Monotonic Versus Non—-monotonic Language

Learning
Steffen Lange* Thomas Zeugmann
TH Leipzig TH Darmstadt
FB Mathematik und Informatik Institut fiir Theoretische Informatik
PF 66 Alexanderstr. 10
0-7030 Leipzig W-6100 Darmstadt
steffen@informatik.th-leipzig.de zeugmann@iti.informatik.th-darmstadt.de
Abstract

In the present paper strong—monotonic, monotonic and weak—monotonic reason-
ing is studied in the context of algorithmic language learning theory from positive
as well as from positive and negative data.

Strong—monotonicity describes the requirement to only produce better and better
generalizations when more and more data are fed to the inference device. Monotonic
learning reflects the eventual interplay between generalization and restriction during
the process of inferring a language. However, it is demanded that for any two
hypotheses the one output later has to be at least as good as the previously produced
one with respect to the language to be learnt. Weak—-monotonicity is the analogue
of cumulativity in learning theory.

We relate all these notions one to the other as well as to previously studied
modes of identification, thereby in particular obtaining a strong hierarchy.

1. Introduction

The process of hypothesizing a general rule from eventually incomplete data (e.g. ex-
amples, data obtained by performing experiments a.s.o.) is called inductive inference. In
the philosophy of science inductive inference has attracted much attention during the last
centuries. Some of the principles developed are very much alive in algorithmic learning
theory, an emerging science starting with the seminal papers of Solomonoff (1964) and
of Gold (1967). Computer scientists widely used their insight into the theory of com-
putability to obtain a better and deeper understanding of processes performing inductive
generalizations. In a beautiful paper Angluin and Smith (1987) survey the today state of
the art in inductive inference.

*This research has been partially supported by the German Ministry for Research and Technology
(BMFT) under grant no. 01 TW 101.

The present paper mainly deals with formal language learning, a field in which many
interesting and sometimes surprising results have been elaborated within the last decades
(cf. e.g. Osherson, Stob and Weinstein (1986), Case (1988), Fulk (1990), Jain and Sharma
(1990)). One of the central questions studied so far is whether or not various restrictions
on the behavior of a learner do limit the learning capabilities of machines. We shall
continue along this line. Before explaining what requirements we want to deal with, let
us recall the general situation investigated in language learning. The learner is provided
with eventually incomplete information concerning the language to be inferred and has
to produce, from time to time, a hypothesis about the phenomenon to be learnt. The
information given may contain only positive examples, i.e., only strings from the language
to be recognized, as well as both positive and negative examples, i.e., the learner is fed
more and more strings over the underlying alphabet which are classified with respect to
their containment to the unknown language. The space of hypotheses may vary from a
particular set of acceptors or grammars to sets of characteristic functions. Moreover, the
sequence of hypotheses is required to converge in some specified sense to a hypothesis
correctly describing the object to be learnt. There are many possible requirements to
the sequence of all created hypotheses. What we like to present in the sequel is an
almost complete investigation of the influence of various monotonicity conditions originally
introduced by Jantke (1991A) and Wiehagen (1990). The main underlying question can
be posed as follows: Would it be possible to learn the unknown language in using more and
more information about it and thereby producing only better and better generalizations?
In its strongest interpretation that means we are required to infer a sequence of hypotheses
describing an augmenting chain of languages, i.e., L; C L; iff L; is guessed later than L;

(cf. Definition 3 (A)).

This requirement finds its analogue in classical logics where an enlargement of the set
of assumptions always leads to an eventually larger set of derivable theorems. However, as
Jantke (1991A, 1991B) has shown, in the setting of recursive function learning, strong—
monotonicity considerably restricts the inferring power. Starting from the observation
that "better” has to be interpreted with respect to the goal of the learning process, i.e.,
with respect to the language L having to be learnt, Wiehagen (1990, 1991) proposed the
following modification: Instead of demanding L; C L; we only require L; N L C L; N L iff
L; appears later in the sequence of created hypotheses than L; does (cf. Definition 3 (B)).
Intuitively speaking, now monotonicity means that the new hypothesis is never allowed
to destroy something what a previously generated guess already correctly reflects.

The third version of monotonicity, which we call weak—monotonicity, is derived from
non—-monotonic logics and may be interpreted as the analogue of cumulativity. Conse-
quently, we only require L; C L; as long as the data obtained after having produced L;
do not contradict L; (cf. Definition 3 (C)).

As it turns out, if the learning process is performed with positive and negative examples
then weak—monotonicity does not restrict the inferring power as long as the space of
hypotheses is suitable chosen (cf. Theorem 6). In case one learns from positive data
alone, we show that weak-monotonically working learning devices are exactly as powerful
as conservatively working ones. A learning device is said to be conservative if and only if
it only performs justified mind changes, i.e., it changes its actual hypothesis only in case
it is contradicted by new data (cf. Angluin (1980A)).

All other notions of monotonicity do immediately lead to a severe limitation of the
learning power, as we shall show. Finally, in order to avoid confusion it should be men-
tioned that there is yet another notion of monotonic learning (cf. Osherson, Stob and

Weinstein (1986), Fulk (1990)) which is slightly different from ours.

The paper is structured as follows. Section 2 presents preliminaries, i.e., notations,
definitions and motivations. In section 3 we exclusively deal with identification from
positive data. The monotonic inference with positive and negative data is studied in
section 4. Section 5 is devoted to the question whether natural families of languages may
be inferred monotonically. Finally, we give a summary and present open problems. All
references are listed in section 7.

