed in (a), and (8) happens. In 
accordance with our construction the branch representing the computa- 
tion performed in (a) is then deleted. As long as the computation in (a) 
is performed q(x) is defined. After the deletion of that branch q(x) is 
undefined (cf. Fig. 2). 

q coincides with 

f(O) f(l) 

w-. _ _ 

- . 
f(n) 

the values repre- 

e-0 
presented by this 

: branch and remains 

I undefined after (/3) 
’ has happend 
i 

--m--- 
the point 

at which (8) happens 

FIGURE 2 
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Subcase 2.2. The branch coinciding with q(x), for all x<n, 
represents the computation performed in (/I), and (cc) happens. This case 
is handled analogously to Subcase 2.1. 

Subcase 2.3. The branch coinciding with q(x), for all x 6n, 
represents the computation performed in (oz), and (ct) happens. Then the 
branch representing the computation performed in (fl) is deleted. The 
construction is iterated; i.e., (a) and (/I) are restarted with new values. 
The function ye will not be computed further until (c() or (fi) happens 
again. Suppose (a) or (8) happens. Then one branch will be deleted. 
Now the function ye can be defined for all those arguments that 
correspond to the branch not beeing deleted, i.e., 9 coincides with the 
values between these ramification points. By iterating this construction, 
u] can eventually be computed for more and more arguments (cf. Fig. 3). 

Subcase 2.4. The branch coinciding with q(x), for all x < n, 
represents the computation performed in (fl), and (fl) happens. This case 
can be handled analogously to Subcase 2.3.” 

It remains to show that the IIM A4 identifies U. 

Claim. U E TIF-RBC(M) 

Case 1. f$ U. By construction we get f$ Uf(OJ. Therefore, almost all 
initial segments off differ from the actually created tree. Hence, M(f”) = 
(n, 0) for almost all n. 

Case 2. f~ U. Thus we conclude f~ U,,,,. Suppose card( Ufco,) = 2. 
Then U&) is represented by a tree consisting of an initial segment which 
ramifies at a certain point n, into two infinite branches. The construction 
of A4 now ensures that M’s output is correct for any n > n,. 

If card( U,(o,) = 1 then A4 outputs only correct hypotheses. Q.E.D. 

THEOREM 10. Let ‘98~ {TF, R}, and let aE N u { * }. Then YJ&REX”c 
mm-RBC. 

the point at which 
(a) happened 

pt-++t+t+Hl 0 this branch has been deleted 
f(O) 

o--. _ _ 

“\ i 7 

this branch re- 
_ _ .--D 

j presents T-J 

cl-. - /-c---t 

\ i this branch 
D--.-.-El 

; will be deleted 
the point at which 
(8) happens again 

FIGURE 3 



INFERENCE AND FREQUENCYIDENTIFICATION 269 

Proof: Due to the preceding theorem YJI-RBC\%R-REX* # @ is 
obvious. Hence it suflices to show that ‘5%REX”&%&RBC, for every 
a E N u ( * }. This is done as in Case and Smith (1983), whereas every mind 
change of M witnessing that U E ‘%&REX” is reflected by an error message. 

Q.E.D. 

The following corollary summerizes the results concerning reliable 
BC-inference. 

COROLLARY 11. EX* # T[F-RBC and EX* # I&RBC. 

ProojI Since EX c EX * and IW-RBC = IW-RBC,,,( 1) the corollary is an 
immediate consequence of Theorem 7 as well as of Theorem 9. Q.E.D. 

By the next theorem we heighten the known results dealing with the 
capabilities of reliable EX”-identification. 

THEOREM 12. TlF-REX”\EX,,,,(a) # @for any a E N. 

Proof: The a= 1 case has already been proved by us previously 
(cf. Kinber and Zeugmann, 1985). In the sequel we demonstrate how the 
general case can be handled. However, we present the proof for the case 
a = 2 only since thereafter the generalization is straightforward. Every num- 
ber i is interpreted to be just the encoding of two IIMs M,, M, which we 
want to fool. Without loss of generality we can assume that M,, M, E [w 
(cf. the proof of Theorem 9). Now, for every ie N we effectively construct 
a functionf,E Iw, such that there is a total extension off, (possiblyfi itself) 
on which the related team M,, M, fails. 

Let i be given. Compute n and m. We set J;(O) = i. Then define fi (2), 
f,(3), *..> to be zero until a k, is found such that 

(~1 M,((i))ZM,((ilOkl)), or 

(B) M,((i)) ZM,((iOOk’)), or 

(7) M,((i))ZM,((ilOk’)), or 
(6) M,( (i)) # M,( ( iOOk’ )) happens. 

If no such k, is found then f, is already defined for all but one argument 
x (namely x = 1). 

