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Abstract

The present paper studies the impact of order independence to the learnability of indexed

families L of uniformly recursive languages from positive data. In particular, we consider

set-driven and rearrangement-independent learners, i.e., learning devices whose output ex-

clusively depends on the range and on the range and length of their input, respectively.

The impact of set-drivenness and rearrangement-independence on the behavior of learners

to their learning power is studied in dependence on the hypothesis space the learners may

use. We distinguish between exact learnability (L has to be inferred with respect to L),

class-preserving learning (L has to be inferred with respect to some suitably chosen enumer-

ation of all the languages from L), and class-comprising inference (L has to be learned with

respect to some suitably chosen enumeration of uniformly recursive languages containing at

least all the languages from L).

Furthermore, we consider the influence of set-drivenness and rearrangement-independence

for learning devices that realize the subset principle to different extents. Thereby we distin-

guish between strong-monotonic, monotonic and weak-monotonic or conservative learning.

The results obtained are threefold. First, rearrangement-independent learning does not

constitute a restriction except in the case of monotonic learning. Next, we prove that for all

but two of the considered learning models set-drivenness is a severe restriction. However,

class-comprising set-driven conservative learning is exactly as powerful as unrestricted class-

comprising conservative learning. Finally, the power of class-comprising set-driven learning

in the limit is characterized by equating the collection of learnable indexed families with

the collection of class-comprisingly conservatively inferable indexed families. These results

considerably extend previous work done in the field (cf., e.g., Schäfer-Richter [20] and Fulk

[5]).



1. Introduction

Language acquisition is one of the main topics in cognitive science, epistemology, linguistic

and psycholinguistic theory as well as of machine learning and algorithmic learning theory.

All these disciplines share the common goal to gain a better understanding of what learning

really is. This goal is of special interest to computer science if a learning computer should

not remain a fiction.

Formal language learning may be characterized as the study of systems that map evidence

on a language into hypotheses about it. Of special interest is the investigation of scenarios in

which the sequence of hypotheses stabilizes to an accurate and finite description (a grammar)

of the target language. Clearly, then some form of learning must have taken place. In his

pioneering paper, Gold [6] gave precise definitions of the concepts “evidence,” “stabilization,”

and “accuracy” resulting in the model of learning in the limit. During the last decades,

Gold-style formal language learning has attracted a lot of attention by computer scientists

(cf., e.g., Osherson, Stob and Weinstein [19] and the references therein). Most of the work

done in the field has been aimed at the following goals: showing what general collections of

language classes are learnable, characterizing those collections of language classes that can

be learned, studying the impact of several postulates on the behavior of learners to their

learning power, and dealing with the influence of various parameters to the efficiency of

learning.

In this paper we aim to investigate the learning capabilities of learners that fulfill si-

multaneously various combinations of desirable properties. For the purpose of motivation

and discussion of our research, we introduce some notations. A text of a language L is an

infinite sequence of strings that eventually contains all strings of L. An algorithmic learner,

henceforth called inductive inference machine (abbr. IIM), takes as input initial segments

of a text, and outputs, from time to time, a hypothesis about the target language. The

set G of all admissible hypotheses is called hypothesis space. Furthermore, the sequence of

hypotheses has to converge to a hypothesis correctly describing the language to be learned,

i.e., after some point, the IIM stabilizes to an accurate hypothesis. If there is an IIM that

learns a language L from all texts for it, then L is said to be learnable in the limit with
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respect to the hypothesis space G (cf. Definition 1).

A first question directly arising when dealing with learning in the limit is whether or not

the order of information presentation does really influence the capabilities of IIMs. An IIM

is said to be set-driven, if its output only depends on the range of its input. Surprisingly

enough, Schäfer-Richter [20] and Fulk [5] proved that set-driven IIMs are less powerful than

unrestricted ones. Intuitively, the weakness of set-driven IIMs is caused by the difficulties

of handling both, finite and infinite languages. A natural weakening of set-drivenness is

rearrangement-independence. An IIM is called rearrangement-independent if its output only

depends on the range and length of its input. As it turned out, any collection of languages

that can be learned in the limit may also be learned by a rearrangement-independent IIM

(cf. Schäfer-Richter [20], Fulk [5]). However, the weakness of set-driven IIMs has been proved

in the setting of learning recursively enumerable languages. And indeed, the examples of

Schäfer-Richter [20] and Fulk [5] witnessing the weakness of set-driven IIMs are not enumer-

able families of nonempty uniformly recursive languages, henceforth called indexed families.

This might lead to the impression that this result is of restricted practical relevance, since

numerous potential applications of learning involve indexed families.

Therefore, we study the power of set-driven IIMs in a more realistic setting with respect to

potential applications, i.e., we deal exclusively with indexed families. Well-known examples

of indexed families are the set of all context sensitive languages, the set of all context free

languages as well as the set of all regular languages (cf., e.g., Hopcroft and Ullman [7]).

Another famous example for an indexed family is the collection of all pattern languages

(cf. Angluin [1]). Although this indexed family contains finite and infinite languages, Lange

and Wiehagen [9] succeeded in designing a set-driven IIM learning it (cf. [26, Theorem 2]).

Consequently, it is only natural to ask whether or not any learnable indexed family may be

learned by a set-driven IIM, too.

A major problem that has to be dealt with when learning from text, is to avoid or to de-

tect overgeneralization (also called the subset problem), i.e., hypotheses that describe proper

supersets of the target language. The impact of this problem results simply from the fact

that a text cannot supply counterexamples to such hypotheses. IIMs that strictly avoid
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overgeneralized hypotheses are called conservative (cf. Definition 6). As it turns out, neither

Schäfer-Richter’s [20] nor Fulk’s [5] transformation of an arbitrary IIM into a rearrangement-

independent one preserves conservativeness. Therefore, we study the problem whether or

not rearrangement-independence is a severe restriction for conservative learners. However,

this problem has its special peculiarities. Namely, when dealing with conservative learning,

the choice of the hypothesis space does seriously influence the learnability of indexed fami-

lies (cf. Lange and Zeugmann [12]). Hence, we have to distinguish between exact learning,

class-preserving inference, and class-comprising identification. If an indexed family L can

be learned with respect to the hypothesis space L, then L is said to be exactly learnable.

Furthermore, L is learnable by a class-preserving learning algorithm M , if there is a hy-

pothesis space G = (Gj)j∈IN such that any Gj describes a language from L and M learns L

with respect to G. That means, if one learns class-preservingly, then one has the freedom

to change the enumeration as well as the description of the languages from L. Finally, if

any hypothesis space G = (Gj)j∈IN comprising the range of L may be taken by the learning

algorithm, then we call it class-comprising. In this setting one has the freedom to change the

enumeration, the description and to add elements Gk not describing any language from L

to the hypothesis space. However, since membership in L is uniformly decidable, we restrict

ourselves to consider exclusively hypothesis spaces having a uniformly decidable membership

problem.

Several authors proposed the so-called subset principle to solve the problem of avoiding

overgeneralization (cf., e.g., Berwick [4], Wexler [22]). Informally, the subset principle re-

quires the learner to hypothesize a “least” language from the hypothesis space with respect

to set inclusion that fits with the data the IIM has read so far. Therefore, we present some

formalizations of learning realizing the subset principle to different extents. First, we require

the learning algorithm to produce a sequence of hypotheses describing an augmenting chain

of languages, i.e., L(Gj) ⊆ L(Gk), if k is hypothesized on an extension of the text seg-

ment that led to j (cf. Definition 5, (A)). We call learners behaving thus strong-monotonic.

Weakening the latter demand leads to weak-monotonic learners that are required to behave

strong-monotonically as long as they do not receive data contradicting its actual hypothesis.

If they receive strings that provably misclassify their actual hypothesis, then weak-monotonic

3



learners are allowed to output any hypothesis (cf. Definition 5, (C)). Third, we refine strong-

monotonic learning in that we only require L(Gj) ∩ L ⊆ L(Gk) ∩ L. Now, “least” language

is interpreted with respect to the intersection with L. This learning model is called monot-

onic inference (cf. Definition 5, (B)). Strong-monotonic and weak-monotonic learning have

been introduced by Jantke [8] and monotonic learning goes back to Wiehagen [24]. Subse-

quently, we have studied their learning capabilities in the setting of learning indexed families

(cf. Lange and Zeugmann [11]). Again, the power of all the monotonic learning models

heavily depends on the choice of the hypothesis space (cf. Lange and Zeugmann [12]).

In what follows we study the impact of set-drivenness and rearrangement-independence

on all the learning models described above in dependence on the hypothesis space. The

results obtained prove that rearrangement-independent learning does not constitute a re-

striction except in case one learns monotonically. These results have been achieved by

non-trivial applications of the characterizations of all types of monotonic learning in terms

of finite tell-tales (cf. Lange and Zeugmann [10]). Furthermore, we show that set-drivenness

cannot be achieved in general. However, class-comprising conservative learning is exactly

as powerful as class-comprising set-driven conservative inference. Moreover, we character-

ize class-comprising set-driven learning in the limit by equating the collection of learnable

indexed families with the collection of class-comprisingly conservatively inferable indexed

families. We regard these results as a particular answer to the question of how a “natural”

learning algorithm may be designed.

2. Preliminaries

By IN = {0, 1, 2, ...} we denote the set of all natural numbers. We set IN+ = IN \ {0}.

Let ϕ0, ϕ1, ϕ2, ... denote any fixed acceptable programming system of all (and only

all) partial recursive functions over IN, and let Φ0, Φ1, Φ2, ... be any associated complexity

measure (cf. Machtey and Young [17]). Then ϕk is the partial recursive function com-

puted by program k in the programming system. Furthermore, let k, x ∈ IN. If ϕk(x) is

defined (abbr. ϕk(x) ↓) then we also say that ϕk(x) converges; otherwise, ϕk(x) diverges

(abbr. ϕk(x) ↑). By 〈., .〉: IN × IN → IN we denote Cantor’s pairing function, i.e.,
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〈x, y〉 = ((x + y)2 + 3x + y)/2 for all x, y ∈ IN.

In what follows we assume familiarity with formal language theory (cf. Hopcroft and

Ullman [7]). By Σ we denote any fixed finite alphabet of symbols. Let Σ∗ be the free

monoid over Σ, and let Σ+ = Σ∗ \ {ε}, where ε denotes the empty string. Any subset

L ⊆ Σ∗ is called a language. Let L be a language and t = s0, s1, s2, ... an infinite sequence

of strings from Σ∗ such that range(t) = {sk k ∈ IN} = L. Then t is said to be a text for L

or, synonymously, a positive presentation. Let L be a language. By text(L) we denote

the set of all positive presentations of L. Moreover, let t be a text and let x be a number.

Then, tx denotes the initial segment of t of length x + 1, and t+x =df {sk k ≤ x}.

Next, we introduce the notion of the canonical text that turned out to be very helpful in

proving several theorems. Let L be any nonempty recursive language, and let s0, s1, s2, ... be

the lexicographically ordered text of Σ∗. The canonical text of L is obtained as follows. Test

sequentially whether sz ∈ L for z = 0, 1, 2, ... until the first z is found such that sz ∈ L. Since

L 6= ∅ there must be at least one z fulfilling the test. Set t0 = sz. We proceed inductively.

For all x ∈ IN we define:

tx+1 =


tx · sz+x+1, if sz+x+1 ∈ L,

tx · s, otherwise, where s is the last string in tx.

In what follows we deal with the learnability of indexed families of uniformly recursive

languages defined as follows (cf. Angluin [2]). A sequence L0, L1, L2, ... is said to be an

indexed family L of uniformly recursive languages provided all Lj are nonempty and there

is a recursive function f such that for all numbers j and all strings s ∈ Σ∗ we have

f(j, s) =

 1, if s ∈ Lj,

0, otherwise.