2. Preliminaries

By N = {1,2,3,...} we denote the set of all natural numbers. In the sequel we assume
familarity with formal language theory (cf. e.g. Bucher and Maurer (1984)). By ¥ we
denote any fixed finite alphabet of symbols. Let ¥* be the free monoid over Y. The
length of a string w € ¥* is denoted by |w|. Any subset L C ¥* is called a language. By
co — L we denote the complement of L, i.e., co— L = ¥*\ L. Let L be a language and
t = $1,82,83,... a sequence of strings from ¥* such that range(t) = {sx | k € N} = L.
Then t is said to be a text for L or, synonymously, a positive presentation. Furthermore,
let ¢ = (s1,01),(82,bs),... be a sequence of elements of ¥* x {4, —} such that range(:) =
{Sk | k€ N} = Z*, it = {Sk | (Sk,bk) = (Sk,+),]€ € lV} =L and 7~ = {Sk | (Sk,bk) =
(sx,—),k € N} = co— L. Then we refer to ¢ as an informant. If L is classified via an
informant then we also say that L is represented by positive and negative data. Moreover,
let ¢, 2 be a text and an informant, respectively, and let « be a number. Then t,, 7, denote
the initial segment of ¢ and 7 of length z, respectively, e.g., t5 = (s1,b1), (52, b2), (3, b3).
Let ¢ be a text and let z € N. Then we set t¥ = {s; | : < z}. Furthermore, by i} and i
we denote the sets {s; | (sg,+) €1,k <z} and {s; | (sx,—) € 1,k < 2}, respectively.

Following Angluin (1980A) we restrict ourselves to deal exclusively with indexed fam-
ilies of recursive languages defined as follows:
A sequence Ly, Lo, L3, ... is said to be an indexed family L of recursive languages provided
all L; are non-empty and there is a recursive function f such that for all numbers j and
all strings w € ¥* we have

£ w) = {)

As an example we consider the set £ of all context—sensitive languages over ¥. Then £

, otherwzse.

may be regarded as an indexed family of recursive languages (cf. [4]). In the sequel we
often denote an indexed family and its range by the same symbol £. What is meant will
be clear from the context.

As in Gold (1967) we define an inductive inference machine (abbr. IIM) to be an
algorithmic device which works as follows: The IIM takes as its input larger and larger
initial segments of a text ¢ (an informant ¢) and it either requires the next input string,
or it first outputs a hypothesis, i.e., a number encoding a certain computer program, and

then it requires the next input string (cf. e.g. Angluin (1980A)).

At this point we have to clarify what space of hypotheses we should choose, thereby
also specifying the goal of the learning process. Gold (1967) and Wiehagen (1977) pointed
out that there is a difference in what can be inferred in dependence on whether we want to
synthesize in the limit grammars (i.e., procedures generating languages) or decision proce-
dures, i.e., programs of characteristic functions. Case and Lynes (1982) investigated this
phenomenon in detail. As it turns out, IIMs synthesizing grammars can be more powerful
than those ones which are requested to output decision procedures. Moreover, several
surprising results distinguishing language learning from inductive inference of recursive
functions are originated in choosing grammars as space of hypotheses instead of character-
istic functions. However, in the context of identification of indexed families both concepts
are of equal power. Nevertheless, we decided to require the IIMs to output grammars.
This decision has been caused by the fact that there is a big difference between the pos-
sible monotonicity requirements. A straightforward adaptation of the approaches made
in inductive inference of recursive functions directly yields analogous requirements with
respect to the correseponding characteristic functions of the languages to be inferred. On
the other hand, it is only natural to interpret monotonicity with respect to the language
to be learnt, i.e., to require containement of languages as described in the introduction.
As it turned out, the latter approach increases considerably the power of monotonic lan-
guage learning. Furthermore, since we exclusively deal with indexed families £ = (L;);en
of recursive languages we always take as space of hypotheses an enumerable family of
grammars (1, G, (s, ... over the terminal alphabet ¥ satisfying £ = {L(G;) | j € N}.
Moreover, we always require that membership in L((G;) is uniformly decidable for all
J € N and all strings w € ¥*. As it turns out, it is sometimes very important to choose
the space of hypotheses appropriately in order to achieve the desired learning goal. Then
the IIM outputs numbers ;7 which we interpret as (.

A sequence (j;)zen of numbers is said to be convergent in the limit if and only if there
is a number j such that j, = j for almost all numbers .

Definition 1, (Gold (1967)) Let L be an indexed family of languages, L € L, and
let (Gj)jen be a space of hypotheses. An IIM M LIM — TXT (LIM — IN F)-identifies
L on a text t (an informant i) iff it almost always outputs a hypothesis and the sequence
(M(t2))zen (M(iz))zen) converges in the limit to a number j such that L = L(G;).
Moreover, M LIM — TXT (LIM — INF)-identifies L, iff M LIM —TXT (LIM —
INF)—identifies L on every text (informant) for L. We set:

LIM-TXT(M)={Le L|M LIM-TXT—identifres L} and define LIM —INF(M)
analogously.

Finally, let LIM —TXT (LIM—INF) denote the collection of all families L of indexed
families of recursive languages for which there is an IIM M such that L C LIM —
TXT(M) (LCLIM—INF(M)).