If (g) or (p) happens then set A.( 1) = 1 or fi (1) = 0, respectively. Further- 
more, let 1 = m, and r = n. 

If (y) or (6) happens then set f, (1) = 1 or h( 1) = 0, respectively, but let 
l=n, and r=m. 

In the parameter r we remember which machine has made the mind 
change. In order to fool the whole team now we are mainly interested in 
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a mind change of the machine M1. However, M, may not behave thus. 
Therefore we introduce a second trap. 
LOOP. 

k’fl Set r=fi . Now define fi(k, +4), fi(k, + 5) . . . . to be zero until a k, 
is found such that either 

(a) ‘PM,(r) (k, + 2) turns out to be delined within k2 steps, or 

PO) M,(z) # M,(zOk2+ 2), or 

(D,) Ml(~) # M,(r10k2+ ‘), or 

&J M,(r) f M,(TO~*+~), or 
h) M,(z) f M,(zOIOk*), or 
(yd M,(z) f M,(z10k2 + ‘L or 
(yii) M,(r) # M,(zllOkz) happens. 

If nothing happens thenf, is defined for all but two arguments x (namely 
x=k,+2, k,+3). 

Suppose (a) happens first. Then we set fi(k, + 2) = 1 2 cpM,(kl + 2) and 
f;(k, + 3) = 0. Swap 1 and r. Goto LOOP and iterate the construction. 

In case (&,) or (/IL) happens first, we set fi(kl + 2) = 0 or fi(kl + 2) = 1, 
respectively, and define fi(k, + 3) = 0. Swap 1 and r. Goto LOOP and 
iterate the construction. 

Now we assume one of the (ycd) cases happens, where c, dE (0, 1 }. Stop 
all procedures. Define fi(kl + 3) = d and set z = c. 

Remark. fi(k, + 2) remains undefined yet. 

LOOP 1 
Proceed as follows: 
Define fi(k, + k,+6), fj(k, + k,+7), . . . . to be zero until a k, is found 

such that either 

(A) (PM,(T) (k, + 2) turns out to be defined within k, + k, steps, or 

(B,) M,(zzfj(k, + 3) Okz) # M,(zzfi(k, + 3) Ok20k3+ ‘), or 

(B,) M,(rzfi(k, + 3) Ok*) #M,(rzfi(k, + 3) Ok210k3), or 
(C,) M,(z) # M,(zzfi(k, + 3) Ok20k3+ ‘), or 
(C,) M,(z) # M,(rl - zx.(k, + 3) Ok20k3+‘) happens. 

Comment. By (B,) and (B,) we actually search for the next mind 
change of machine M,. In (C,), (C,) we essentially proceed to test whether 
the former (PO) or (/Ii) happens, but we take into consideration that 
meanwhile fi(k, + 3) has been defined. The earlier step (a) is replaced by 
(A), i.e., augmenting the number of allowed steps. 
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Now, if (A) happens first then we set J.(k, + 2) = 1 I (~~,(~)(k, + 2) and 
fi(k,+k,+5)=0, swap r and 1, and go to LOOP in order to iterate the 
construction. 

Similarly, if (C,) or (C,) happens first then define L.(k, +2)=z or 
f;(k, + 2) = 1 -z, respectively, and set fi(k, + k, + 5) = 0. Perform the swap 
of r and 1, go to LOOP, and iterate the construction. 

In case that (B,) or (B,) first turns out to be fulfilled we define only 
L.(k, + k, + 5) = 0 or fi(k, + k, + 5) = 1, respectively. Then we return to 
LOOP 1 and iterate the subconstruction. 

Let us now discuss what different variants off, may occur. Suppose both 
machines do perform only finitely many mind changes, and for the relevant 
k the value (Pi,,/,) k (k + 1) is not defined. Therefore, fi is defined everywhere, 
but for two arguments. Moreover, M,‘s guesses are almost everywhere 
equal to M,(ff), which cannot be correct, since cpMlc?,(k + 1) is not 
defined. On the other hand, in (B,) and (B, ) machine M, is forced to make 
a mind change. Because this mind change does not occur, there is a total 
extension off, on which M, and M, fail. 

Next assume that only M,. performs infinitely many mind changes and 
again cpMIcf.;)(k + 1) diverges. Hence fj is defined for all but the argument 
k. Let f(x) =f.(x), for all xf k, and set f(k) =z, where z is due to the 
above construction. Then the team M,, M, again fails. 

Finally, infinitely many swaps of the appropriate 1 and r are performed. 
Consequently, fin Iw but neither M, not M, succeeds. 

Now we set U = {flf~ iw and f is a total extension of some f.). 
Obviously, U $ EX,,,,(2). 