In the following we refer to indexed families of uniformly recursive languages as indexed

families for short. Note that an indexed family is directly connected with the grammars

behind the enumerated languages. In particular, we can consider the indices as compiled

grammars (cf. Hopcroft and Ullman [7]). Next, we extend the notion of text(L) to indexed

families. Let L be an indexed family, then we set text(L) =
⋃

L∈range(L) text(L).

As in Gold [6] we define an inductive inference machine (abbr. IIM) to be an algo-
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rithmic device which works as follows: The IIM takes as its input larger and larger initial

segments of a text t and it either requests the next input string, or it first outputs a hy-

pothesis, i.e., a number encoding a certain computer program, and then it requests the next

input string.

At this point we specify the semantics of the hypotheses an IIM outputs. For that

purpose we have to clarify what hypothesis spaces we choose. We require the inductive

inference machines to output indices of grammars, since this learning goal fits well with

the intuitive idea of language learning. Furthermore, since we exclusively deal with indexed

families L = (Lj)j∈IN we always take as a space of hypotheses an enumerable family of

grammars G0, G1, G2, ... over the terminal alphabet Σ satisfying range(L) ⊆ {L(Gj) j ∈

IN}. Moreover, we require that membership in L(Gj) is uniformly decidable for all j ∈ IN

and all strings s ∈ Σ∗. When an IIM outputs a number j, we interpret it to mean that the

machine is hypothesizing the grammar Gj. Furthermore, let G = (Gj)j∈IN be any hypothesis

space. For notational convenience we use L(G) to denote (L(Gj))j∈IN. Note that L(G)

constitutes itself an indexed family for all hypothesis spaces G = (Gj)j∈IN.

Let t be a text, and x ∈ IN. Then we use M(tx) to denote the last hypothesis produced

by M when successively fed tx. The sequence (M(tx))x∈IN is said to converge in the limit

to the number j if and only if either (M(tx))x∈IN is infinite and all but finitely many terms

of it are equal to j, or (M(tx))x∈IN is nonempty and finite, and its last term is j. Now we

define some concepts of learning. We start with learning in the limit.

Definition 1. (Gold [6]) Let L be an indexed family, let L be a language, and let

G = (Gj)j∈IN be a hypothesis space. An IIM M CLIM–identifies L from text with

respect to G iff for every text t for L, there exists a j ∈ IN such that the sequence (M(tx))x∈IN

converges in the limit to j and L = L(Gj).

Furthermore, M CLIM–identifies L with respect to G iff, for each L ∈ range(L), M

CLIM–identifies L from text with respect to G.

Finally, let CLIM denote the collection of all indexed families L for which there are an

IIM M and a hypothesis space G such that M CLIM–identifies L with respect to G.

Suppose, an IIM identifies some language L. That means, after having seen only finitely
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many data of L the IIM reached its (unknown) point of convergence and it computed a

correct and finite description of a generator for the target language. Hence, some form of

learning must have taken place. Therefore, we use the terms infer and learn as synonyms

for identify.

In the above Definition LIM stands for “limit.” Furthermore, the prefix C is used to

indicate class-comprising learning, i.e., the fact that L may be learned with respect to

some hypothesis space comprising range(L). The restriction of CLIM to class preserving

inference is denoted by LIM . That means LIM is the collection of all indexed families L

that can be learned in the limit with respect to a hypothesis space G = (Gj)j∈IN such that

range(L) = {L(Gj) j ∈ IN}. Moreover, if a target indexed family L has to be inferred with

respect to the hypothesis space L itself, then we replace the prefix C by E, i.e., ELIM is the

collection of indexed families that can be exactly learned in the limit. Finally, we adopt

this convention in defining all the learning types below.

Moreover, an IIM is required to learn the target language from every text for it. This

might lead to the impression that an IIM mainly extracts the range of the information fed

to it, thereby neglecting the length and order of the data sequence it reads. IIMs really

behaving thus are called set-driven. More precisely, we define:

Definition 2. (Wexler and Culicover, Sec. 2.2, [23]) Let L be an indexed family.

An IIM M is said to be set-driven with respect to L iff its output depends only on

the range of its input; that is, iff M(tx) = M(t̂y) for all x, y ∈ IN, all texts t, t̂ ∈ text(L)

provided t+x = t̂+y .

Whenever the relevant indexed family L is clear from the context we refer to set-driven

with respect to L as set-driven for short. Schäfer-Richter [20] as well as Fulk [5], later, and

independently proved that set-driven IIMs are less powerful than unrestricted ones. Fulk

[5] interpreted the weakening in the learning power of set-driven IIMs by the need of IIMs

for time to “reflect” on the input. However, this time cannot be bounded by any a priori

fixed computable function depending exclusively on the size of the range of the input, since

otherwise set-drivenness would not restrict the learning power. Indeed, Osherson, Stob and

Weinstein [19] proved that any non-recursive IIM M may be replaced by a non-recursive
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set-driven IIM M̂ learning at least as much as M does. With the next definition we consider

a natural weakening of Definition 2.

Definition 3. (Schäfer-Richter [20], Osherson et al. [19]) Let L be an indexed

family. An IIM M is said to be rearrangement-independent with respect to L iff its

output depends only on the range and on the length of its input; that is, iff M(tx) = M(t̂x)

for all x ∈ IN, all texts t, t̂ ∈ text(L) provided t+x = t̂+x .

Whenever the relevant indexed family L is clear from the context we refer to rearrange-

ment-independent with respect to L as rearrangement-independent for short. Furthermore,

we make the following convention. For all the learning models in this paper we use the

prefix s-, and r- to denote the learning model restricted to set-driven and rearrangement-

independent IIMs, respectively. For example, s-LIM denotes the collection of all indexed

families that are LIM –inferable by some set-driven IIM. Next we formalize the other inference

models that we have mentioned in the introduction.

Definition 4. (Gold [6]) Let L be an indexed family, let L be a language, and let

G = (Gj)j∈IN be a hypothesis space. An IIM M CFIN–identifies L from text iff for

every text t for L, there exists a j ∈ IN such that M, when successively fed t, outputs the

single hypothesis j, L = L(Gj), and stops thereafter.

Furthermore, M CFIN–identifies L with respect to G iff, for each L ∈ range(L), M

CFIN–identifies L from text with respect to G.

The resulting learning type is denoted by CFIN .

Consequently, every hypothesis produced by a finitely working IIM has to be a correct

guess.

The next definition formalizes the different notions of monotonicity.

Definition 5. (Jantke [8], Wiehagen [24]) Let L be a language, and let G = (Gj)j∈IN

be a hypothesis space. An IIM M is said to identify the language L from text with

respect to G

(A) strong-monotonically

(B) monotonically
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(C) weak-monotonically

iff

M CLIM–identifies L from text with respect to G and for any text t ∈ text(L) as well

as for any two consecutive hypotheses jx, jx+k which M has produced when fed tx and tx+k

where k ∈ IN+ the following conditions are satisfied:

(A) L(Gjx) ⊆ L(Gjx+k
)

(B) L(Gjx) ∩ L ⊆ L(Gjx+k
) ∩ L

(C) if t+x+k ⊆ L(Gjx) then L(Gjx) ⊆ L(Gjx+k
).

By CSMON CMON , and CWMON , we denote the collection of all indexed families

L for which there are an IIM M and a hypothesis space G such that M infers L strong-

monotonically, monotonically, and weak–monotonically, respectively, with respect to the

hypothesis space G.

Note that the learning types λSMON , λMON , and λWMON do heavily depend on

λ ∈ {E, ε, C} as the following proposition shows (cf. Lange and Zeugmann [12, 14] and

Lange, Zeugmann and Kapur [16]).

Proposition 1.

ELIM = LIM = CLIM

∪ ∪ ∪

EWMON ⊂ WMON ⊂ CWMON

∪ ∪ ∪

EMON ⊂ MON ⊂ CMON

∪ ∪ ∪

ESMON ⊂ SMON ⊂ CSMON

∪ ∪ ∪

EFIN = FIN = CFIN

Next, we define conservative learning. Intuitively speaking, conservative IIMs maintain

their actual hypothesis at least as long they have not seen data contradicting it. Hence,
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whenever a conservative IIM performs a mind change it is because it has perceived clear

inconsistency between its guess and the input.

Definition 6. (Angluin [2]) Let L be an indexed family, let L be a language, and let

G = (Gj)j∈IN be a hypothesis space. An IIM M CCONSERVATIVE–identifies L

from text with respect to G iff

(1) M CLIM–identifies L from text with respect to G,

(2) for every text t for L the following condition is satisfied:

if M on input tx makes the guess jx and then outputs the hypothesis jx+k 6= jx at some

subsequent step, then t+x+k 6⊆ L(Gjx).

Finally, M CCONSERVATIVE–identifies L with respect to G iff, for each L ∈ range(L),

M CCONSERVATIVE–identifies L from text with respect to G.

The collection of indexed families CCONSERVATIVE is defined in an analogous manner

as above. The following proposition completely clarifies the relations between conservative

and weak-monotonic learning.

Proposition 2. (Lange and Zeugmann [11])

λWMON = λCONSERVATIVE for all λ ∈ {C, ε, E}.

Finally, some of the proofs given below use the notion of uniformly recursively generable

families of finite sets (Tj)j∈IN. Therefore, we present the definition here. A family of finite

sets (Tj)j∈IN is said to be uniformly recursively generable iff there is a total effective

procedure which, on every input j, generates all elements of Tj and stops. If the procedure

stops without any output, the corresponding set is empty.

3. Learning with Set-driven IIMs

In this section we study the question under what circumstances set-drivenness does restrict

the power of the learning models defined above. We start with finite learning. The next

theorem in particular states that finite learning is invariant with respect to the specific choice

of the hypothesis space. Moreover, for every hypothesis space comprising the target indexed
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family L there is a set-driven IIM that finitely learns L.

Theorem 1. EFIN = FIN = CFIN = s-EFIN .

Proof. EFIN = FIN = CFIN is due to Lange and Zeugmann [12]. It remains to show

that EFIN ⊆ s-EFIN .

Let L ∈ EFIN . From the characterization theorem for finite learning (cf. Lange and

Zeugmann [10]) it follows that there exists a recursively generable family (Tj)j∈IN of finite

nonempty sets such that

(1) for all j ∈ IN, Tj ⊆ Lj,

(2) for all j, k ∈ IN, if Tj ⊆ Lk, then Lk = Lj.

Using this recursively generable family (Tj)j∈IN we define an IIM M witnessing L ∈

s-EFIN . Let L ∈ range(L), t ∈ text(L), and x ∈ IN.

IIM M: “On input tx do the following: If x = 0 or x > 0 and M , when successively fed

tx−1, does not stop, then execute Stage x.

Stage x: Search for the least j such that t+x ⊆ Lj. Test whether or not Tj ⊆ t+x .

In case it is, output j and stop.

Otherwise, output nothing and request the next input.”

It remains to show that M s-EFIN –infers L. By construction, M uses L as its hypothesis

space.

Claim 1. M finitely infers L.

Let L ∈ range(L) and let t ∈ text(L). We have to show that M stops sometimes, say

with j, and that L = Lj. Let k be the least number satisfying L = Lk. By Property (1),

Tk ⊆ Lk. Since range(t) = L, there must be an x such that Tk ⊆ t+x . Now, there is only one

case imaginable that could prevent M stopping. Namely, there exists a j < k with L ⊂ Lj

and Tj 6⊆ L. Clearly, in this case M would verify t+y ⊆ Lj but it never verifies Tj ⊆ t+y .

However, since L ⊂ Lj, and L = Lk we conclude Tk ⊆ Lj. Therefore, L = Lj by Property

(2), a contradiction. Consequently, M has to stop sometimes. Suppose, M , when fed ty,
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outputs j and stops. But then, in accordance with M ’s definition, M has verified t+y ⊆ Lj

and Tj ⊆ t+y . Hence, Tj ⊆ Lk. By Property (2), we directly obtain Lj = Lk = L. This

proves Claim 1.

Claim 2. M is set-driven.