Definition 1 could be easily generalized to arbitrary families of recursively enumerable
languages (cf. [18], [8]). Nevertheless, we exclusively consider the restricted case defined
above, since our motivating examples are all families of recursive languages. Note that,
in general, it is not decidable whether or not M has already inferred L. In case M
produces only a single and correct guess after having been fed an initial segment of a

text ¢ (or informant ¢) and stops then, we say that M finitely infers L on ¢ (on ¢).
M FIN—-TXT (FIN—INF)-infers L iff it finitely infers L on every text (informant).
The resulting identification type is denoted by FIN —TXT (FIN —INF).

Next we want to formally define strong—monotonic, monotonic and weak-monotonic
inference. In order to do this, first we have to explain what does it mean that an IIM
conststently identifies a language. Consistent IIM have been introduced by Barzdin (1974).
Intuitively speaking, consistency means that the IIM does correctly reflect the part of the
language the IIM has already been fed with when it produces a guess.

Definition 2, Barzdin ((1974)) An IIM M CONS —TXT (CONS — INF)-
identifies L on a text t (an informant i) iff
(1) M LIM —TXT (LIM — INF)-identifies L ont (on1).

(2) Whenever M on t, (i,) produces a hypothesis j, then range(t,) C L(G;,)
(¢f C L(Gy,) and i C co— L(Gy,)).

M CONS—TXT (CONS — IN F)-identifies L iff M CONS —TXT (CONS — INF)-
identifies L on every text t (informant).

By CONS —TXT(M) (CONS —INF(M)) we denote the set of all languages which
M does CONS —=TXT (CONS —INF)-identify. CONS —TXT and CONS —INF

are analogously defined as above.

Definition 3, Jantke ((1991A), Wiehagen (1991)) An [IM M is said to identify
a language L from text (informant)
(A) strong—monotonically

(B) monotonically

(C) weak—monotonically

uff

M LIM —TXT (LIM — INF)-identifies L and for any text t (informant i) of L as
well as for any two consecutive hypotheses j,, joor which M has produced when fed t, and
tork (e and i.yy), for some k> 1,k € N, the following conditions are satisfied:

(A) L(Gj,) € L(Gj,y,)

(B) L(sz) NLC L(ij+k> nL

(C) if toyr C L(Gy,) then L(G},) C L(Gy,,,) (if i © L(Gy,) and o7y, C
co— L(G;,) then L(G;,) C L(Gjﬂk)).

Remark: (C) in particular means that M has to work strong-monotonically as long as its
guess j is consistent with the data fed to M after M has output j.

By SMON — TXT, SMON — INF, MON —TXT, MON — INF, WMON —
TXT, WMON — INF we denote the family of all thoses sets £ of languages for which
there is an IIM inferring it strong—monotonically, monotonically, and weak—monotonically
from text ¢ or informant z, respectively.

This seems to be a good place to give an example showing what inferring power our
actual choice of the space of hypotheses really implies. Let L C ¥* be any arbitrarily fixed
infinite context—sensitive language. By Ly;, we denote the set of all finite languages over
Y. Then weset L ={LULy;, | Lyin € L4i,}. In case we would require the IIMs to output

programs of characteristing functions one immediately obtains from Jantke (1991A) that,
even on informant, £ cannot be learnt strong—monotonically. On the other hand, in our
setting £ is strong-monotonically learnable, even on tet.

The IIM M performing the inference process initially outputs a grammar G of L. Let
jz be M's guess after having received t,. If t& C ¢}, then M tests whether the new
string w belongs to L(G,). In case it does, we set j,41 = j,. Otherwise M outputs a
canonical number j, 1 of the grammar (;, U {0 — w} where o denotes the distinguished
non-terminal of (;, from which every derivation starts. Since for any L’ in L there is a
Lyin € Ly such that L' = L U Ly, the "else” case can happen at most finitely often.
Hence, M converges and by construction M does work strong-monotonically.

Finally in this section we define conservatively working ITMs.

Definition 4, (Angluin (1980A))
An IIM M CONSERVATIVE-TXT (CONSERVATIVE-INF)-identifies L on textt (on

informant ¢), iff for every text t (informant ¢) the following conditions are satisfied:

(1) LeLIM—-TXT(M) (L€ LIM—INF(M))

(2) If M on input t, makes the guess j, and then makes the guess jy4r # j» at
some subsequent step, then L(G,) must fail to contain some string from t,
(L(G,,) must fail either to contain some string w € z';;_k or it generates some
string w € i,).
CONSERVATIVE-TXT(M), CONSERVATIVE-INF(M) as well as CONSERVATIVE-
TXT and CONSERVATIVE-INF are defined in an analogous manner as above.

Intuitively speaking, a conservatively working IIM performs ezclusively justified mind
changes.

Sometimes we want to combine some postulates, e.g. strong—monotonicity and consis-
tency. That is denoted by e.g. SMON — CONS —TXT or SMON — CONS — INF
and means that the particular IIM which has to perform the inferring process is required
to work strong—monotonically and consistently on every text and informant, respectively.

In the next section we present results concerning text identification. Note that in all
what follows C denotes proper set inclusion and # denotes incomparability of sets.

3. Monotonic Inference on Text

Our first theorem actually shows that there is a strong hierarchy between the different
notions of monotonicity.