The wanted machine M is defined as follows: Let t E TF and x E N. 
M(Y) = “Compute f&z) for all but at most two arguments z 6 x, where 

f t(oj is defined as in the above construction. Then test whether 
t(z) = f&z) for all but at most two arguments z < x. For if not, output 
(x, 0). Otherwise, output (e, l), where e is a canonical program perform- 
ing the above construction.” 
The verification of UE UIF-REX’(M) is left to the reader. Q.E.D. 

Through exploration of the above results the announced relation 
between the two reliable frequency identification modes (i.e., EX and BC) 
can now be obtained. 

THEOREM 13. Let ‘9.R E {UF, R}. Then 

!IJI-REXr,,,( l/n) c YJI-RBC&( l/n). 

Proof The simple inclusion c is obvious. We show the proper 
containment by first applying Theorem 12. Hence there is a class 
U E !I%REX”\EX,,,,(n). Therefore, UE YJI-REX”\W-REX,,,( l/n) since 
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EX,,,( l/n) = EX,,,,( l/n) (cf. Pitt, 1989) and !JJI-REXr,,,( l/n) c EXrreq( l/n) 
by Corollary 8. Due to Theorem 10 we have U E %R-RBC. Finally, 
!IR-RBC G 9J&RBCr,,9( l/n) for any number n 2 1. Q.E.D. 

Smith (1982) completely relates the EX and BC team hierarchies, 
thereby in particular showing that EXteam(n + l)\BC,,,,(n) # a. Unfor- 
tunately, none of his proofs can be applied in our setting. This is caused by 
the fact that the capabilities of pluralism are mainly based on non-union 
problems. Therefore, at first glance it may seem to be hopeless to transfer 
the power of team inference, at least partially, to reliable frequency iden- 
tification. However, this is a misleading impression. Reliable frequency 
inference is closed under union since all the inferrible classes U share the 
common property that functions not contained in U lead to infinite sequen- 
ces of error messages. Nevertheless, even in the limit it may be undecidable 
into which subclass of U the considered function falls. Yet we were 
surprised to find the next theorem. 

THEOREM 14, TF-REX,,,(l/(n + l))\BC,,,,(n) # $3 for any number 
n> 1. 

Proof: Since the following demonstration is technically involved we 
explain the basic ideas in handling the case n = 1. Then we describe in 
detail how the construction can be generalized, thereby dealing with n = 2. 
The rest is straightforward. 

We again interprete every partial recursive function as an IIM. In 
Barzdin (1974) it has been pointed out that there exists an effective proce- 
dure hi [w such that BC((p,) E BC((p,,,,) for all ie N, and (POE R. We set 
Mi = qhCij. Next we noneffectively construct classes Ui fulfilling Ui$ 
BC(A4,). Hence we set U= Ui, N U, and obtain that U$ BC. As we shall 
see later U will be reliably EX-inferrible on %[F with frequency i. Let ie kJ 
be arbitrarily fixed. Ui is uniformly defined as follows: 

Fix a strictly monotone function r E [w such that Qj = ‘p,ci, for all j E k, 
(cf. Blum, 1967). Hence Val r is recursive. Let g E R be chosen such that for 
allj (cf. e.g., Machtey and Young, 1978) it holds 

cPg(j,(O) = i 

(Pg(j)C2) = O. 

if there is a k with r(k) =j 

otherwise 

The definition of (pgcjj p roceeds in stages. At the beginning of stage s 
suppose ‘pgcjj(z) is already defined for all z d G,~ _ 1. 
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We set co = 2, and for s > 1 we define: 

Stage S. Let r = (pi;:. For ,u = 1, 2, 3, . . . . dovetail the computation of 
m, = M,(zOp) and (P,+(cJ- i +p + 1) until a (P,JcJ+, + p + 1) turns out to 
be defined. If no such p is found, stage s never terminates. 

Now suppose a p has been found such that (P,,,(o~- I + ,U + l)l. We 
define 

f 0, if gSP, <xdp+cT-1 

%&Ll +P+ l)+ 13 if x=~++.~-,+l 

max { cPjCz)lz if x=P+cJ..,+~, 

<a,-, +p+1}+1, cp,(~)~ for all 

‘pg(j,(X) = ( z<a,-,+11+1 

undefined, if x=~+cT-~ +2, 

cp,(~)~ for a 

z<a,-,+p+l 

\ 0, if .~=fr-~ +~+3 

CJ ‘=o s . s-l +p+3 
got0 stage s + 1 

end stage s. 

By the Recursion Theorem (cf., e.g., Rogers, 1967) a number b can effec- 
tively be found such that CJP~,~(~)) = qDb. In accordance with the above 
construction one gets (~~(0) = i. 

Comment. Later on this will deliver the information which IIM has to 
be simulated. 

Furthermore, (PJ 1) = 6, and (p,(2) = 0. 

Claim. After stage s has been left, the values (PJz) for z < rrS are all 
defined. 