Let L, L̂ ∈ range(L), let t ∈ text(L), t̂ ∈ text(L̂), and let x, y ∈ IN be any numbers

such that t+x = t̂+y . We have to show that M(tx) = M(t̂y). Suppose, M executes Stage x

for tx and Stage y for t̂y, respectively. Since L ∈ range(L), there exist numbers k,m such

that L = Lk and L̂ = Lm, respectively. Hence, M finds least indices i, j for tx and t̂y,

respectively, such that t+x ⊆ Li and t̂+y ⊆ Lj. Because of t+x = t̂+y , we may conclude i = j.

Since the tell-tale sets Tj are uniformly recursively generable, M can effectively compute Tj.

If Tj 6⊆ t+x , then Tj is not a subset of t̂+y either. Hence, in this case M does not output a

hypothesis when fed tx and t̂y, respectively. On the other hand, if Tj ⊆ t+x then Tj ⊆ t̂+y .

Therefore, M(tx) = M(t̂y) = j.

Finally, suppose M has stopped when successively fed tx−1. Clearly, then M has output

a hypothesis, say j. We have to show that M(t̂y) = j. Since M finitely infers L, we know

that Lj = L. Moreover, M has verified that Tj ⊆ t+z ⊆ Lj for some z < x. By assumption,

t+x = t̂+y , and therefore t+z ⊆ t̂+y . We distinguish the following two cases.

Case 1. M when successively fed t̂y−1 does not stop.

In accordance with M ’s definition we know that M executes Stage y on input t̂y. Since

j is the least index with Tj ⊆ t+z ⊆ Lj and since Lj = L, we conclude t+x ⊆ Lj. Because

of t+x = t̂+y and Tj ⊆ t+z ⊆ t̂+y , it immediately follows that Tj ⊆ t̂+y ⊆ Lj. Hence, M , when

successively fed t̂y, has to output a hypothesis, say n, and to stop. Suppose, n 6= j. Since

Tj ⊆ t̂+y ⊆ Lj, we directly obtain n < j. On the other hand, t+z ⊆ t̂+y and t̂+y ⊆ Ln imply

t+z ⊆ Ln. Therefore, if Tn 6⊆ t+r for all r < x then M does not stop when successively fed

tx−1. However, by assumption M has stopped. Thus it must have verified Tn ⊆ t+z , since

z < x. Consequently, M(tz) = n, a contradiction to n 6= j. Hence, M , when executing Stage

y, outputs j and stops.

Case 2. M when successively fed t̂y−1 stops.
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By construction, M , when successively fed t̂y−1, executes some Stage r, r ≤ y−1, outputs

a hypothesis, say n, and stops. Hence, M has verified Tn ⊆ t̂+r ⊆ Ln. We have to show that

n = j. Suppose the converse, i.e., j 6= n. Again, since j is the least index with Tj ⊆ t+z ⊆ Lj

and since Lj = L as well as Lj ⊇ t+x = t̂+y , we may conclude t̂+r ⊆ Lj. Therefore, j 6= n

implies n < j. On the other hand, n = M(t̂r) implies Ln = L̂, since M finitely learns L.

Because of Ln ⊇ t̂+y = t+x , it immediately follows that t+z ⊆ Ln. Finally, since M(tz) = j, the

definition of M directly implies j < n, a contradiction. Hence, we obtain j = n. 2

As we have already mentioned, the examples of Schäfer-Richter [20] and Fulk [5] witness-

ing the restriction of set-driven learners are not indexed families. Hence, we ask whether

the uniform recursiveness of all target languages may compensate the impact to learn with

set-driven IIMs. The answer is no as the following theorem impressively shows.

Theorem 2. s-CLIM ⊂ ELIM = LIM = CLIM .

Proof. The part ELIM = LIM = CLIM is due to Lange and Zeugmann [14]. It remains

to show that s-CLIM ⊂ ELIM .

The desired indexed family L is defined as follows. For all k ∈ IN we set L〈k,0〉 = {akbn n ∈

IN+}. For all k ∈ IN and all j ∈ IN+ we distinguish the following cases:

Case 1. ¬ Φk(k) ≤ j

Then we set L〈k,j〉 = L〈k,0〉.

Case 2. Φk(k) ≤ j

Let d = 2 · Φk(k)− j. Now, we set:

L〈k,j〉 =


{akbm 1 ≤ m ≤ d}, if d ≥ 1,

{akb}, otherwise.

L = (L〈k,j〉)j,k∈IN is an indexed family of recursive languages, since the predicate ‘Φi(y) ≤

z’ is uniformly decidable in i, y, and z.

Claim 1. L 6∈ s-CLIM .

Since the halting problem is undecidable, Claim 1 follows by contraposition of the follow-

ing Claim 2.
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Claim 2. If there exists an IIM M witnessing L ∈ s-CLIM , then one can effectively

construct an algorithm deciding for all k ∈ IN whether or not ϕk(k) converges.

Let M be any IIM that learns L in the limit with respect to some hypothesis space G

comprising range(L). We define an algorithm A that solves the halting problem.

Algorithm A: “On input k execute (A1) and (A2).

(A1) For z = 0, 1, 2, ... generate successively the canonical text t of L〈k,0〉 until M on

input tz outputs for the first time a hypothesis j such that t+z ∪{akbz+2} ⊆ L(Gj).

(A2) Test whether Φk(k) ≤ z + 1. In case it is, output ‘ϕk(k) converges.’

Otherwise output ‘ϕk(k) diverges’ and stop.

Since M has to infer L〈k,0〉 in particular from t, there has to be a least z such that M

on input tz computes a hypothesis j satisfying t+z ∪ {akbz+2} ⊆ L(Gj). Moreover, the test

whether or not t+z ∪ {akbz+2} ⊆ L(Gj) can be effectively performed, since membership in

L(Gj) is uniformly decidable. By the definition of a complexity measure, Instruction (A2)

is effectively executable. Hence, A is an algorithm.

It remains to show that ϕk(k) diverges, if ¬ Φk(k) ≤ z + 1. Suppose the converse; then

there exists a y > z + 1 with Φk(k) = y. In accordance with the definition of L, we obtain

L = t+z ∈ L. Hence, tz is also an initial segment of a text t̂ for L. Due to the definition of A,

we have L(Gj) 6= L. Since M is a set-driven IIM, L = t+z implies M(t̂z+r) = j for all r ∈ IN.

Therefore, M fails to infer L from its text t̂. This contradicts our assumption that M is a

set-driven IIM which CLIM –infers L with respect to G. Hence, Claim 2 is proved.

Claim 3. L ∈ ELIM .

After a little reflection, it is easy to verify that the following IIM M infers L in the limit

with respect to the hypothesis space L. Let L ∈ range(L), let t ∈ text(L), and let x ∈ IN.

We define:

IIM M: “On input tx do the following: Determine the unique k such that t0 = akbm for

some m ∈ IN. Test whether or not Φk(k) ≤ x. In case it is, goto (1). Otherwise,

output 〈k, 0〉 and request the next input.
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(1) Test whether or not akbΦk(k)+n ∈ t+x for some n ∈ IN. In case it is, output 〈k, 0〉

and request the next input. Otherwise, goto (2).

(2) Determine the maximal z ∈ IN such that akbz ∈ t+x . Output 〈k, 2 ·Φk(k)− z〉 and

request the next input.”

2

As the latter theorem shows, sometimes there is no way to design a set-driven IIM.

However, with the following theorems we mainly intend to show that the careful choice of

the hypothesis space deserves special attention whenever set-drivenness is desired. The first

result nicely contrasts the fact that unconstraint language learning is invariant with respect

to the particular choice of the hypothesis space.

Theorem 3. s-ELIM ⊂ s-LIM ⊂ s-CLIM .

Proof. By definition s-ELIM ⊆ s-LIM ⊆ s-CLIM . It remains to show that the stated

inclusions are proper. First, we separate s-LIM and s-ELIM .

The target indexed family L = (L〈k,j〉)k,j∈IN is defined as follows. Without loss of general-

ity, we may assume that Φk(k) ≥ 1 for all k ∈ IN. We set L〈k,0〉 = {akb}∪{akbΦk(k)+1} for all

k ∈ IN. Notice that {akbΦk(k)+1} equals the empty set, if ϕk(k) is undefined. Furthermore,

for all j ≥ 1 we distinguish the following cases.

Case 1. ¬ Φk(k) = j

Then let L〈k,j〉 = {akb, akbj+1}.

Case 2. Φk(k) = j

Then we set L〈k,j〉 = {akb}.

Obviously, L = (L〈k,j〉)k,j∈IN constitutes an indexed family.

Claim 1. L ∈ s-LIM .

Consider the following hypothesis space G = (G〈k,j〉)k,j∈IN. For all k, j ∈ IN let L(G〈k,j〉) =

{akb, akbj+1}. After a little reflection, it is not hard to see that range(L(G)) = range(L).

Now, a set-driven IIM M which LIM–infers L with respect to G can be designed as follows.

Given any initial segment tx of any text t for any language L ∈ range(L), M simply deter-

15



mines the relevant k and searches the least index j such that t+x ⊆ G〈k,j〉. Then it outputs

the hypothesis 〈k, j〉. We omit the details.

Claim 2. L 6∈ s-ELIM .

This claim is proved via the following lemma.

Lemma 1. Let M be any set-driven IIM witnessing L ∈ ELIM . Then M may be used

to decide the halting problem.

Proof. We define an algorithm B as follows.

Algorithm B: “On input k execute Instruction (B).

(B) Compute 〈k, j〉 = M(akb). If j = 0, output ‘ϕk(k) ↑’ and stop.

Else, output ‘ϕk(k) ↓,’ and stop.”

By assumption, M has to learn {akb} in the limit from its unique text t = akb, akb, .... Since

M is set-driven, it must make an output on input akb. Moreover, this output has to be a

correct hypothesis, i.e., M(akb) = 〈k, j〉, and {akb} = L〈k,j〉. Therefore, B terminates on

every input k. It remains to show that B behaves correctly.

Suppose, B outputs ‘ϕk(k) ↑’ but ‘ϕk(k) ↓.’ Let Φk(k) = y. By assumption, y ≥ 1. Now,

looking at L’s definition, one easily verifies that L〈k,0〉 = {akb, akby+1}. But this directly

contradicts L〈k,0〉 = {akb}. Hence, B behaves correctly if it outputs ‘ϕk(k) ↑.’

Now suppose that B outputs ‘ϕk(k) ↓.’ By construction, j 6= 0, and as already men-

tioned L〈k,j〉 = {akb}. Taking L’s definition into account we can conclude that j = Φk(k).

Consequently, ϕk(k) is indeed defined. This proves Lemma 1.

Since the halting problem is not recursive, the contraposition of Lemma 1 yields Claim 2.

Finally, we have to separate s-CLIM and s-LIM . However, this separation is an immedi-

ate consequence of the following slightly stronger theorem, and therefore we omit its proof

here. 2

Theorem 4. There is an indexed family L such that

(1) L ∈ r-ESMON ,
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(2) L /∈ s-LIM ,

(3) L ∈ s-CSMON .

Proof. The desired indexed family L = (L〈k,j〉)k,j∈IN is defined as follows. For all k ∈ IN

we set L〈k,0〉 = {akbm m ∈ IN+}. For all j ∈ IN+ we distinguish the following cases.

Case 1. ¬ Φk(k) ≤ j

Then we define L〈k,j〉 = L〈k,0〉.

Case 2. Φk1(k1) ≤ j

Then we set L〈k,j〉 = {akb}.

Claim 1. L ∈ r-ESMON .

We have to define an IIM witnessing L ∈ r-ESMON . This is done as follows: Let

L ∈ range(L), t ∈ text(L), and x ∈ IN.

IIM M: “On input tx do the following: Compute the unique k such that akbm ∈ t+x for

some m ∈ IN. As long as t+x = {akb} execute (A).

Otherwise, output 〈k, 0〉 and request the next input.

(A) Test whether or not ¬ Φk(k) ≤ x. In case it is, output nothing and request the

next input.