Theorem 1 SMON —TXT C MON —-TXT C WMON —-TXT

Proof. SMON —TXT C MON —TXT is an immediate consequence of Definition 3.
The part MON —TXT\ SMON —TXT # () is proved via the following indexed family
of languagues:

Let (7q,...,7;) be any collection of pairwise distinct numbers. We set L; . = ({a}*\
{ar,...;a*}) U {b", ..., b} and define £ to be the family of all languages L;, ., where
(i1, yix) € N¥ k€ Nk > 1,0; # 4 if j # L for all j,1 € {1,...,k}. We omit the details.

Next we show MON —TXT CWMON —TXT.

The problem we have to deal with is caused by the fact that any monotonically working
IIM may eventually output an overgeneralized hypothesis j, i.e., L C L(G;), while a
weakly-monotonically working IIM may not. The proof is done using the following claim:

Claim: Let £ be any indexed family, and let M be any monotonically working IIM
inferring £. Let L € £ and let ¢ be any fixed text for L. If M on ¢ produces a guess j
such that L C L(G;), then L(G;) ¢ L.

Suppose the converse, i.e., there is an index z such that M(t,) = j, L C L(G;)
and L(G;) € L. Then t, is also an initial segment of a text for L(G;). On the other
hand, ¢, possesses an enlargement ¢, such that t:_HC C L and j,y4p := M(t,4x) satisfies
L(Gj,,,) = L. Again, t,4; is an initial segment of a text for L(G;). Consequently,
there should be an enlargement of t,4x, say tyrt., with strings from L(G;) such that
Jotktz 1= M(tz’+k+2) and L(sz+k+z) = L(Gj)'

Since
L(G;) D> L =L(G

) L(G,) € L(G;,.,.) N L(G;) = L(G;

jz+k jz+k+z]x+k+z)

we have found a text ¢ for L((G;) on which M does not identify L((;) monotonically, a
contradiction. This proves the claim.

On the other hand, since we have required £ = {L(G;) | 7 € N} for any space of
hypotheses ((Z;);en the wanted inclusion follows immediately by the claim made above.

The remaining part, i.e., WMON — TXT \ MON — TXT # () can be proved using
the following indexed family £.,,,on:
Let Ly := {a}* and for ¢ > 1 set L; := {a® | z < ¢} U{b° | z > ¢} as well as L;; :=
{a | z <} U{V | i <z < j}tU{a® | z > j} forall i,57 € N with ¢ < 7, and
1, > 1. Lymon 1s defined to be the collection of all L;, L; ;. For the demonstration of
Lomon € WMON —TXT\ MON —TXT the reader is referred to the proof of Theorem 8,
claim C and D, where the slightly stronger result £,,,,,, € WMON-TXT\MON—INF
is shown.

q.e.d.

Moreover, SMON — TXT and MON — T'XT may already be separated on sets of
regular languages. At this point it is only natural to ask what are lower and upper bounds
of this hierarchy. The answer is given by the next theorem.

Theorem 2

(1) FIN —=TXT C SMON —TXT and
(2) WMON — TXT = CONSERVATIVE-TXT

Proof. By our definition, if £ € FIN —TXT(M), then M outputs a single guess.
Hence FIN —TXT C SMON —TXT.

The remaining part SMON — TXT \ FIN — TXT # () can be directly obtained by
proving £ ¢ FIN —TXT, where L = {LU Ly, | Lin € L4in}, ie., the family defined
before presenting Definition 4.

Looking at assertion (2) we directly see that CONSERVATIVE-TXT C WMON —
TXT, since a conservatively working I[IM only performs justified mind changes.

Now suppose L € WMON — TXT(M’). We have to construct an IIM M such that
L € CONSERVATIVE-TXT(M). M is easily obtained from M’ by simply adding a

consistency test, i.e., let j, := M({,) and w € t:_l_k_l for some k£ = 1,2,.... Then test
whether or not w € L(G,,) for all w. In case it is, M repeats j, as its hypothesis.
Otherwise, it outputs M'(t,4x).

g.e.d.

As an immediate consequence of Angluin’s (1980A) Theorem 4 one directly obtains:
Corollary 3 WMON —TXT C LIM —TXT

Next we want to deal with the combination of monotonic and consistent inference.
Considering a particular family of languages, the so—called pattern languages (cf. section
5) Jantke(1991B) has shown that weak-monotonicity and consistency may be combined
without any limitations concerning the inference power, while strong—monotonicity and
consistency cannot. However, the negative result is mainly based on the particular choice
of the space of hypotheses, i.e., the set of all patterns, as a careful analysis of his proof
shows. Nevertheless, we have been surprised to obtain the following theorem:

Theorem 4
(1) WMON —CONS —TXT =WMON —-TXT
(2) MON—-CONS—-TXT=MON —-TXT
(3) SMON —CONS —TXT =SMON —-TXT
Our result in particular shows that the choice of the space of hypotheses may not

only influence the inferring power at all but may or may not allow the combination of
postulates of naturalness.

4. Monotonic Inference on Informant

The first theorem in the section again establishes a hierarchy between the different
types of monotonicity.

Theorem 5 SMON —INF C MON —INF C WMON — INF

Moreover, while the proper set inclusions remain valid if one considers only families of
regular languages, the next theorem shows the power of weak—-monotonic IIM. However,
the power of weak—monotonic IIMs again may be characterized as to coincide with the
inferring capabilities of conservative ones.