We prove the claim inductively. In order to leave stage s a certain ,u has 
to be found such that (P,,J~~-, + p + 1) is defined. By construction we get 
(Pi = 0 for all x E {a,?- r + 1, . . . . u,~-, +p}, and therefore, from the induc- 
tion hypothesis, it follows that @Jx) is defined for all x < p + B,+ 1. 
Moreover, (P~(D~-, + P + 1) = (P~~(cJ-, + P + 1) + 1, and consequently 
@,(a,-, +~+l) also converges. Thus the max{rp,C,,(z)/zdo,P,+~+ 1) = 
max ( Gh(z)/z 6 cr- 1 + P + 1 > does exist. So we obtain that ‘pb(a,_ 1 + p + 2) 
is defined. Finally, cpb(a, - r + p + 3 ) = 0 obviously converges. This proves 
the claim. 

If stage s is left for all s E N then set U, = {(Pi}. By the claim it follows 
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that (Pb E [w. On the other hand, there are infinitely many guesses mj of the 
machine Mi when applied to (Pi satisfying ‘pm, # (Pi. Hence, Mi does not 
infer lJi. 

Otherwise, stage s is left only finitely many times. Let s’ be the last s for 
which stage s has been successfully finished. Now let r= cpp’. We set 
Ui= (rOm}. In accordance with the construction one obtains 
straightforwardly that almost all of M;s hypotheses on ~0” fail to be 
correct. Again it follows that Ui$ BC(M,). 

Please note that the above b can be computed effectively by knowing M, 
only. Let U= UiEN Ui. It remains to show that there is an IIM M reliably 
EX-identifying the class U on the set T[F with frequency 4. Let LIZ T[F and 
nE N. We define: 

M(f”) : = “If n = 0, then output (f(O), 1)” 
Compute fromf(0) the appropriate fixpoint 6. 
If n = 1, then test whether f(1) = b. For if not, output (LO), and 

cancel f: Otherwise output (b, 1). 
For all n> 1: 
If f has already been cancelled in a previous stage then output (n, 0). 

Goto (A). 
Otherwise, output (f(l), l), if n is even, and (e,, l), if n is odd, where 

e, is a canonical program of the following function qn: Let z be the 
greatest x Q n for which f(x) # 0. Then define 

f(Y), 
v,(Y)= o L 

if ydz 
if y>z. 

Before reading the next value off (i.e., f(n + 1)) execute the following 
procedure, CANCEL. 
CANCEL 

(1) Test whether there is a number y with O<y <n--2 such that 
all the values f(y), f( y + l), f( y + 2) are not equal to zero. If such a y 
has been found then cancelf, and return. 

(2) Test whether there is a number 0 < y 6 n - 1 such that f( y) # 0 
butf(y- l)=f(y+ l)=O. 
If there is such a y then cancelf, and return. 

(3) Simulate the computation of ‘pr(i,(x) for all x < n in parallel 
exactly n steps. For any ‘pr(i,(x) turning out to be defined test whether 
or not cpfc,,(x) =f(x). For if not, cancel f, and return. 

(4) Test whether there is a y Q n - 2 such that f(y) # 0 #f( y + 1) 
and f( y - 1) = 0 =f( y + 2). If such a y has been detected test whether 
0,,,(x) <f(x + 1) for all xd y. In case the inequality is not fulfilled 
cancel f and return. Otherwise test whether ‘pr(i,(x) =f(x) for all x < y. 
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Comment. qfcI ,(x) converges for all x < y since Gjfcl ,(x) <f(x + 1). If 
there is an x < y with qfcl ,(x) #f(x) cancel f and return. 

end CANCEL 

(A) Request the next value of,t” 

We finish the proof by showing that M behaves as required. 

Claim. M works reliably in the sense of BIF-RI&,,(i). 

Let f~ TIF. Suppose M outputs for almost all n hypotheses of the type 
(i,, 1). We have to prove that there is a particular guess i occurring with 
frequency i such that (pi =J: Note that after f has been cancelled once, M 
outputs hypotheses of the form (i,, 0) only. Therefore, all guesses must be 
of the type (i,, 1). Moreover, f will never be cancelled. 

Case 1. vrc,,~ !J& Then, in exectution (4) of procedure CANCEL we 
verify that ‘p/(,) =J To see this assume the converse. Let x be fixed such 
that ‘prci,(x) #f(x). Hence after Q1,-(i,(.~) steps the function f will be can- 
celled; this is a contradiction. Consequently, for all even n the output of M 
is correct. 