Otherwise, output 〈k, Φk(k)〉 and request the next input.”

Obviously, M is rearrangement-independent. In order to prove that M ESMON –infers

L we distinguish the following cases.

Case 1. ϕk(k) ↑

In accordance with the definition of the indexed family L we directly obtain L = L〈k,0〉 =

L〈k,j〉 for all j ∈ IN. Since t ∈ text(L), there has to be an x such that t+x 6= {akb}. Conse-

quently, after having seen tx the IIM M always outputs 〈k, 0〉, a correct hypothesis. More-

over, M obviously behaves strong-monotonically.

Case 2. ϕk(k) ↓
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Suppose, L = {akb}. Since t ∈ text(L), M executes Instruction (A) on every input tx.

Moreover, there exists an x0 such that Φk(k) ≤ x for all x ≥ x0. Hence, after having seen

tx0 the IIM M always outputs the correct hypothesis 〈k, Φk(k)〉.

Now, let us assume L = L〈k,0〉. As we have shown in Case 1, there exists an x ∈ IN

such that t+x 6= {akb}. Consequently, for all y ≥ x we have M(ty) = 〈k, 0〉 and M again

learns L. Finally, it might happen that M outputs 〈k, Φk(k)〉 on some initial segment of

t and changes its mind to 〈k, 0〉 afterward. Clearly, this mind change fulfills the strong-

monotonicity constraint. Hence, M witnesses L ∈ r-ESMON .

Claim 2. L /∈ s-LIM .

Applying mutatis mutandis the same idea underlying the proof of Theorem 3, Claim 2,

L /∈ s-LIM can be shown by reducing the halting problem to L ∈ s-LIM . For the sake of

completeness we present the modification of Algorithm B.

Algorithm B̃: “On input k execute Instruction (B1).

(B1) Simulate M on input akb. If M requests the next input without outputting a hypothe-

sis, then output ‘ϕk(k) ↑,’ and stop.

Otherwise, let z = M(akb). Execute Instruction (B2).

(B2) Test whether or not akb2 ∈ L(Gz).

In case it is, output ‘ϕk(k) ↑.’

Else, output ‘ϕk(k) ↓,’ and stop.”

Claim 3. L ∈ s-CSMON .

First of all we define the desired class-comprising hypothesis space. For all j ∈ IN we set

L(Gj) =


L〈k,0〉, if j = 2k,

{akb}, if j = 2k + 1.

Obviously, G = (Gj)j∈IN is an admissable hypothesis space. A set-driven IIM M witness-

ing L ∈ CSMON may be easily defined as follows. As long as it receives an initial segment

tx of a text t such that t+x = {akb} it outputs 2k + 1. If {akb} ⊂ t+x , it hypothesizes 2k. We

omit the details. 2
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Theorem 4 directly yields the following corollary which relates the power of set-driven

and unrestricted IIMs to one another.

Corollary 5. For all ID ∈ {SMON ,MON ,WMON }:

(1) s-EID ⊂ EID,

(2) s-ID ⊂ ID.

Proof. By Theorem 4 we have r-ESMON \s-LIM 6= ∅. This yields all the proper inclusions

mentioned, since ESMON ⊂ SMON , ESMON ⊂ EID ⊂ ID for all ID ∈ {MON ,WMON }

(cf. Proposition 1) as well as s-EID ⊆ s-ID ⊆ s-LIM for all ID ∈ {SMON ,MON ,WMON }

by definition. 2

As we have seen, set-drivenness constitutes a severe restriction. While this is true in

general as long as exact and class-preserving learning is considered, the situation is different

in the class-comprising case. On the one hand, learning in the limit cannot always be

achieved by set-driven IIMs (cf. Theorem 2). On the other hand, conservative learners may

always be designed to be set-driven, if the hypothesis space is appropriately chosen.

Theorem 6. s-CCONSERVATIVE = CCONSERVATIVE.

Proof. We partition the proof into two parts. First, we show that every indexed family in

CCONSERVATIVE belongs to r-CCONSERVATIVE (cf. Lemma 2) below. Then we apply

this result and show that set-drivenness does not restrict the power of class-comprising

conservative learning (cf. Lemma 3).

Lemma 2. r-CCONSERVATIVE = CCONSERVATIVE.

Let L ∈ CCONSERVATIVE . By Theorem 14 in Lange and Zeugmann [13] there exist

a hypothesis space G = (Gj)j∈IN and a recursively generable tell-tale family (Tj)j∈IN of finite

and nonempty sets such that

(1) range(L) ⊆ range(L(G)),

(2) for all j ∈ IN, Tj ⊆ L(Gj),

(3) for all j, k ∈ IN, if Tj ⊆ L(Gk), then L(Gk) 6⊂ L(Gj).
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Using this tell-tale family, we define a new recursively generable family (T̂j)j∈IN of finite

and nonempty sets that allows the design of a rearrangement-independent IIM inferring L

conservatively with respect to G. For all j ∈ IN we set T̂j =
⋃

n≤j
Tn ∩ L(Gj).

It is easy to see that (T̂j)j∈IN fulfills (2) and (3), too. Next, we show the following even

stronger result.

Statement 1. L(G) ∈ r-ECONSERVATIVE.

The desired IIM is defined as follows. Let L ∈ range(L(G)), t ∈ text(L), and x ∈ IN.

IIM M: “On input tx do the following: Generate T̂k for all k ≤ x and test whether T̂k ⊆

t+x ⊆ L(Gk). In case there is one k fulfilling the test, output the minimal one, and

request the next input.

Otherwise, output nothing and request the next input.”

Obviously, M is rearrangement-independent.

Claim 1. M is conservative.

Let k and j be two distinct hypotheses produced by M on input tx and tx+r, respectively.

We have to show that t+x+r 6⊆ L(Gk). For that purpose we distinguish the following cases.

Case 1. k < j

Due to M ’s definition we immediately obtain t+x+r 6⊆ L(Gk).

Case 2. j < k

Suppose, t+x+r ⊆ L(Gk). In accordance with its definition, M has verified that T̂j ⊆ t+x+r ⊆

L(Gj). Moreover, the definition of the tell-tale family directly yields T̂j ⊆ T̂k, since j < k

and T̂j ⊆ t+x+r ⊆ L(Gk). Taking into account that T̂k ⊆ t+x , this implies T̂j ⊆ t+x ⊆ L(Gj).

Finally, since j < k we conclude M(tx) = j, a contradiction. Hence, Claim 1 is proved.

Claim 2. M infers L from t.

Let z be the least k such that L(Gk) = L, hereafter denoted as z = µk [L(Gk) = L].

Therefore, L(Gj) 6= L for all j < z. Applying Property (3), we obtain that L \ L(Gj) 6= ∅

for all j < z provided T̂j ⊆ L. Consequently, every candidate hypothesis j < z is sometimes

rejected by M , and M converges to z. Hence, Claim 2 follows and Statement 1 is proved.
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Finally, since range(L) ⊆ range(L(G)), we may conclude that M r -CCONSERVATIVE–

infers L. This completes the proof of Lemma 2.

Lemma 3. Let L be any indexed family. If L ∈ CCONSERVATIVE, then there exist

a hypothesis space G̃ = (G̃j)j∈IN and an IIM M̃ witnessing L ∈ s-CCONSERVATIVE with

respect to G̃.

First, we define the hypothesis space G̃ = (G̃j)j∈IN as follows. Applying Lemma 2, there

are a hypothesis space G = (Gj)j∈IN and an IIM M such that M r -CCONSERVATIVE–learns

L with respect to G. Moreover, M witnesses L(G) ∈ r -ECONSERVATIVE . Afterwards, we

use the latter statement and show a more general result which turns out to be quite helpful

in order to prove Corollary 7. The hypothesis space G̃ is the canonical enumeration of all

grammars from G and all finite languages over the underlying alphabet Σ. Second, the main

ingredient to the definition of the desired IIM M̃ is the machine M from Lemma 2. However,

before defining it we introduce the notion of repetition free text rf (t). Let t = s0, s1, ... be any

text. We set rf (t0) = s0 and proceed inductively as follows: For all x ≥ 1, rf (tx+1) = rf (tx),

if sx+1 ∈ rf (tx)
+, and rf (tx+1) = rf (tx) ·sx+1 otherwise. Obviously, given any initial segment

tx of a text t one can effectively compute rf (tx).

Statement 2. L(G) ∈ s-CCONSERVATIVE with respect to G̃.

Now, let L ∈ range(L(G)), t ∈ text(L), and x ∈ IN.

IIM M̃: “On input tx do the following: Compute rf (tx). If M on input rf (tx) outputs a

hypothesis, say j, then output the canonical index of j in G̃ and request the next input.

Otherwise, output the canonical index of t+x in G̃ and request the next input.”

Claim 3. M̃ is set-driven.

Let t, t̂ ∈ text(L), and let x, y ∈ IN such that t+x = t̂+y . We have to show that M̃(tx) =

M̃(t̂y). Clearly, length(rf (tx)) = length(rf (t̂y)), and therefore we conclude M(rf (tx)) =

M(rf (t̂y)), since M is rearrangement-independent. That means, either M outputs in both

cases the same hypothesis or it outputs nothing on input rf (tx) and rf (t̂y), respectively.

This proves Claim 3.

Claim 4. M̃ is conservative.
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By construction, M̃ outputs on every input a hypothesis. Let j = M̃(tx) and k = M̃(tx+1)

with j 6= k. Since M̃ is set-driven, we obtain t+x ⊂ t+x+1. We consider the following cases.

Case 1. M on input rf (tx) does not output a hypothesis.

Then L(G̃j) = t+x , and consequently, t+x+1 6⊆ L(G̃j). Hence, M̃ performs a justified mind

change.

Case 2. M on input rf (tx) outputs a hypothesis.

Obviously, rf (tx) is a proper initial segment of rf (tx+1). Suppose, M on input rf (tx+1)

produces a hypothesis, too. Since M is conservative, we immediately obtain tx+1 6⊆ L(G̃j).

Hence, it remains to consider the scenario in which M on input rf (tx+1) does not produce a

hypothesis. Looking at M ’s definition, we see that M could be prevented from doing it only

by detecting an inconsistency. Consequently, M̃ is conservative, and Claim 4 is proved.

Claim 5. M̃ infers L from t.

Again, we distinguish two cases.

Case 1. L is finite.

Then there exists an x ∈ IN such that t+x = L. Moreover, if M on input rf (tx) produces

a hypothesis, then it is a correct one, since M is conservative. Hence, in this case M̃ infers

L from t. On the other hand, if M on input rf (tx) does not output a hypothesis, then M̃

converges to the canonical index of the finite language t+x in G̃, since M̃ is set-driven.

Case 2. L is infinite.

Since L is infinite, rf (t) is a text for L, too. Moreover, M has to infer L in particular

from rf (t). Therefore, there exists an x ∈ IN such that M(rf (t)x+r) = k with L(Gk) = L for

all r ∈ IN. Hence, after some point M̃ exclusively outputs the canonical index of L(Gk) in

G̃. Consequently, M̃ infers L. This completes the proof of Claim 5.

Therefore, Statement 2 is proved. Since range(L) ⊆ range(L(G)), we immediately may

conclude that M̃ CCONSERVATIVE–learns L with respect to G̃. This completes the proof

of Lemma 3. 2

Corollary 7. Let L ∈ CCONSERVATIVE. Then, there exists a hypothesis space
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Ĝ = (Ĝj)j∈IN comprising range(L) such that L(Ĝ) ∈ s-ECONSERVATIVE.

Proof. Let L ∈ CCONSERVATIVE . Furthermore, due to the latter theorem, there are a

set-driven IIM M̃ and a hypothesis space G̃ such that M̃ conservatively infers L with respect

to G̃. Let M̃ and G̃ be defined as in Lemma 3.