Theorem 6
(1) FIN—INF CSMON —INF and

(2) WMON — INF = CONSERVATIVE-INF = LIM — INF

Moreover, in our setting, i.e., considering only indexed families of recursive languages,
we even obtain that LIM — INF = CONS — INF.
The next theorem shows that we again may combine monotonicity and consistency with-
out limiting the learning power.

Theorem 7

(1) SMON — CONS —INF = SMON — INF
(2) MON —CONS — INF = MON — INF

(3) WMON — CONS —INF = WMON — INF

Now we want to compare monotonic inference from positive data with monotonic
inference from both, positive and negative data. In his seminal paper Gold (1967) has
shown that the inference from positive data alone is much weaker than inference on
informant. Consequently, one might well expect that monotonic inference on text is
less powerful than learning monotonically on informant. However, the more interesting
question is whether one can strengthen the monotonicity requirement in case one changes
from positive data to positive and negative data. The opposite direction of this problem
is wether the weakening of the notion of monotonicity allows the inference of sets of
languages on text which may only be inferred on informant in the stronger monotonic
case. Qur next theorem shows that all these things are almost always different ones, i.e.,
in general one cannot trade monotonicity versus information presentation.

Theorem 8
(1) MON—INF#WMON -TXT

(2) MON — INF # LIM —TXT
(3) SMON — INF # MON — TXT
(4) FIN —INF # SMON — TXT

Proof. The only part we prove here is assertion (2); the rest will be presented in the
full version of the paper.

We set Ly = {a}*, Ly = Ly \ {a*~'} for k > 1, and define £ = Ly, L,, Obviously, £

is an indexed family.

Claim A: L € MON — INF
The wanted IIM M works as follows: Initially, it outputs a canonical grammar j; for L;.
As long as some (a*, —) does not appear in the informant, the machine M outputs j;. In
case it does, M performs a mind change and outputs a canonical grammar for L;. This
hypothesis is then repeated in any subsequent step. Since Ly N Ly = Ly for all £ > 1, the
machine M works monotonically.

Claim B: L ¢ LIM —TXT
Due to Theorem 1 of Angluin(1980A) it suffices to show that there is no finite tell-tale for
Ly. Suppose the converse, i.e., there is a recursively enumerable finite set 77 satisfying:
(1) ThcCL
(2) forally>1,if Ty C L;, then L; ¢ Ly
Let z = maz{|w| | w € Ty}. Then, in accordance with the definition of the languages
Ly we immediately get L.yo O Ti. Moreover, L,.o C Ly, yielding a contradiction to
condition (2). This proves MON — INF\ LIM — TXT # {.
In order to prove the opposite direction, i.e, LIM — TXT\ MON — INF # () we use

the indexed family L,,,.., mentioned in the proof of Theorem 1.

Claim C: Lymon € WMON —TXT
The wanted IIM M is informally defined as follows: Let L € L,.0n, and let ¢ be any
text for L. M initially outputs a canonical grammar for the languaguge {a}*. In case the
first string b* appears in ¢ the machine M outputs a grammar for L,. This guess remains
unchanged until

(a) there appears a sting b* in the text ¢ with k < z or

() there appears a string ™ in the text ¢ with z < m.

If (o) happens first, then M outputs a grammar for Ly, in case (/) happens first M’s
new output is L, ,,, and finally, if (a) happens after (3) has already happened, then M
produces a canonical grammar for L .

Looking at the definition of M we immediately observe that M changes its mind only
in case if its current guess is inconsistent with the new data. Consequently, £, ,0n €
WMON —TXT(M)

Finally we have to prove the following claim:

Claim D: Loymon ¢ MON — INF
Suppose the converse, i.e., assume Lopon € MON — INF(M) for some IIM M. Let ¢ be
any informant for {a}*. Since Ly € Lymon there must be an x such that j, = M(i,) and
L(G;,) = Ly. Next we successively enlarge ¢, by (b*,+), where z > y = maz{|w| | w €
it Uiz} + 1. Consequently, all i,y are initial segments of an informant for L,. Hence
there must be a number k such that M on 7, outputs a grammar j, . being correct for
L,. But now we may enlarge ¢, in a canonical manner to an informant 7., for L, ,,
where m = maz{|w| | w € i, Uiz} + 1. It is easy to see that M either does not work
monotonically on 2., or it does not infer L, ,. This proves the claim, and so we have
proved assertion (2).
q.e.d.

Next we ask whether assertion (2) of the latter theorem can be sharpened to SMON —
INF\ LIM — TXT # (. The answer to this question put the hardness of strong—

monotonic inference in the right perspective.
Theorem 9 SMON —INFCWMON —-TXT

Proof. 1t suffices to show SMON — INF C WMON — TXT since by Theorem 8§,
assertion (1), one directly obtains WMON — TXT \ SMON — INF # (. Let £ €
SMON — INF(M), for some IIM M. Without loss of generality we may assume M to
be total, i.e., to be defined on any finite sequence of strings from ¥* x {4, —}. This can
be seen as follows.