Case 2. qYof(,, $ If& By construction there is a k, such that 
(PbcX) = (prCl,(Xh and 'p /(,,(x), for all x 6 k,. Furthermore, qpf(, ,(x)~ for all 
x>k,. Therefore, after max { @,.,,,(x)/x d k,} steps M verifies that 

@I, = f ‘O since otherwise f would be cancelled. Now it is easy to see that 
Y(X) must be equal to zero, for all x > k,, since otherwise f will be cancelled 
again. 

Hence (e,, 1) is a correct guess for n 2 k 0; i.e., the required particular 
guess i is e, at least for all n 2 k,. Consequently, for almost all odd n the 
output of M is correct. This proves the claim. 

The theorem follows since no function from U will be cancelled by M 
(cf. the above construction). This completes the proof in the case k= 1. 

NOW we consider the case k = 2, thereby learning how the generalization 
has to be performed. Any i E N is interpreted as the binary encoding of just 
two numbers, n and rn. We construct, again noneffectively, a class 
Ui $ BC<,,,(M,, M,). Without loss of any generality we may assume that 
M,, M, E K!. Applying the above construction based on the Recursion 
Theorem we define a function qb as follows: ~~(0) = i, qh( 1) = h, (p,(2) = 0, 
and for x> 2 we proceed in stages. However, we have to deal with two 
IIMs. Similarly to the proof of Theorem 12 this requires a priority regime 
Using the parameter k we remember which machine has the greatest 
priority. Furthermore, we are again forced to deal with arguments on 
which qb will eventually not be defined. These gaps possibly change from 
stage to stage. Hence, in any stage s they are stored in the sets Ci, and Cz. 
Finally, we introduce working initial segments T which will be updated at 
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the end of each stage. Whenever (Pi,, for x< us, then t(x) = qb(x), 
where CI~ describes the length of the initial segment we are dealing with at 
the end of stage s. For x E C, u C, and x d trs, we define r(x) = 0. Instead 
of pairs, where the first component was preassigned to fool the machine, 
and the second component was used to ensure inferribility in summarizing 
the complexities, now we deal with 4-tuples, i.e., one pair for each machine. 
Moreover, we can summarize only complexities on those arguments on 
which qb has already been defined. We use even numbers to characterize 
complexity bounds on all previous arguments and odd numbers in case 
gaps do actually occur. 

Now we describe the construction formally. Let crO = 2 and r(x) = qb(x) 
for all x d oO. 

Sage 1. For p = 1, 2, 3, . . . . dovetail the computation of r(n, p)= 
Mn(POr) and r(m, p)= M,(ruoOP) as well as (~~(~,~)(cr~+ pf 1) and 
cp,(,, pj(co + P + 3) until (P~(~,Ju~ + CL + 1) or (P~(~,J~~o + P + 3) turns out 
to be defined for some p. 

Case 1. A ,u has been found such that cp,(,,, Pj(crO + p + 1) is discovered 
to be defined. Then set C,= (eo+~+3} and C2= {a,+p+4} and define 

1 

0, if o,<xdcr,+~ 

(P*(x) = 
(Pr(n, p)(ao + P + 1) + 1, if x=~~+p+l 

2.max {@b(z)/z<60+~+1}+2, if ~=a,+~+2 

0, if x=o,+~++. 

Furthermore, let e1 = crO + p + 5 and k = m. Set 

z(x) = (P&)7 if x E {O, . . . . 01 )\Wl” Cd 

0, if XEC, UC,. 

got0 Stage 2 

Case 2. A p has been found such that (P~(~.~)(o,, +p + 3) turns out to 
be defined first. Then set C, = { crO + p + 1 }, and C, = {cr,, + p + 2) and 
define 

vb(x)= 2-max{@&)/z4C,uC2, 

1 
0, if o,<x<a,+p 

(Pr(rn, p)(Ucl + P f 3) + 1, if ~=a,+~+3 

z<o,+~+l}+l, if x=o,+p+4 

0, if x=aO+p++. 
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Furthermore, let g1 = a,+~+ 5 and k=n. Set 

z(x) = 
i 
(P/l(X), if x E { 0, . . . . 01 j\(G ” Cd 

0, if XEC~VC~. 

got0 Stage 2 

After having described the initialization we declare stage s for s > 2. 

Stage s. For ,u = 1, 2, 3, . . . . dovetail the computations r(n, cl) = 
Mn(rKT-lOP), and r(m, ,u) = Mm(r’+‘OP), and try to compute 

(a) cprcn, /I) (a, ~ 1 + P + 1) and vp,(,. Jo, - 1 + P + 3 ), 
t/-3) q,,(y), for any y E C,, where yg = Mk(~-‘P’), 

until one value in (u) or (,!I) turns out to be defined. 

Case 1. For a y E C, the value cp,,( y) is discovered to be defined. Stop 
any computation and set 

(Pbb) = 0 forall x~(C,uC,)\{y,y+l}, 

qP,(y) = CprJY) + 1, and pb( y + 1) = 2 max {@&2)/z < y } + 2. 