Recall that G̃ is a canonical enumeration of G = (Gj)j∈IN with range(L) ⊆ range(L(G))

and of all finite languages over the underlying alphabet. Without loss of generality we

may assume that G̃ fulfills the following property. If j is even, then L(G̃j) ∈ range(L(G)).

Hence, M̃ s-CCONSERVATIVE–learns L(G̃j) with respect to G̃. Otherwise, L(G̃j) is a

finite language.

We start with the definition of the desired hypothesis space Ĝ = (Ĝj)j∈IN If j is even,

then we set Ĝj = G̃j. Otherwise, we distinguish the following cases. If M , when fed the

lexicographically ordered enumeration of all strings in L(G̃j) outputs the hypothesis j, then

we set Ĝj = G̃j. In case it does not, we set Ĝj = G̃j−1.

Now we are ready to define the desired IIM M witnessing L(Ĝ) ∈ s-ECONSERVATIVE .

Let L ∈ range(L(Ĝ)), t ∈ text(L), and x ∈ IN.

IIM M: “On input tx do the following: Simulate M̃ on input tx. If M̃ does not output any

hypothesis, then output nothing and request the next input.

Otherwise, let j = M̃(tx). Output j and request the next input.”

Since M̃ is a conservative and set-driven IIM, M behaves thus. It remains to show

that M learns L. Obviously, if L = L(Ĝ2k) for some k ∈ IN, then M̃ infers L, since M̃

s-CCONSERVATIVE–infers L. Therefore, since M simulates M̃ , we are done.

Now, let us suppose, L 6= L(Ĝ2k) for all k ∈ IN. By definition of Ĝ, we know that L is

finite. Moreover, since t is a text for L, there exists an x such that t+y = L for all y ≥ x.

Recalling the definition of Ĝ, and by assumption, we obtain the following. There is a number

j such that M̃(tx) = j, L = t+x = L(G̃j) = L(Ĝj). Hence, M(tx) = j, too. Finally, since M

is set-driven, we directly get M(ty) = j for all y ≥ x. Consequently, M learns L. 2

Next we characterize class-comprising set-driven learning in the limit.
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Theorem 8. s-CLIM = CCONSERVATIVE .

Proof. CCONSERVATIVE ⊆ s-CLIM immediately follows from Theorem 6. It remains

to handle the part s-CLIM ⊆ CCONSERVATIVE .

Let L be any indexed family and M̂ a set-driven IIM which learns L with respect to a

hypothesis space Ĝ = (Ĝj)j∈IN. Without loss of generality, we may assume that M̂ , when fed

any finite sequences σ of strings over the terminal alphabet Σ, always outputs a consistent

hypothesis, i.e., if M̂(σ) = j then σ+ ⊆ L(Ĝj) (cf. Lange, Zeugmann and Kapur [16] for a

detailed discussion).

We show that M̂ can be simulated by a conservative IIM M which also learns L. First,

we define a suitable hypothesis space G = (G〈j,k〉)j,k∈IN.

For the sake of readability, in the following we consider the set-driven IIM M̂ as a learn-

ing device which receives finite sets of strings as input instead of finite sequences. Let

F0, F1, F2, . . . denote any effective repetition-free enumeration of all finite subsets from

Σ∗. Given any finite set F ⊆ Σ∗, we denote by #(F ) the uniquely determined index n with

Fn = F . For all j, k ∈ IN let us distinguish the following cases.

If M̂(Fk) 6= j, then we set L(G〈j,k〉) = Fk. Otherwise, i.e., M̂(Fk) = j, the language

L(G〈j,k〉) will be specified as a subset of L(Ĝj) such that Fk ⊆ L(G〈j,k〉). For that purpose,

we define L(G〈j,k〉) via its characteristic function fL(G〈j,k〉).

Let s0, s1 s2, . . . be the lexicographically ordered enumeration of all strings in Σ∗. Let

m = 0. If s0 ∈ Fk, then set fL(G〈j,k〉)(s0) = 1. If s0 ∈ L(Ĝj) \Fk and M̂(Fk ∪ {s0}) = j, then

let fL(G〈j,k〉)(s0) = 1. Otherwise, we set fL(G〈j,k〉)(s0) = 0. Now we proceed inductively. Let

m ∈ IN and F = {sn n ≤ m, fL(G〈j,k〉)(sn) = 1}. Then we define:

fL(G〈j,k〉)(sm+1) =



1, if sm+1 ∈ Fk,

1, if sm+1 ∈ L(Ĝj) \ Fk, M̂(Fk ∪ V ∪ {sm+1}) = j for all V ⊆ F,

0, otherwise.

By construction, G defines a hypothesis space having a uniformly decidable membership

problem. First we show that range(L) ⊆ range(L(G)). Let L ∈ range(L). Since M̂ is a

set-driven IIM that learns L, there has to be a finite set F ⊆ L such that, for all finite sets
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V ⊆ L, M̂(F ) = M̂(F ∪V ) = j, and L(Ĝj) = L (cf. Fulk [5]). Hence, we may conclude that

L = L(G〈j,k〉), where k = #(F ). Consequently, G defines an admissible hypothesis space

which comprises range(L).

Furthermore, G’s definition immediately implies:

Observation 1. Let V ⊆ L(Ĝj) and k ∈ IN such that M̂(Fk) = j. Then V ⊆ L(G〈j,k〉)

implies M̂(Fk ∪ V ) = j.

Now, we are ready to define the desired conservative IIM M which works with respect to

the hypothesis space G. Let L ∈ range(L), t ∈ text(L), and x ∈ IN.

IIM M: “On input tx do the following: If x = 0, compute M̂(t+0 ) = j. Output the guess

〈j, #(t+0 )〉 and request the next input. Otherwise, goto (A).

(A) Let M(tx−1) = 〈j, k〉. Test whether or not t+x ⊆ L(G〈j,k〉). In case it is, output

〈j, k〉 and request the next input.

Else, compute M̂(t+x ) = z. Output the guess 〈z, #(t+x )〉 and request the next

input.”

By definition, M outputs in every step a guess. Moreover, M performs exclusively justified

mind changes. Thus, M is a conservative IIM. Next we show that M learns L from text t.

Claim 1. When fed t, M never outputs a guess z such that L ⊂ L(Gz).

Let x ∈ IN, M(tx) = z, and let y ≤ x be the least index such that M(ty) = z. By definition

z = 〈j, k〉 where M̂(t+y ) = j and k = #(t+y ). Thus M̂(t+y ) = M̂(Fk) = j, and consequently

L(G〈j,k〉) ⊆ L(Ĝj) in accordance with the definition of G. Recall that t+x ⊆ L(G〈j,k〉). Hence,

t+x ⊆ L(Ĝj), too. Therefore, the assumptions of Observation 1 are fulfilled and we conclude

M̂(t+x ) = j. We distinguish the following two cases:

Case 1. t+x = L

Therefore, L(Ĝj) = L, since M̂ is a set-driven IIM which learns L. Because of t+x ⊆

L(G〈j,k〉) ⊆ L(Ĝj), we may conclude L = L(G〈j,k〉).

Case 2. t+x ⊂ L

Suppose the converse, that is L ⊂ L(G〈j,k〉). Because of L(G〈j,k〉) ⊆ L(Ĝj), we also
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have L ⊂ L(Ĝj). Since M̂ learns L, there is an r ∈ IN+ such that M̂(t+x+r) = n and

L(Ĝn) = L. Obviously, L ⊂ L(Ĝj) implies t+x+r ⊆ L(Ĝj). On the other hand, L ⊂ L(Ĝj)

yields immediately j 6= n. Thus, by contraposition of Observation 1, we may conclude that

t+x+r 6⊂ L(G〈j,k〉). This contradicts L ⊂ L(G〈j,k〉), since t+x+r ⊆ L.

It remains to show that M , when fed t, converges to a correct guess for L. Since M never

outputs an overgeneralized hypothesis and, additionally, M exclusively performs justified

mind changes, it suffices to show:

Claim 2. When fed t, M outputs at least once a correct guess.

Since M̂ is a set-driven IIM which learns L, there has to be a a finite set F ⊆ L such

that, for all finite sets V ⊆ L, M̂(F ) = M̂(F ∪ V ) = j, and L(Ĝj) = L (cf. Fulk [5]). By

G’s definition L(G〈j,#(F )〉) = L as well as L(G〈j,#(F∪V )〉) = L for all finite sets V ⊆ L. Since

t defines a text for L there has to be a least x ∈ IN such that F ⊆ t+x . Let M(tx) = z. If

z = 〈j, #(t+x )〉, we are done. Otherwise, L \ L(Gz) 6= ∅ by Claim 1. Again, since t is a text

for L, there has to be a least r ∈ IN+ such that t+x+r 6⊆ L(Gz). By its definition M changes

ist mind to the correct guess 〈j, #(t+x+r)〉 when processing tx+r.

Hence, M converges to a correct hypothesis for L. To sum up, M conservatively infers L

with respect to the hypothesis space G. 2

At this point it is only natural to ask whether or not the latter theorem remains valid if

class-comprising learning is replaced by class-preserving inference and exact identification,

respectively. The negative answer is provided by our next theorem. Additionally, this

theorem gives some more evidence that set-drivenness is not that restrictive as it might

seem.

Theorem 9.

(1) s-SMON \ EWMON 6= ∅,

(2) s-CSMON \WMON 6= ∅,

(3) s-ELIM \WMON 6= ∅,

(4) s-EWMON \MON 6= ∅.
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Proof. First of all, we show Assertion (1). Let us consider the following indexed family

Lsm = (L〈k,j〉)j,k∈IN. For all k ∈ IN we set L〈k,0〉 = {akbn n ∈ IN+}. For all k ∈ IN and all

j ∈ IN+ we distinguish the following cases:

Case 1. ¬ Φk(k) ≤ j

We set L〈k,j〉 = L〈k,0〉.

Case 2. Φk(k) ≤ j

Then we set L〈k,j〉 = {akbm 1 ≤ m ≤ Φk(k)}.

In Lange and Zeugmann [12] it was already shown that the family Lsm is witnessing

SMON \ EWMON 6= ∅. Hence, it remains to show the following claim.

Claim 1. Lsm ∈ s-SMON .

We have to show that there are a hypothesis space G = (Gj)j∈IN with range(Lsm) =

range(L(G)) and a set-driven IIM M such that M strong-monotonically infers L with respect

to G.

First of all, we define the hypothesis space G. For all k ∈ IN, we set L(G2k) =
⋂

j∈IN
L〈k,j〉

and L(G2k+1) = L〈k,0〉.

Since Lsm is an indexed family, it is easy to verify that membership is uniformly decidable

for G. Moreover, we have range(Lsm) = range(L(G)).

Let L ∈ range(L)sm, let t be any text for L, and let x ∈ IN. The desired IIM M is defined

as follows.

IIM M: “On input tx do the following: Determine the unique k such that t0 = akbm for

some m ∈ IN. Test whether or not t+x ⊆ L(G2k). In case it is, output 2k. Otherwise,

output 2k + 1.”

Obviously, M changes its mind at most once. Since L(G2k) ⊆ L(G2k+1), this mind

change satisfies the strong-monotonicity requirement. Furthermore, M converges to a correct

hypothesis for L. Accordingly to the definition, it is easy to see that M is indeed a set-driven

IIM. This proves Claim 1, and therefore (1) follows.

In order to prove Assertion (2), we use the following indexed family Lcsm = (L〈k,j〉)j,k∈IN.
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For all k ∈ IN we set L〈k,0〉 = {akbn n ∈ IN+}. For all k ∈ IN and all j ∈ IN+ we distinguish

the following cases:

Case 1. ¬Φk(k) ≤ j

We set L〈k,j〉 = L〈k,0〉.

Case 2. Φk(k) ≤ j

Then we set L〈k,j〉 = {akbm 1 ≤ m ≤ Φk(k)} ∪ {akbm m ≥ j}.

By reducing the halting problem to Lcsm ∈ WMON , one may prove that Lcsm 6∈ WMON .