Let M be any IIM inferring £ strong-monotonically on informant. Moreover, let 7, =
(81,01), ..., (Sz,b;) be any finite sequence. Then the IIM M first checks wether or not
there is a language L, € £ such that k <z, ¢} C Ly, and i; C co— L. In case such L,
does not exists, M requests the next input. Otherwise, M on input ¢, behaves exactly
as M does. Note that in the latter case M has to be defined, since otherwise it would
fail on a possible initial segment of some informant for L;. Moreover, M infers L strong-
monotonically. Let L € £, y = pz[L, = L], and 7 any informant of L. Consequently, on
input 7., for any = > y, M finds at least one language L; such that £ <z, if C L, , and
i, C co— Ly, 1.e., it works exactly as M does. Furthermore, on input ¢, for any = < y,
it either behaves as M does or it possibly ships over some hypotheses M possibly might
have computed. Since set inclusion is a transitive relation, M works strong monotonically.

Let us continue. We have to construct an IIM M’ identifying £ weak-monotonically
on text. This is done as follows: Let L € £ and let ¢ = (s;);en be an arbitrarily fixed
text for L. Then the wanted machine M’ is defined as follows:

M'(t,) =4 "rearrange the strings contained in t, in lexicographical order without repiti-
tions. Let ¢}, = wy,...,wg, k < the sequence obtained.
Compute A, := {(wi,+), ooy (W, +) U {(v, =) |v € T\ ¢}, |v] < max{z, |wi|}}
Determine z, by rearranging the elements of A, in lexicographical order with respect
to the first component.
(* Note that ¢, is not necessarily an initial segment of an informant of L, since it
may contain some (v, —) such that v € L. However, if z is large enough, then there
is an [€ N such that ¢, is an initial segment of an informant for L for any m <[
*

)

Compute M (zg), M(%1), ... until M outputs the first hypothesis j,, where r < z,
satisfying ¢f C L(G;,) and i C co — L(G},).
(*Observe that every string (w,+) € i belongs indeed to L by our construction®)
In case j, has been found, output it. Otherwise, output nothing, and request ¢,,,.”

It remains to show that L € WMON — TXT(M'). We have to prove that

(1) M’ converges to a number j such that L = L(G;), and

(2) M’ works weak-monotonically
In order to show (1) remember that M works strong-monotonically on every informant for
L. Consequently, M works strong—monotonically on the lexicographical ordered informant
i. Hence, there is a minimal index m such that M (i,,) = j,, and L(G},,) = L. Moreover,
since t is a text for L there is an index z satisfying it C t:_l_k and i, C range(i,4) for all
kE > 1, where ¢, is the initial segment of an informant obtained from ¢,,; as described

above. Since L(G},) = L we get:

it C L(Gy,) and i, C co — L(Gy,,) for every k > 1.
Thus, M'(t;) = M'(t,4x) for all k > 1, i.e., M’ converges.

We proceed in showing (2). Since M works strong-monotonically on ¢, we have:
Whenever M on ¢, [< m outputs a guess j;, then L(G,) C L.
Now it suffices to prove that every mind change of M’ is forced by an inconsistency with
the text ¢. Let j, be guess produced by M’ i.e., in simulating M an initial segment ¢,
has been found such that M(Z.) = j, and if C L(G;,) as well as i7 C co — L(G;,). We
distinguish the following two cases:
Case («): ¢, is an initial segment of ¢,

Then L(G;,) € L. Consequently, if j, is not the hypothesis M’ converges to, then
there has to be a k such that 7., ¢ L(G;,). But that means the text ¢ has to contain
some word w ¢ L((7;). Hence, this mind change is forced by an inconsistency.

Case (f3): ¢, is not an initial segment of ¢,,

Then ¢, must contain a string (v, —) such that v € L. Since ¢ C co— L(G},) it follows
that v ¢ L(G,). Consequently, in this case j, is changed, if either a string s appears in ¢
such that (s,—) € i or s € ¢} and s ¢ L(Gj,). In both cases the mind change is due to
inconsistency.

q.e.d.

Summarizing these results with those ones obtained previously, we get the following

figure.

FIN —TXT cCc SMON —TXT c MON —-TXT cWMON -TXT cCc LIM —TXT
N % N % N 7! N n

FIN —INF C SMON —INF C MON —INF C WMON — INF =LIM — INF

Figure 1

After having clarified the principal relations between the different notions of mono-
tonicity we want to deal with the question what "natural” sets of languages may or may
not be inferred monotonically. This is done in the next section.

5. Monotonic Learning of Natural Families of Lan-
guages

In this section we mainly deal with the question whether sets of pattern languages
may be learnt strong—monotonically or monotonically on text or on informant. Pattern
languages have been introduced by Angluin (1980B), thereby proving that the whole class
of pattern languages can be inferred in the limit ;jfrom positive data. Subsequently, Shi-
nohara (1982) dealt with polynomial time learnability of subclasses of pattern languages.
Nix (1983) outlined interesting applications of pattern inference algorithms. Recently,
Kearns and Pitt (1989) as well as Ko et al. (1990) studied intensively pattern inference
from positive and negative data in the PAC—learning model.

So let us define what are a pattern and a pattern language. Let ¥ be any non—empty
finite alphabet, and let X = {xq, z2,...} a set of variables. Patterns are non-empty strings
of variables and constants from X, e.g. zy2,, azyx;bxs are patterns. L(p), the language
generated by pattern p is the set of strings which can be obtained by substituting non—null
strings from ¥* for the variables of the pattern p. PAT denotes the set of all pattern
languages. Finally, let DPAT be the family of all languages L for which there are patterns

Piyy Piyy -y Pip such that L = ﬂ?ﬂ L(pij).