Let C, = C2 = 0 and z(x) := (P,,(X) for all x < us- 1. Restart Stage s. 

Case 2. For a p the value (P~(~,~) (6, ~ 1 + p + 1) turns out to be defined. 

Subcase 2.1. k = n. Define 

pb(x) = 

1 
0, if o,_,<xda,_,+~orxECIuC2 

cp r(n,Pj(Os-l+~+l)+l, if ~=a,+,+~+1 

2 . max (@Jz)/z 

<g*-, +p+1}+2, if ~=a,_,+~+2 

0, if x=0,-, +p++. 

Furthermore, set o,=o,-,+p++ and C,={a,-,+~+3), C?= 
{oJP1 +p+4}, and 

if x E (0, . . . . %)\(G ” CJ 
if XEC~UC~. 

Moreover, let k = m. 
got0 Stage s + 1 
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Subcase 2.2. k # n. Define 

i 

0, if 0 .?-.I <xda .%-, +p 

Pr(n, /Jo,- 1 + P + 1) + 1, if x=0,+,+/L+ 1 

qb(x)= 2.max{@,(z)/z$C,uC,, 

Z<d,-, +p+l}+l, if x=~~-~ +p+2 

0, if ~=o,~,+p++. 

Furthermore, set o,=a,-,+p+5 and C, := {a,+,+p+3)uC, as well 
as C2 := {~~-~+p++}uC~. Actualizer as 

T(X) = 
{ 

(Pbb), if x E (0, ..,, a,l\(C, u C,) 
0, if XEC,UC~ 

and set k = m. 
got0 Stage s + 1 

Case 3. For a p the value (P,.,~,~~ (a,-, + p + 3) turns out to be defined 
first. 

Subcase 3.1. k=m. Then we set C,:=C,u(a,-,+p+l] and 
C, := C,u (a,-I+p+2}, and define 

0, if fs s-l <x<a,-, +p 

orxEC,uC2 

%(m,r&L,+P+3)+ 17 if x=cJ~,+~++ 
(P&l = 

2 . max { Qh(z)/z 

GO,-,+p+3}+2, if x=oXpl +p+4 

0, if x=o,_,+p+5. 

Now let C, = C, = @ and let cs = CJ-, + p + 5. We set r(x) = qb(x) for all 
x < gs. Finally, let k = n. 

got0 Stage s + 1 

Subcase 3.2. k#m. We set C, := C,u {a,-,+p+l} and C2:= 
C2 u {a,+ I + p + 2). The definition of qb is continued as follows: 

0, if (r r-,<X<~*-l+II 

(Pr(m,p)(fJ-l +P+ 3)+ 12 if .~=a,~,+p++ 

qb(x) = 2 .max {@Jz)/z+! C, u CZ, 

z<a,-,+p+3} + 1, if x=0,-,+p+4 

0, if ~=a,~~,+p+i-. 
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We set again CF, = csP, + p + 5 and and actualize r by 

if 
z(x) = 

i 
(P&)7 x E (0, . . . . d\{C,” Cd 
0, if XEC~UC~ 

Finally, let k = n. 

got0 Stage s + 1 

Now we define the wanted class Ui. Suppose that some stage s is never 
left. Then we set Ui = { tas~lOm >, and by the construction it must hold that 
Ui $ BCteam(Mn > Mm I* 

Assume that stage s is left for any s, and that (Pi E [w. In accordance with 
our construction this directly yields (Y)~} 4 BC,,,,(M,, M,). Hence we set 
ui= hJ. 

Finally, suppose stage s is left infinitely often but after a certain stage s0 
the value of k remains unchanged. Then we consider the function (Pi. For 
x < 2 we set q,(x) = (Pi. Then cpa is also defined in stages, but (Pi always 
takes the values of the appropirate part of z, i.e., if Gus, then 
cpb(x) = q,(x) for all x 2 ~,~0, and if (Pan, then q,(x) = 0. Let f = ~~‘0, and 
let Ui= (fq,(0,+ 1) (Pa(Oso+2)... }. 

Consequently, Uj 4 BC,,,,(M,, M,). 
Now we set U= UipN Ui thus obtaining U$ BC,,,,(2). 
It remains to show that UE UPRex,,,(1/3)(M), for some IIM A4. Let 

f~ ll[F and n E N. We define: M(f”) : = “If n = 0, then output (f(O), 1). 