An IIM M witnessing Lcsm ∈ s-CSMON can be easily designed, if one chooses the following

hypothesis space G = (G〈k,j〉)j,k∈IN. For all k, j ∈ IN, we set L(G〈k,0〉) =
⋂

j∈IN
L〈k,j〉 and

L(G〈k,j+1)) = L〈k,j〉. We omit further details.

Furthermore, the family Lcsm is witnessing Assertion (3) as well. To see this, recall that

s-CSMON ⊆ CLIM = ELIM . Assume any IIM M̂ which ELIM –identifies L. Since L

contains exclusively infinite languages, it is easy to see that the following set-driven IIM M

infers L, too. Let L ∈ range(Lcsm), let t be any text for L, and let x ∈ IN. We define:

IIM M: “On input tx do the following: Rearrange the strings contained in t+x in lexico-

graphical order without repetitions. Let t̂y = w0, . . . , wy, y ≤ x, be the sequence

obtained.

If M̂ on input t̂y outputs a hypothesis, then output the same guess and request the

next input.

Otherwise, output nothing and request the next input.”

The remaining part can be easily shown. One has simply to choose the indexed family

used in Lange and Zeugmann [11] to separate WMON and MON . 2

We finish this section with the following corollary.

Corollary 10.

(1) s-ELIM # ECONSERVATIVE ,

(1) s-LIM # CONSERVATIVE .
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Proof. By Theorem 9 and Proposition 2 we obtain s-ELIM \ ECONSERVATIVE 6= ∅ as

well as s-LIM \ CONSERVATIVE 6= ∅. Moreover, Theorem 4 together with Proposition 1

and 2 imply ECONSERVATIVE \ s-LIM 6= ∅, and hence Assertion (1) and (2) follow. 2

4. Learning with Rearrangement-Independent IIMs

In this section we study the impact of rearrangement-independence on the learning power

of IIMs. We start with learning in the limit. Angluin [2] characterized the learnability of

those indexed families L that are inferable with respect to the hypothesis space L in terms

of finite, and recursively enumerable tell-tales. Actually, she proved the slightly stronger

result that r-ELIM = ELIM . Recently, we showed ELIM = LIM = CLIM (cf. Lange

and Zeugmann [14]), and hence we know that rearrangement-independence does not restrict

the inference power of IIMs that learn in the limit. However, this general result is also a

direct consequence of theorems obtained by Schäfer-Richter [20], and later, but indepen-

dently by Fulk [5] who proved that any IIM M learning in the limit may be replaced by

a rearrangement-independent IIM that infers as least as much than M does. Moreover,

Schäfer-Richter’s [20] and Fulk’s [5] result is much stronger than Angluin’s [2], since it is not

restricted to the learnability of indexed families. By the next theorem we summarize the

known results.

Theorem 11. (Angluin [2], Schäfer-Richter [20], Fulk [5])

r-ELIM = ELIM = LIM = CLIM .

However, neither Schäfer-Richter’s [20] nor Fulk’s [5] transformation does preserve any

of the monotonicity requirements defined above. And indeed, the situation is more subtle

than we expected. Furthermore, since the power of all types of monotonic language learning

heavily depends on the choice of the hypothesis space, we have to consider separately all the

resulting cases. We start with strong-monotonic inference.

Theorem 12.

(1) r-ESMON = ESMON ,

(2) r-SMON = SMON .
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Proof. First, we prove Assertion (2).

Let L ∈ SMON . Applying the characterization theorem for SMON (cf. Lange and

Zeugmann [10]), we know that there exist a class- preserving hypothesis space G = (Gj)j∈IN

as well as a recursively generable family (Tj)j∈IN of finite nonempty sets such that

(i) for all j ∈ IN, Tj ⊆ L(Gj),

(ii) for all j, k ∈ IN, if Tj ⊆ L(Gk), then L(Gj) ⊆ L(Gk).

On the basis of this family (Tj)j∈IN we define an IIM M witnessing L ∈ r-SMON . So let

L ∈ range(L), t ∈ text(L), and x ∈ IN.

IIM M: “On input tx do the following: Search for the least j ≤ x for which Tj ⊆ t+x ⊆

L(Gj). If it is found, output j and request the next input.

Otherwise, output nothing and request the next input.”

Obviously, M is a rearrangement-independent IIM. It remains to show that M SMON –

infers L with respect to the hypothesis space G.

Claim 1. M infers L from text t.

Let k = µz[L(Gz) = L]. Hence, there is a least x0 such that Tk ⊆ t+x0
. Therefore, M will

output sometimes a hypothesis. For all j < k with Tj ⊆ L we may conclude that L(Gj) ⊆ L,

since Tj ⊆ L(Gk) implies L(Gj) ⊆ L(Gk) = L (cf. Property (ii)). Moreover, the choice of k

yields L(Gj) 6= L. Thus, we have L(Gj) ⊂ L. Hence, for every j < k with Tj ⊆ L there exists

a yj such that t+yj
6⊆ L(Gj). Therefore, M(tx) = k for all x > max{x0, yj j < k, Tj ⊆ L}.

This proves Claim 1.

Claim 2. M is strong-monotonic.

Let M(tx) = j and M(tx+r) = k for some x ∈ IN and r ∈ IN+. Due to the definition of M ,

we have Tj ⊆ t+x ⊆ L(Gj), and Tk ⊆ t+x+r ⊆ L(Gk). Therefore, Tj ⊆ L(Gk). Now, Property

(ii) implies L(Gj) ⊆ L(Gk). This proves Claim 2.

To sum up, M is witnessing L ∈ r-SMON . Thus, Assertion (2) is shown.
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Next, we prove Assertion (1). Let L ∈ ESMON . Because of ESMON ⊆ SMON as well as

of Assertion (2), there exist a rearrangement-independent IIM M̂ as well as a class-preserving

hypothesis space G such that M̂ r-SMON –learns L with respect to the hypothesis space G.

Applying Theorem 4 of Lange and Zeugmann [12], we know that there exists some total

recursive function f : IN× IN → IN satisfying

(iii) for all j ∈ IN, limx→∞ f(j, x) = k exists and satisfies L(Gj) = Lk,

(iv) for all j, x ∈ IN, Lf(j,x) ⊆ Lf(j,x+1).

That means, f is a limiting recursive strong-monotonic compiler from G into L.

Given the IIM M̂ , the hypothesis space G as well as the limiting recursive strong-

monotonic compiler f , we define an IIM M witnessing L ∈ r-ESMON . So, let L ∈ range(L),

t ∈ text(L), and x ∈ IN.

IIM M: “On input tx do the following: Simulate M̂ on input tx. If M̂ when successively

fed tx does not output any guess, then output nothing and request the next input.

Otherwise, let j = M̂(tx). If t+x ⊆ L(Gj), then execute (1). Otherwise, output nothing

and request the next input.

(1) Find the least y ∈ IN for which t+x ⊆ Lf(j,y). Output f(j, y) and request the next

input.”

Since the membership problem for G is uniformly decidable, the test ‘t+x ⊆ L(Gj)’ can be

effectively performed. Additionally, since L is an indexed family, the test within Instruction

(1) can be effectively accomplished, too. Furthermore, by Property (iii) of f and since

t+x ⊆ L(Gj), Instruction (1) has to terminate for every j ∈ IN. Hence, M is indeed an IIM.

Due to its definition, M is a rearrangement-independent IIM, since the IIM M̂ simulated by

M is rearrangement-independent by assumption.

It remains to show that M strong-monotonically infers L from text t. Since M̂ infers L

from text t and by Property (iii) of f , M converges to a correct hypothesis for L. Finally,
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we show that M fulfills the strong-monotonicity constraint. Let f(j, y) and f(k, z) denote

two hypotheses successively generated by M . Hence, M(tx) = f(j, y) and M(tx+r) = f(k, z)

for some x ∈ IN, r ∈ IN+. We distinguish the following cases.

Case 1. j = k

Due to the definition of M , we may conclude y ≤ z. Hence, Property (iv) of f guarantees

Lf(j,y) ⊆ Lf(j,z).

Case 2. j 6= k

Since f satisfies Properties (iii) and (iv), we obtain Lf(j,y) ⊆ L(Gj). Furthermore, M ’s

definition implies t+x+r ⊆ Lf(k,z). Hence, the given IIM M̂ has generated the hypothesis j on

an initial segment of a text for Lf(k,z) ∈ L. Since M̂ behaves strong-monotonically on every

text for every language L ∈ range(L), we may conclude that L(Gj) ⊆ Lf(k,z). Together with

Lf(j,y) ⊆ L(Gj), we get Lf(j,y) ⊆ Lf(k,z).

Thus, M is rearrangement-independent and strong-monotonic. 2

Next we deal with exact and class-preserving monotonic learning.

Theorem 13.

(1) s-EMON ⊂ r-EMON ⊂ EMON ,

(2) s-MON ⊂ r-MON ⊂ MON .

Proof. First of all, we show r-EMON \s-MON 6= ∅. By definition, this yields immediately

s-EMON ⊂ r-EMON as well as s-MON ⊂ r-MON .

Lemma 4. r-EMON \ s-MON 6= ∅.

By Theorem 4 we already know that r-ESMON \ s-LIM 6= ∅. It is easy to verify

that r-ESMON ⊆ r-EMON . By definition, s-MON ⊆ s-LIM . Hence, we may conclude

r-EMON \ s-MON 6= ∅. This proves Lemma 4.

It remains to show EMON \ r-MON 6= ∅. This statement directly implies r-EMON ⊂

EMON and r-MON ⊂ MON , and hence, the theorem will be proved.

Lemma 5. EMON \ r-MON 6= ∅.
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First of all, we define a corresponding family L = (Lk)k∈IN. For all k ∈ IN and all

z ∈ {0, . . . , 3} we define:

L4k+z =



{akb} ∪ Ak, if z = 0,

{akc} ∪Bk, if z = 1,

{akb, akc} ∪ Ak, if z = 2,

{akb, akc} ∪Bk, if z = 3.

The remaining languages Ak and Bk will be defined via their characteristic functions fAk

and fBk
, respectively. For all k ∈ IN and all strings s ∈ {a, b, c}∗ we set:

fAk
(s) =

 1, if s = bkam and Φk(k) = m,

0, otherwise.

fBk
(s) =

 1, if s = ckam and Φk(k) = m,

0, otherwise.

After a little reflection, it is easy to see that L is indeed an indexed family.

Claim 1. L ∈ EMON .

We define an IIM which monotonically infers every L ∈ range(L) from any text t for L

with respect to the hypothesis space L itself. So let us assume any L ∈ range(L), any text

t for L and any x ∈ IN.

IIM M: “On input tx do the following: If x = 0 or M has not produced any hypothesis

when successively fed tx−1, then execute (1). Otherwise, goto (2).

(1) If akb ∈ t+x for some k ∈ IN, then output 4k and request the next input.

If akc ∈ t+x for some k ∈ IN, then output 4k + 1 and request the next input.

Otherwise, output nothing and request the next input.

(2) Let j = M(tx−1). If t+x ⊆ Lj, then repeat the hypothesis j and request the next

input.

Otherwise, goto (3).
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(3) If j = 4k or j = 4k + 1, respectively, for some k ∈ IN, then output the hypothesis

j + 2 and request the next input.

If j = 4k + 2 for some k ∈ IN, output 4k + 3 and request the next input.

Otherwise, output 4k + 2 and request the next input.”

It remains to show that L ∈ EMON is witnessed by M . Obviously, for every k ∈ IN, M

identifies L4k as well as L4k+1 from every text for the corresponding language. Thereby, M

does not perform any mind change at all. Hence, M is monotonic on every t ∈ text(L4k)∪

text(L4k+1), k ∈ IN. Let us assume any k ∈ IN such that t is either a text for L4k+2 or

for L4k+3. In order to show that M satisfies the monotonicity constraint we distinguish the

following cases.