Using the techniques developed in Lange and Wiehagen (1990) one gets the following
theorem:

Theorem 10
(1) PAT € FIN —INF
(2) PAT ¢ FIN —=TXT

Proof. In order to prove assertion (1) let L € PAT and let ¢ be any informant for L.
The wanted IIM M is informally defined as follows:

M requests more and more inputs ¢, until it finds the £ € N such that the following
conditions are satisfied:

(o) Every w € ¥* with |w| < k belongs to i .

(3) There is a w € ¥* of length k that is contained in i}, and all w € ¥* of length

)

k are classified in 1.

Having found this & the machine M starts the procedure described in Lange/
Wiehagen (1990) with all strings w € L of length & and generates the uniquely
determined canonical pattern p such that L = L(p). Finally, it outputs p and
stops.

The proof of assertion (2) can be directly obtained by observing that every text for
any pattern language L is also a text for L(z;). Hence, L(z,) cannot be finitely inferred
on text. We omit the details.

q-e.d.
On the other hand, Jantke (1991B) pointed out that PAT ¢ SMON—-CONS—-TXT.

However, this result is mainly based on the requirement that in his setting any IIM is
only allowed to output patterns. If the space of hypotheses is restricted to PAT, then
one can reduce the question whether at least PAT € SMON — T XT to the decidability
of inclusion of pattern languages, i.e., to decide whether or not L(p) C L(q) for any given
patterns p and ¢. Unfortunately, the latter problem, first stated in Angluin (1980B), is
open.

Therefore it is only natural to ask whether an appropriate choice of the space of
hypotheses may help to overcome the difficulties in designing an I1IM that infers PAT
strong—monotonically. Note that the next theorem is mainly based on an idea communi-

cated to us by H.R. Beick (1991).
Theorem 11 There is a space of hypotheses such that DPAT € SMON —TXT.

Proof. The space of hypotheses is a subset of all context—sensitive grammars obtained
as follows: It is not hard to see that there is an effective procedure translating every
pattern p into a context-sensitive grammar (, such that L(p) = L(G,). Moreover, the
set of all context—sensitive grammars is closed under intersection (cf. [6]), i.e., given two
context—sensitive grammars (; and (3 one can effectively construct a grammar G/ 5 such
that L(G12) = L(G1) N L(G3). Consequently, one can effectively construct a recursively
enumerable family (G;);en of grammars such that DPAT = {L(G,) | j € N}.

We define an IIM M inferring DP AT strong—monotonically on text as follows: Let
L € DPAT and let t be any text for L. For any x € N we set:
M(t,) = ?Compute z = min{|w| | w € t}} and generate all canonical patterns
P1y -y P With |p;| < z. Test for all these patterns if tF C L(p;) for ¢ = 1, ...k and
let I, be the set of indices fulfilling the test.
Output a canonical grammar j, for N;cz, L(pi).”

It remains to show that DPAT € SMON —TXT(M). Let L € DPAT), i.e., there are
patterns ¢y, ..., q; such that L = ﬂé’=1 L(q;). Let m = mun{|w| | w € L}. Consequently,
lgj| < m for all j = 1,...I. Moreover, since t is a text for L we directly obtain that m < z
for all initial segments ¢, of ¢ and that ¢t C L(g;) for all j = 1,...0. Thus {1,...,{} C I, for
every € N. Hence, every j, = M(t,) satisfies L((;,) C L. Furthermore, since I,4x C I,

for every k € N we additionally get L(G;,) C L(Gy,,,) € L for all k € N. Consequently,
M works strong—monotonically. Finally, M obviously converges since I\ {1, ...l} is finite.
Let jin be the limit of the sequence of hypotheses. Suppose L(G;,) C L. Then there is
at least a string s € L \ L(Gy;,). On the other hand, there must be an 2 € N such that
s € 1, since t is a text for L. Due to the construction it must hold that ¢f C L(p;) for
every ¢ € I, in particular s € L(p;) for all ¢ € I,. Hence s € L(Gy;,). Consequently, M
converges to a correct grammar.

q.e.d.
On the other hand, at first glance it might seem that the decidability of L(G) C L(G")

may be generally helpful in proving that families of languages are monotonically learnable.
However, decidability of inclusion does not guarantee monotonic learnability, even on
informant.

Theorem 12 The set of all reqular languages cannot be monotonically inferred on
informant.

Let us finish this section with the remark that several problems remained open. We
shall discuss them in the next section.

6. Conclusions and Open Problems

We have studied the power of strong-monotonic, monotonic and weak-monotonic IIMs
in the setting of algorithmic language learning. All these notions have been related one to
the other and two new hierarchies could been proven. Although all these notions seem to
be quite natural ones, in general, strong—monotonicity and monotonicity lead to a severe
restriction of the inference power. This actually shows that learning processes have to
be performed, at least to some extent, non—-monotonically or at least weak—monotonincly.
Moreover, as our results show, if one deals with monotonically working ITMs the choice
of the space of hypotheses is of great influence to what actually can be inferred. If that
space is appropriately chosen, then weak—monotonic inference can be characterized to be
as powerful as conservative learning.

However, several problems remained open. First, it would be very interesting to know
whether or not the requirement that the range of the indexed family to be learnt has to
coincide with the range of the space of hypotheses is essential for proving MON —TXT C
WMON —-TXT

Moreover, it seems to be challenging to combine monotonic language learning with
other postulates of naturalness, e.g., with iterative inference introduced by Wiehagen

(1976).