Compute the appropriate fixpoint b. 
If n = 1, then test whether f( 1) = b. In case it is not, cancel f and out- 

put (1,O). Otherwise output (b, 1). 
For all n > 1: output 

(f(l), 113 if n-Omod3 

(en, I), if nElmod3 

(4, 11, if n=2mod3 

until f has been cancelled. Thereby e, is again a canonical program of the 
following function q,. Let z be the greatest x < n for which f(x) # 0. 
Then define q,(y) = f (y) for y d z and q,(y) = 0, if y > Z. Furthermore, 
let d, be a program of the function 6, defined as follows: 

Let z be the greatest x Q n for which f(x) # 0 and f(x) is even. Then 
set 

I, = 1 
f(Y)> if y<z 

CP,(Y), if Y >z, 

where cp, is defined as described above. 

643/92/2-IO 
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Now it is not at all hard to generalize the procedure CANCEL. Hence 
we omit the details.” 

Moreover, using similar arguments as we did in the case k = 1 one 
straightforwardly proves that M behaves as desired. Q.E.D. 

The latter theorem directly yields infinite hierarchies of reliable frequency 
identification starting from ‘%R-REX and YJI-RBC, respectively, where 
‘lJk{UF, R}. H owever, until now we knew only a little about uniform 
upper limitations concerning the power of reliable frequency inference. On 
the other hand, the BC-frequency hierarchy is properly contained in BC* 
since IR E BC *. Hence it would be interesting to know whether 
Y.R-RBC,,,(l/n) c ‘9JGRBC*. For %R = [w no new insight can be expected 
since any IIM M which BC*-identifies [w obviously works BC*-reliably on 
iw, i.e., K! E [W-RBC*. Nevertheless, the case 9R = T[F seems to be promising 
if one looks to the next theorem. 

THEOREM 15. EX # Tff-RBC*. 

Proof: By Corollary 11 one immediately obtains that UlF-RBC*\ 
EX # 0. For the other part we show first that lR$U[F-RBC* and then 
apply Proposition 1 to U = (fife !3, qfcO, =S). 

Claim. R $ TlF-RBC*. 

Let A4 be any IIM working BC*-reliably on U[F. Furthermore, let (Cam rm 
be a recursive enumeration of the functions of finite support defined on 
initial segments (0, . . . . n} of natural numbers. We define a function f,,,, such 
that (fM) $ UIF-RBC*(M) as follows: Search for the least k, satisfying 
M( ( ak, ) ) = (i, 0), i.e., after rxk, has been fed to M, A4 produces an error 
message. If k, has been found we set f,,,J,u) = clkl(x) for all x E domain c+,. 
Let ~zi : = max {x/x E domain Mu, }. 

Otherwise fM will be the totally undefined function. 
Now suppose such a k, has been found. We iterate the construction. 

That means, now search for the least k, satisfying M( (elk, c+,)) = (e, 0). 
In case k, has been found we define f,(li +x)= elk.(x), for all 

x~domain akx. Otherwise fM will not be defined further. It remains to 
show that fMe Iw. Assume that t E UF\R. Therefore, cpi# t for any in N. 
Moreover, the IIM M is supposed to work BC*-reliably on UF. Conse- 
quently, the sequence M(P)), E rm must contain infinitely many error 
messages. Let (M( tq)jG N be the subsequence defined by M(C) = (e,, 0), 
i.e., the sequence of all guesses with the second component being equal to 
zero. The finite sequences p,= t(nj+ 1) t(n,+ 2) ... t(n,+ i) can be regarded 
as functions of finite support defined on { 0, . . . . n, + i - nj}. Since all these 
functions fi, are contained in the enumeration (ai)ie N the search procedure 
must terminate infinitely often. Consequently, fM c R. Q.E.D. 
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The next theorem states that reliable frequency identification is generally 
less powerful than reliable BC*-inference. 

THEOREM 16. T[F-RBCf,,4( l/n) c UlF-RBC* for all n 2 1. 

Proof: Let M be an IIM witnessing U E T[F-RBC,,,( l/n). The desired 
machine M’ reliably BC*-inferring U on U[F works as follows: On fe T5 
and for k E N first of all M(fk) = (ik, bk) is computed. If b, = 0 then M 
outputs (k, 0). Otherwise, M’(fk) = (e,, l), where ek is just the program 
which L. Harrington’s machine outputs on f” (cf. Case and Smith, 1983). 
Now it can easily be seen that M’ behaves correctly. Details are omitted. 
The proper inclusion follows by Theorem 14. Q.E.D. 

Summarizing the results pointed out above, we obtain the following 
hierarchy: 

EL,& 1) c EX,,,(1/2) c . . c EX,,,(l/n) c BC* 

v U U UI 

!I%REX,,,( 1) c YJI-REX,,,( l/2) c . . c 9%REX,,,( l/n) c ‘$R-RBC* 

n n n n 

Y.J&RBC,,( 1) c !&RBCFreq( l/2) c c !JJI-RBC,,,( l/n) c 1)32-RBC* 

n n f-3 nl 

BGre,( 1) c BC,,,( l/2) c . . c B&( l/n) c BC* 

However, several questions remain open. We shall discuss them in the final 
section of this paper. 