Case 1. ϕk(k) ↑

Consequently, we obtain L4k+2 = L4k+3. Since t is a text for the finite language L4k+2,

there is an x ∈ IN such that t+x = L4k+2. Hence, M(tx+r) = j with Lj = L4k+2, for all

r ∈ IN+. Furthermore, M has generated at most one different hypothesis before this point.

Therefore, M is monotonic. Note that M may converge to different hypotheses on different

texts for the same finite language. Consequently, M is not rearrangement-independent.

Case 2. ϕk(k) ↓

Since L4k+2 as well as L4k+3 define finite languages, it is easy to see that M converges to

a correct hypothesis. We distinguish the following subcases.

Subcase 2.1. t is a text for L4k+2.

If M first generates the hypothesis 4k, then it needs only one mind change to infer L4k+2.

Consequently, M is monotonic. Otherwise, 4k + 1 is M ’s first hypothesis. Now, it is easy

to verify that M produces the sequence of hypotheses 4k + 1, 4k + 3 and 4k + 2. Due

to the definition of the family L, L4k+1 ∩ L4k+2 ⊂ L4k+3 directly implies L4k+1 ∩ L4k+2 ⊆

L4k+3 ∩ L4k+2 ⊆ L4k+2. Hence, M is again monotonic.

Subcase 2.2. t is a text for L4k+3.

Then, a quite similar argumentation yields that M fulfills the monotonicity constraint. If

M outputs the hypothesis 4k + 1 as its first guess, then again, one mind change suffices to
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identify L4k+3. Otherwise, M produces the sequences of hypotheses 4k, 4k + 2 and 4k + 3.

Due to the definition of the family L, L4k ∩ L4k+3 ⊂ L4k+2. As before, this directly implies

that M is monotonic.

Therefore, M witnesses L ∈ EMON , and Claim 1 is proved.

Claim 2. L 6∈ r-MON .

Suppose the converse, i.e., there are a class-preserving hypothesis space G = (Gj)j∈IN and

an IIM M that witnesses L ∈ r-MON with respect to G.

Claim 3. Given G and any program for M witnessing L ∈ r-MON , one can effectively

construct an algorithm deciding whether or not ϕk(k) converges.

Next, we define the desired algorithm.

Algorithm C: “On input k execute (C1) until (α1) or (α2) is fulfilled, respectively. After-

wards, execute (C2).

(C1) For all x = 0, 1, . . ., execute in parallel (α1) and (α2) until one of them is success-

ful.

(α1) Test whether Φk(k) ≤ x.

(α2) Simulate M when fed the initial segments tx and t̂x of the uniquely defined

texts for L = {akb} and L̂ = {akc}, respectively. If M outputs on both

initial segments a hypothesis, say m and m̂, respectively, then test whether

akb ∈ L(Gm), akc /∈ L(Gm), akc ∈ L(Gm̂), and akb 6∈ L(Gm̂).

(C2) If (α1) happens first, then output ‘ϕk(k) converges’ and stop.

Otherwise, in parallel execute (β1) or (β2) for y = 1, 2, . . ., until one of them is

successful.

(β1) Test whether Φk(k) ≤ x + y.

(β2) Test whether M , when fed tx+y = akb, . . . , akb︸ ︷︷ ︸
(x+1)−times

, akc, . . . , akc︸ ︷︷ ︸
y−times

, generates a con-

sistent hypothesis n, i.e., M(tx+y) = n and t+x+y ⊆ L(Gn).

If (β1) happens first, then output ‘ϕk(k) converges’ and stop.

Otherwise, output ‘ϕk(k) diverges’ and stop.”
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Due to the definition of a complexity measure, (α1) and (β1) can be effectively accom-

plished. Furthermore, since M is an IIM, and since membership is uniformly decidable for

L(G), (α2) and (β2) can be effectively accomplished, too. Hence, C is indeed an algorithm.

First, we show that C terminates for all k ∈ IN. Let us assume that the execution of (C1)

does not terminate for some k ∈ IN. Obviously, then ϕk(k) diverges. Consequently, L4k = L

and L4k+1 = L̂. Now, since (α2) will never terminate successfully, M fails to infer at least

one of the languages {akb}, {akc} from its uniquely defined text, a contradiction. Applying

the same argument one can show that the execution of (C2) has to terminate, too. Hence,

C terminates on every input k ∈ IN.

It remains to show that C works correctly. Obviously, if C stops its computation with

‘ϕk(k) converges,’ then ϕk(k) is indeed defined. Suppose that C has finished its computation

with ‘ϕk(k) diverges.’ Furthermore, assume that ϕk(k) is defined. Due to our definition, there

exists an x ∈ IN such that M(tx) = m and M(t̂x) = m̂ with t+x ⊆ L(Gm) as well as t̂+x ⊆

L(Gm̂). Since G is a class-preserving hypothesis space, L(Gm) = L4k and L(Gm̂) = L4k+1,

respectively, follows immediately (cf. L’s definition). Additionally, there exists a y ∈ IN+

such that M(tx+y) = n with t+x+y ⊆ L(Gn). Since M is rearrangement-independent, we

may conclude that M(t̂x+y) = n, where t̂x+y = akc, . . . , akc︸ ︷︷ ︸
(x+1)−times

, akb, . . . , akb︸ ︷︷ ︸
y−times

, since t+x+y = t̂+x+y.

Because {akb, akc} ⊆ L(Gn) as well as L(Gn) ∈ range(L), it suffices to distinguish the

following two cases.

Case 1. L(Gn) = L4k+2

Clearly, t̂x+y is an initial segment of a text for L4k+3, too. On this text, M has already

generated the hypotheses m̂ and n in some subsequent steps. Since ϕk(k) is defined, by

assumption we obtain L4k+1 ∩ L4k+3 6⊆ L4k+2 ∩ L4k+3. Therefore, L(Gm̂) = L4k+1 and

L(Gn) = L4k+2 directly imply that M violates the monotonicity requirement, a contradiction.

Case 2. L(Gn) = L4k+3

Using similar arguments, it is easy to see that M violates the monotonicity requirement

when inferring L4k+2 from any of its texts having the initial segment tx+y.

This proves the correctness of Algorithm C. Thus, Claim 3 is shown.

36



On the other hand, the halting problem is undecidable. Therefore, Claim 2 follows, and

Lemma 5 is proved. 2

Finally, we consider rearrangement-independence in the context of exact and class-pre-

serving conservative learning. Since conservative learning is exactly as powerful as weak-

monotonic one, by the latter Theorem it might be expected that rearrangement-independence

is a severe restriction under the weak-monotonic constraint, too. On the other hand, looking

at Theorem 6 we see that conservative learning has its peculiarities. And indeed, exact and

class-preserving learning can always be performed by rearrangement-independent IIMs. In

order to prove this, we first characterize ECONSERVATIVE in terms of finite tell-tales. We

present this theorem separately, since it is interesting in its own right.

Theorem 14. Let L be an indexed family. Then, L ∈ ECONSERVATIVE if and only if

there exists a recursively generable family (T y
j )j,y∈IN of finite sets such that

(1) for all L ∈ range(L) there exists a j with Lj = L and T y
j 6= ∅ for almost all y ∈ IN,

(2) for all j, y ∈ IN, T y
j 6= ∅ implies T y

j ⊆ Lj and T y
j = T y+1

j ,

(3) for all j, y, z ∈ IN, ∅ 6= T y
j ⊆ Lz implies Lz 6⊂ Lj.

Proof. Necessity. Let L ∈ ECONSERVATIVE . Then there is an IIM M that conserva-

tively learns L with respect to L. The desired tell-tale family (T y
j )j,y∈IN is defined as follows.

Let j, y ∈ IN; then we set

T y
j =


range(tjz) with z = min{x x ≤ y, M(tjx) = j}, if there is an x ≤ y

such that M(tjx) = j

∅, otherwise,

where tj denotes the canonical text of Lj. Obviously, the sets T y
j are uniformly recursively

generable and finite. It remains to show that the Properties (1) through (3) are fulfilled.

By construction, (2) is trivially satisfied. In order to prove (1), let L ∈ range(L) and let

tL be the canonical text of L. Since M has to infer L from its canonical text, too, there

exists a j such that j = M(tLx ) for almost all x ∈ IN and L = Lj. Let y = µx[M(tLx ) = j].

Then T y
j 6= ∅ and T y

j = T y+r
j for all r ∈ IN. This proves Property (1). Finally, we have
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to show (3). Suppose, there are j, y, z ∈ IN such that ∅ 6= T y
j ⊆ Lz and Lz ⊂ Lj. By the

definition of the tell-tale sets, there exists an x ≤ y such that M on input tjx outputs j.

Furthermore, T y
j ⊆ Lz and therefore, tjx is an initial segment of a text for Lz, too. Since M

has to infer Lz from every text, it has to perform at least one mind change on every text t ∈

text(Lz) beginning with tjx that cannot be caused by an inconsistency. This contradiction

proves (3).

Sufficiency. The desired IIM is defined as follows. Let L ∈ range(L), t ∈ text(L), and

x ∈ IN.

IIM M: “On input tx do the following: If x = 0 or x > 0 and M on input tx−1 does not

produce any hypothesis, then goto (B).

Otherwise, goto (A).

(A) Let j be M ’s last hypothesis on input tx−1. Test whether or not t+x ⊆ Lj. In case

it is, output j and request the next input.

Otherwise, goto (B).

(B) Generate T y
j for all j, y = 1, ..., x and test whether or not T y

j 6= ∅. For all nonempty

T y
j check whether or not T y

j ⊆ t+x ⊆ Lj. In case there is one j fulfilling the test,

output the minimal one, and request the next input.

Otherwise, output nothing and request the next input.”

Using the same arguments as in the proof of Theorem 1 in Lange and Zeugmann [10], it

is easy to see that M ECONSERVATIVE–learns L. We omit the details. 2

Now we are ready to prove the announced theorem stating that rearrangement-independ-

ence does not restrict exact and class-preserving conservative learning.

Theorem 15.

(1) r-ECONSERVATIVE = ECONSERVATIVE ,

(2) r-CONSERVATIVE = CONSERVATIVE .
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Proof. First we prove Assertion (1). Let L ∈ ECONSERVATIVE . By Theorem 14 there

exists a recursively generable family (T y
j )j,y∈IN fulfilling Properties (1) through (3). Using

this family, we define a new recursively generable family (T̂ y
j )j,y∈IN that satisfies (1), (2), and

(3), too. However, the new family allows the design of a rearrangement-independent IIM,

while the IIM described in the proof of Theorem 14 is not rearrangement-independent.

We set T̂ y
j = ∅, if j ≥ y. Now, let j < y; we define

T̂ y
j =



T̂ y−1
j , if T̂ y−1

j 6= ∅,

∅, if T̂ y−1
j = ∅, T y

j = ∅,

⋃
k≤y−1 T y

k ∩ Lj, otherwise.

Since (T y
j )j,y∈IN is a recursively generable family and because of the uniform decidability

of the membership problem for L, the family (T̂ y
j )j,y∈IN is recursively generable, too. It is

easy to see that (T̂ y
j )j,y∈IN fulfills Properties (1) through (3) of Theorem 14. We proceed with

a technical claim that will be very useful in proving the rearrangement-independence of the

IIM defined below.

Claim 1. Let j, k, m, n ∈ IN such that m = µy[T̂ y
j 6= ∅] and n = µy[T̂ y

k 6= ∅]. Then,

T̂ n
k ∩ Lj ⊆ T̂m

j provided n ≤ m.

In accordance with the definition of the family (T̂ y
j )j,y∈IN we know that m > j as well as

n > k. Furthermore, T̂m
j =

⋃
z≤m−1 Tm

z ∩ Lj and T̂ n
k =

⋃
z≤n−1 T n

z ∩ Lk. Hence, we obtain:

T̂ n
k ∩Lj =

⋃
z≤n−1 T n

z ∩Lk∩Lj ⊆
⋃

z≤n−1 T n
z ∩Lj ⊆

⋃
z≤n−1 Tm

z ∩Lj ⊆
⋃

z≤m−1 Tm
z ∩Lj = T̂m

j .