In the context of inference of natural families of languages the most interesting open
question is whether PAT € SMON — TXT, if the space of hypotheses is PAT. Finally,

it would be desirable to prove sufficient and necessary conditions for monotonic inference.

Acknowledgement

The authors heartily thank Rolf Wiehagen for many inspiring discussions, and espe-
cially, for pointing out an error in an earlier version of this paper.

7. References

[5]
(6]

7]

[10]

[11]

[12]

[13]

[14]

Angluin, D., (1980A), Inductive Inference of Formal Languagues from Positive
Data, Information and Control 45, 117 - 135.

Angluin, D., (1980B), Finding Patterns Common to a Set of Strings, J. Computer
and System Sciences 21, 46 - 62.

Angluin, D. and C.H. Smith, (1987), Formal Inductive Inference, In Encyclope-
dia of Artificial Intelligence, St.C. Shapiro (Ed.), Vol. 1, pp. 409 - 418, Wiley—

Interscience Publication, New York.

Barzdin, Ya.M., (1974), Inductive Inference of Automata, Functions and Programs,
Proc. Int. Congress of Math., Vancouver, pp. 455 - 460.

Beick, H.R., (1991), Personal Communication.

Bucher, W. and H. Maurer, (1984), Theoretische Grundlagen der Program-
miersprachen, Automaten und Sprachen, Bibliographisches Institut AG, Wis-
senschaftsverlag, Zirich.

Case, J., (1988), The Power of Vacillation, In Proc. 1st Workshop on Compu-
tational Learning Theory, D. Haussler and L. Pitt (Eds.), pp. 196 -205, Morgan

Kaufmann Publishers Inc.

Case, J. and C. Lynes, (1982), Machine Inductive Inference and Language Identifi-
cation, Proc. Automata, Languages and Programming, Ninth Colloquim, Aarhus,
Denmark, M.Nielsen and E.M. Schmidt (Eds.), Lecture Notes in Computer Science
140, pp. 107 -115, Springer—Verlag.

Fulk, M.,(1990), Prudence and other Restrictions in Formal Language Learning,
Information and Computation 85, 1 - 11.

Gold, MLE., (1967), Language Identification in the Limit, Information and Control
10, 447 - 474.

Kearns, M. and L. Pitt, (1989), A Polynomial-time Algorithm for Learning k-
variable Pattern Languages from Examples, In Proc. 2nd Workshop on Compu-
tational Learning Theory, R. Rivest, D. Haussler, and M.K. Warmuth (Eds.), pp.
57 - 70, Morgan Kaufmann Publishers Inc.

Jain, S. and A. Sharma, (1990), Language Learning by a " Team”, Proc. Automata,
Languages and Programming, 17th International Colloquium, Warwick University,
England, M.S. Paterson (Ed.), Lecture Notes in Computer Science 443, pp. 153 -
166, Springer—Verlag.

Jantke, K.P., (1991A), Monotonic and Non-monotonic Inductive Inference, New
Generation Computing 8, 349 - 360.

Jantke, K.P., (1991B), Monotonic and Non—monotonic Inference of Functions and
Patterns, in Proc. First International Workshop on Nonmonotonic and Inductive
Logics, December 1990, Karlsruhe, J. Dix, K.P. Jantke and P.H. Schmitt (Eds.),
Lecture Notes in Artificial Intelligence 543, pp. 161 - 177, Springer—Verlag.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]
[24]

Ko, K., Marron, A. and W.G. Tzeng, (1990), Learning String Patterns and Tree
Patterns From Examples, Proc. Tth Conference on Machine Learning, pp. 384 -
391.

Lange, S. and R. Wiehagen, (1990), Polynomial-Time Inference of Pattern Lan-
guages, Proc. Algorithmic Learning Theory 1990, pp. 289 - 301, Tokyo, Ohmsha
Ltd.

Nix, R.P., (1983), Editing by Examples, Yale University, Dept. Computer Science,
Technical Report 280.

Osherson, D., Stob, M. and S. Weinstein, (1986), Systems that Learn, An Intro-
duction to Learning Theory for Cognitive and Computer Scientists, MIT-Press,
Cambridge, Massachusetts.

Shinohara, T., (1982), Polynomial Time Inference of Extended Regular Pattern
Languages, RIMS Symposia on Software Science and Engineering, Kyoto, Lecture
Notes in Computer Science 147, pp. 115 - 127, Springer—Verlag.

Solomonoff, R., (1964), A Formal Theory of Inductive Inference, Information and
Control 7, 1 - 22, 234 - 254.

Wiehagen, R., (1976), Limes—Erkennung rekursiver Funktionen durch spezielle
Strategien, J. Information Processing and Cybernetics (EIK) 12, 93 - 99.

Wiehagen, R., (1977), Identification of Formal Languages, Proc. Mathematical
Foundations of Computer Science, Tatranska Lomnica, J. Gruska (Ed.), Lecture
Notes in Computer Science 53, pp. 571 - 579, Springer—Verlag.

Wiehagen, R., (1990), Personal Communication

Wiehagen, R., (1991), A Thesis in Inductive Inference, in Proc. First International
Workshop on Nonmonotonic and Inductive Logics, December 1990, Karlsruhe, J.
Dix, K.P. Jantke and P.H. Schmitt (Eds.), Lecture Notes in Artificial Intelligence
543, pp. 184 - 207, Springer—Verlag.