3.4. Conclusions and Open Problems 

A new notion of probability inference, as well as a new concept of 
reliable identification, was introduced. These new types of inference were 
related to each other as well as to previously defined modes of identifica- 
tion. We characterized one-sided error probabilistic inference to coincide 
with reliable frequency identification. Furthermore, four new infinite 
hierarchies were established. We have compared them one to the other. 
However, in performing this comparison we did not fully succeed. It 
remained open whether TIF-REX,,& l/n) c aB-REXf,,J l/n) as well as 
whether UPRBC,,,( l/n) c IW-RBC,,,,(l/n) for any n > 2. For n = 1 the 
result concerning the EX case can be found in Kinber and Zeugmann 
(1985). Since our technique of proof does not seem to be extendable to any 
n 2 2 we omit the demonstration of Tff-RBC c R-RBC. Moreover, it would 
be desirable to characterize reliable frequency identification in terms of 
complexity theory. After the pioneering paper of Blum and Blum (1975) 
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several identification types were shown to be complexity theoretically 
characterizable (cf. Wiehagen, 1978; Zeugmann, 1983). These characteriza- 
tions generally led to a deeper insight as to what can actually be inferred. 

The next open problem concerns reliable BP-inference on Iw and on UiF. 
Using ideas from Daley (1983) one easily shows that ‘!JJI-RBC” c 
!JJI-RBCrres( l/(a + 1)) for any a E N. Nevertheless, the most interesting 
question, whether or not reliable BP-identification is properly contained 
in reliable BP+ ‘-identification, remains open. The problem would be 
solved if one obtained the BC-analogue of Theorem 12. We have no idea 
at all how to attack this difficult problem. Finally, Chen’s (1981; 1982) 
results suggest two interesting open questions. First, Chen (1982) showed 
that, with the cost of finitely many anomalies, nearly minimal size 
programs can be inferred without reducing the power of EX*-identification. 
It would be interesting to know whether this result can be extended to 
reliable EX*-identification on IR and TLF. Second, Chen (1981) proved that, 
for every class U E EX”, there is a class U’ 2 U such that U’ E EX”+ ‘\EX”. 
Does this theorem remain valid if EX” is replaced by YJGREX”, %R-RBC”, 
9JI-REXr,,J l/a), and !JJI-RBC&( l/a), where W E { TIF, lQ}? 

SUMMARY 

One-Sided Error Probabilistic Inference 
and Reliable Frequency Identification 

UIF-REX,,& 1) c TF-REX,& l/2) c c UF-REX,,& l/n) c 

II II II 

UF-REX,& 1) c TF-REX,,,b( l/2) c c UF-REX,& l/n) c 

n nl nl 

IW-REX,,,,( 1) c IW-REX,,,,(l/Z) c c IW-REX,,,,(l/n) c 

II II II 

F&REX,,,(l) c F&REX,,,(1/2) c c IW-REX,,,(l/n) t 

n r-l n 

IW-RBC,,(l) c W-RBC,,,( l/2) c c IW-RBC,,,( l/n) c 

II II II 

[W-RBC&( 1) c R-RBC,,,b( l/2) c . c IW-RBC,,,,,( l/n) c 

v UI VI 

UF-RBC,,,,(l) c UF-RBC,,,b( l/2) c c UF-RBC,,,,(l/n) c 

II II II 

T-F-RB&( 1) c UF-RBC,,,( l/2) c c UIF-RBC,,,,( l/n) c 
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Reliable Inference and Its Relations to Team Identification 

%&REX c 9%REX’ c ... c lL%REX” c c9JI-REX’ 

n n n 

Km,(l) = %,,,(2) = ... = EX,,,(a+l) c ... 

II II II 

EX,e,(l) = E&r,,(@) = ‘.’ = EX,,,(ll(~+ 1)) c ... 

# # # 

!I%REX’ c m-REX2 c .., c !BI-REX” + ’ c . . cilR-REX* 

n n n n 

!UI-RBC c !JJI-RBC’ c .,, c 9%RBC” c c‘JJ&RBC* 

n nl nl 

%R-RBC,,,( 1) c ‘JR-RBC,,,( l/2) c c %R-RBCr,,(l/(a + 1)) c c %%RBC* 

” ” ” II 

~-REXt,,q(1)c‘J.R-REXr,,,(1/2)c c%R-REX,,(l/(a+ 1))~ cm-RBC* 

n # # 

BC = B&,(l) c ... c BG,m( l/u) c . ..c BC* 

” # # 

%R-RBC,,,( 1) c !I%RBC,,,( l/2) c . c !I%RBC,,,( l/( 1 + a)) c c %I-RBC* 
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