This proves Claim 1.

Now we define the desired rearrangement-independent IIM as follows. Let L ∈ range(L),

t ∈ text(L), and x ∈ IN.

IIM M: “On input tx do the following: Test for all k ≤ x whether or not T̂ x
k 6= ∅. For all

nonempty T̂ x
k check whether or not T̂ x

k ⊆ t+x ⊆ Lk.

In case there is no k fulfilling the test, output nothing and request the next input.

Otherwise, compute yk = µy[T̂ y
k 6= ∅] for all k fulfilling the test. Output the minimal

k for which yk is minimal, and request the next input.”
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It remains to show that M witnesses L ∈ r-ECONSERVATIVE . Obviously, M is

rearrangement-independent.

Claim 2. M is conservative.

Let j and k, j 6= k, be two hypotheses produced by M on input tx and tx+r, respectively.

We have to show that t+x+r 6⊆ Lj. In accordance with M ’s definition we directly obtain

T̂ x
j 6= ∅ 6= T̂ x+r

k . We consider the following cases.

Case 1. T̂ x
k = ∅.

Then we have t+x+r 6⊆ Lj. This can be seen as follows. M on input tx+r has to compute

yj and yk. Since T̂ x
k = ∅, we know that yj < yk. Consequently, if t+x+r ⊆ Lj, then M outputs

j, a contradiction.

Case 2. T̂ x
k 6= ∅.

Let m = µy[T̂ y
j 6= ∅] and n = µy[T̂ y

k 6= ∅]. We distinguish the following subcases.

Subcase 2.1. m < n

Applying the same arguments as in Case 1 directly yields t+x+r 6⊆ Lj.

Subcase 2.2. m = n

Suppose j < k. Again, by the same arguments as in Case 1 one directly obtains t+x+r 6⊆ Lj.

We proceed with k < j. By Claim 1 we get T̂ n
k ∩ Lj ⊆ T̂m

j . Suppose, t+x+r ⊆ Lj. Since

k = M(tx+r), we immediately obtain that T̂ n
k ⊆ t+x+r ⊆ Lk. Consequently, T̂ n

k ∩ Lj = T̂ n
k ,

and hence T̂ n
k ⊆ T̂m

j ⊆ t+x , since j = M(tx). But this implies M(tx) = k, since j > k, a

contradiction.

Subcase 2.3.: m > n

Again, by Claim 1 we know that T̂ n
k ∩ Lj ⊆ T̂m

j . Moreover, by assumption j = M(tx),

and therefore ∅ 6= T̂m
j ⊆ t+x . Because of m > n, we furthermore conclude that T̂ n

k 6⊆ t+x ,

since otherwise M(tx) = k. On the other hand, T̂ n
k ⊆ t+x+r, since T̂ n

k 6⊆ t+x+r directly implies

k 6= M(tx+r). Finally, if t+x+r ⊆ Lj, then T̂ n
k ∩Lj = T̂ n

k ⊆ T̂m
j . But this would imply T̂ n

k ⊆ t+x ,

again a contradiction.

Hence, M is conservative, and Claim 2 is proved.
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Claim 3. M infers L.

Let L ∈ range(L) and let t ∈ text(L). Moreover, let K = {k Lk = L, T̂ y
k 6= ∅ for

almost all y ∈ IN}. By Property (1) of the family (T̂ y
j )j,y∈IN we know that K 6= ∅. Let

k = min K, and let yk = µy[T̂ y
k 6= ∅]. Since t is a text for L, there exists an x ≥ yk such

that T̂ yk
k ⊆ t+x ⊆ Lk = L. Hence, on every input tx+r the IIM M has to output a hypothesis.

We consider the set C of possible hypotheses that might be output by M after having read

tx+r, r ≥ 0. Let yj = µy[T̂ y
j 6= ∅], then C may be written as C = {j j ∈ IN, yj ≤

yk, T̂
yj

j ⊆ range(t)}. Due to the definition of the family (T̂ y
j )j,y∈IN the condition T̂ y

j 6= ∅

implies y < j. Therefore, j > yk directly yields yj > yk. Hence, we may rewrite C as

C = {j j ≤ yk, yj ≤ yk, T̂
yj

j ⊆ range(t)}. Consequently, C is finite. Finally, applying

Property (3) of Theorem 14 we may conclude Lk 6⊂ Lj for all j ∈ C with j 6= k. Hence, for

all j ∈ C with Lj 6= Lk there exists an xj such that t+xj
6⊆ Lj. Since C is finite, it successively

shrinks to Ĉ = {k} ∪ {` ` ≤ yk, L` = Lk}, and hence M sometimes outputs an element k̂

from Ĉ. Since M is conservative (see Claim 2), M has to repeat k̂ in every subsequent step,

and thus it converges.

This proves Assertion (1) of the theorem. Assertion (2) can be proved analogously as

Lemma 1 in the proof of Theorem 6. 2

5. Summary

In the present paper we have studied the question whether or not the order of information

presentation does really influence the capabilities of learning algorithms that infer indexed

families from positive data. On the one hand, it has been known that set-driveness constitutes

a severe restriction for learning classes of recursively enumerable languages (cf. Schäfer-

Richter [20], and Fulk [5]). On the other hand, the knowledge concerning the learnability

of indexed families has been much more restricted. Our results provide a thorough analysis

concerning the learning capabilities of set-driven and rearrangement-independent IIMs in

the setting of learning indexed families. In particular, the theorems obtained relate the

learning power of IIMs that satisfy the subset principle to different extends and of IIMs

that simultaneously learn order independently to one another. Moreover, our results provide
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strong evidence that the choice of the relevant hypothesis space is of particular importance

if one is interested in superior learning algorithms. In this regard, the Theorems 6, 8 as

well as Corollary 7 may be considered as a partial answer to the problem of what a natural

learning algorithm should look like. Putting them all together we obtain the following. An

indexed family L can be class-comprisingly inferred in the limit by a set-driven IIM if and

only if there are a hypothesis space G with range(L) ⊆ range(L(G)) and a conservative

and set-driven IIM that learns all languages from L(G). Moreover, since s-CLIM equals

CCONSERVATIVE, the latter result may simplify the design of superior learning algorithms.

In a preliminary version of this paper we left it open to what extend set-driveness

and rearrangement-independence, respectively, influences the capabilities of class-comprising

strong-monotonic and monotonic learning. Inspired by our results, Stephan [21] com-

pletely solved these questions. In particular, he proved that s-CSMON = CSMON and

s-CMON ⊂ r-CMON = CMON .

We continue with the following figure that summarizes our results and the results obtained

by Stephan [21].

exact class-preserving class-comprising

learning learning learning

FIN
set

drivenness
+

set

drivenness
+

set

drivenness
+

SMON
rearrangement

independence
+

rearrangement

independence
+

set

drivenness
+

MON
rearrangement

independence
–

rearrangement

independence
–

rearrangement

independence
+

WMON
rearrangement

independence
+

rearrangement

independence
+

set

drivenness
+

LIM
rearrangement

independence
+

rearrangement

independence
+

rearrangement

independence
+

For every mode of learning ID mentioned “rearrangement-independence +” indicates r-ID =
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ID as well as s-ID ⊂ ID. “Rearrangement-independence –” implies s-ID ⊂ r-ID ⊂ ID

whereas “set-drivenness +” should be interpreted as s-ID = ID and, therefore, r-ID = ID,

too.

Let us continue with an intuitive explanation of the results displayed in the figure above.

As the proof of Theorem 1 shows finite learning can always be achieved by set-driven IIMs

that are allowed to perform unbounded search in the relevant hypothesis space. The un-

bounded search for the first consistent hypothesis is combined with a test for equality en-

abling the IIM to decide whether or not it has reached its learning goal. The effectiveness

of the equality test is guaranteed by the properties of the relevant family of uniformly re-

cursively generable finite sets that reflect the topological structure of the target indexed

family.

Looking at strong-monotonic learning the situation considerably changes. As long as

exact and class-preserving learning are concerned unbounded search is no longer an option.

Instead, the actual input length is used to bound the actual set of admissible hypotheses.

However, the relevant family of uniformly recursively generable finite sets is still the main in-

gredient to solve the subset problem (cf. Theorem 12). As a result, exact and class-preserving

strong-monotonic learning can be always performed by rearrangement-independent IIMs but

in general not by set-driven learning devices. As Stephan [21] showed, class-comprising

strong-monotonic inference can be generally realized by set-driven IIMs. Again, these learn-

ing algorithms perform unbounded search within an appropriate hypothesis space.

As the above figure shows monotonic learning has its peculiarities. Intuitively, the main

difficulty any monotonic IIM has to handle can be described as follows. The demand to its

output is closely related to the whole target language. However, at each learning step the

IIM has only access to the finite subset of the target language that it provided as input.

Furthermore, that the intersection of the hypothesized language and the target language

may yield a language outside the class-preserving hypothesis space has to be taken into

account. Now it becomes evident that every monotonic IIM is in serious trouble whenever

it has no access to its previously performed learning steps. Clearly, the requirement to learn

rearrangement-independently or even set-drivenly complicates any such access. And indeed,
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as the proof of Theorem 13 shows the resulting information loss may lead to the unsolvability

of the monotonic learning task.

Concerning conservative learning the situation again slightly differs. The main reason

for that phenomenon can be intuitively explained by the replacement of global demands on

the created hypotheses by local ones. If the actual hypothesis is consistent, then the state

of the art already reached during the learning process is expressed with sufficient accuracy.

However, this only true as long as the subset problem can be effectively handled. Hence,

Theorem 8 impressively shows the equivalence of set-drivenness and the recursive solvability

of the subset problem for the resolution of a learning problem. However, at this point, the

choice of the relevant hypothesis space again becomes important, since the descriptions and

enumeration chosen may heavily influence the algorithmic solvability of the subset problem.

Next, we point to further problems that are closely related to the impact of order indepen-

dence to learning. First, it would be highly desirable to elaborate characteristic conditions

under what circumstances set-drivenness does not restrict the learning power. We expect

that such characterizations might allow much more insight into the problem how to handle

simultaneously both, finite and infinite languages in the learning process. Next, as we have

seen, an algorithmically solvable learning problem might become infeasible, if one tries to

solve it with set-driven IIMs. On the other hand, when dealing with particular learning prob-

lems it might often be possible to design a set-driven learning algorithm solving it. But what

about the complexity of learning in such circumstances? More precisely, we are interested in

knowing whether the “high-level” theorem separating set-driven learning from unrestricted

one, has an analogue in terms of complexity theory. For example, it is well conceivable that

an indexed family L may be learned in polynomial time but no set-driven algorithm can

efficiently infer L provided P 6= NP . Recently, a similar approach has been successfully

undertaken concerning consistent and inconsistent learning algorithms (cf. Wiehagen and

Zeugmann [25]).

Finally, many researchers considered the learnability of languages from both positive and

negative data (cf., e.g., Gold [6], Lange and Zeugmann [15], Mukouchi [18], Wiehagen and

Zeugmann [25]). In this setting, a learner is successively fed all strings over the underlying
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alphabet which are classified with respect to their containment in the target language. Hence,

it is only natural to ask whether or not order is of the same importance in this model.

Concerning learning in the limit the negative answer has been provided by Blum and Blum

[3] for the general case of learning recursively enumerable languages. However, the equality of

set-driven learning in the limit and unrestricted identification in the limit for indexed families

goes back to Gold [6]. We refer the reader to Zeugmann and Lange [27] for a more detailed

discussion. Moreover, these results extend to all the models of monotonic language learning

from positive and negative data. In particular, by characterizing all types of monotonic

language learning from positive and negative data in terms of uniformly recursively generable

families of positive and negative finite sets Lange and Zeugmann [15] showed the following.

There is exactly one learning algorithm that can perform every learning task under the

relevant monotonicity constraint. As a matter of fact, this algorithm is set-driven, too.
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