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Abstract

The present paper deals with the learnability of indexed families of uniformly recursive
languages by single inductive inference machines (abbr. IIM) and teams of IIMs from
positive and both positive and negative data. We study the learning power of single
IIMs in dependence on the hypothesis space and the number of allowed anomalies the
synthesized language may have. Our results are fourfold. First, we show that allowing
anomalies does not increase the learning power as long as inference from positive and
negative data is considered. Second, we establish an infinite hierarchy in the number of
allowed anomalies for learning from positive data. Third, we prove that every learnable
indexed family £ may be even inferred with respect to the hypothesis space L itself.
Fourth, we characterize learning with anomalies from positive data.

Finally, we investigate the error correcting power of team learners, and relate the
inference capabilities of teams in dependence on their size to one another. Again, an
infinite hierarchy is established and the learnability is characterized in terms of recursively
generable families of finite and non-empty sets.

1 Introduction

Inductive inference is the process of hypothesizing a general rule from eventually incomplete
data. Within the last three decades it received much attention from computer scientists.
Nowadays inductive inference can be considered as a form of machine learning with potential
applications to artificial intelligence (cf., e.g., Angluin and Smith [3, 4], Osherson, Stob and
Weinstein [38]). For more information concerning recent developments in inductive inference,
the reader is referred to the annual Workshops on Computational Learning Theory, COLT
(cf., e.g., Rivest et al. [42], Fulk and Case [15], and Haussler [18], the International Workshops
on Algorithmic Learning Theory, ALT (cf., e.g., Arikawa et al. [5, 6, 7]), the International
Workshops on Analogical and Inductive Inference, AII (cf., e.g., Jantke [22, 23], and Arikawa
and Jantke [7]), and the European conference on Computational Learning Theory, EuroCOLT
(cf. Shawe-Taylor and Anthony [44]).

The present paper deals with inductive inference of formal languages, a field in which
many interesting and sometimes surprising results have been obtained (cf., e.g., Case and
Lynes [11], Case [10], Fulk [14]). Looking at potential applications, Angluin [1, 2] started the
systematic study of learning enumerable families of uniformly recursive languages, henceforth
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called indexed families. A sequence Lgy, Li, Lo, --- of languages is said to be indexed family
provided all L; are non-empty and membership in L; is uniformly decidable for all indices j.
As a matter of fact, the definition of an indexed family contains both, a description for every
enumerated language L; and a particular enumeration of all the languages from its range.
Recently, this topic has attracted much attention (cf., e.g., [24, 25, 27, 28, 29, 30, 31, 32, 33,
35, 36, 37, 43, 45, 50, 51]).

Next we specify the information from which the target languages have to be learned. A text
of a language L is an infinite sequence of strings that eventually contains all strings of L. Since
a text contains exclusively positive examples concerning the target language, we sometimes
refer to text as to positive data. Alternatively, one can consider learning from informant. An
informant of a language L is an infinite sequence of all strings over the underlying alphabet that
are classified with respect to their containment in L. Consequently, an informant contains both
positive and negative examples concerning the language to be learned. Therefore, we sometimes
refer to informants as to positive and negative data.

An algorithmic learner, henceforth called inductive inference machine (abbr. IIM), takes as
input initial segments of a text (an informant), and outputs, from time to time, a hypothesis
about the target language. The set G of all admissible hypotheses is called hypothesis space.
Furthermore, the sequence of hypotheses has to converge to a hypothesis approzimately de-
scribing the target language. That is, the cardinality of the symmetric difference of the target
language and the language generated by the hypothesis the IIM converges to is required to
be bounded by some a prior: fixed number or to be finite, respectively. Hence, the hypothesis
synthesized in the limit is allowed to contain anomalies with respect to the target language.
Therefore, we synonymously refer to approximate inference as to learning with anomalies. If
there is an ITM that learns the target language L from all its texts (informants), then L is said
to be approximately learnable from text (learnable from informant) in the limit with respect
to the hypothesis space G. An indexed family £ is said to be learnable from text (learnable
from informant) provided there is an IIM that learns every language contained in the range of
L (cf. Definition 2). If the number of allowed anomalies is equal to zero, then we just arrive
at Gold’s [17] classical definition of learning in the limit (cf. Definition 1).

Approximate inference has been introduced by Blum and Blum [9] in the context of learning
recursive functions. Subsequently, this topic has been studied by various authors (cf., e.g., Case
and Smith [12], Kinber and Zeugmann [26]). The study of language learning with anomalies
goes back to Case and Lynes [11] (cf. Osherson, Stob and Weinstein [38] for further infor-
mation). However, the present paper is the first one dealing with the inferability of indexed
families when anomalies are allowed.

Moreover, we study the learnability of indexed families by teams of IIMs. In this setting,
originally introduced by Smith [47], the learning task has to be realized by a finite collection
of IIMs called team. The number n of IIMs in the collection is referred to as team size. Every
team member is receiving the same information, i.e., it is successively fed a text or informant
of the target language, respectively. However, the learning task is successfully finished if at
least m, m < n, of the team members learn the target language (cf. Definition 3).

We study the learnability of approximate and team inference in dependence on the set of
admissible hypothesis spaces, the number of allowed anomalies, and the success ratio m/n of
teams, respectively.

Concerning the choice of the hypothesis space we distinguish between proper learnability,
class preserving inference, class admissible learnability, and absolute learning. Next, we explain
these notions in some more detail. Obviously, the hypothesis space must contain a suitable



description for every language enumerated in the target indexed family. Therefore, one might
be tempted to choose the indexed family itself as hypothesis space. If an indexed family £ has
to be inferred with respect to the hypothesis space £, then we refer to this learning model as
to proper inference. Note that proper inference has been studied by various authors (cf., e.g.,
Angluin [1, 2], Shinohara [45], Mukouchi [36]). Nevertheless, one may also allow any recursive
enumeration of the range of £ as well as any description of the enumerated languages provided
membership remains uniformly decidable. The resulting learning model is referred to as class
preserving inference. Moreover, when dealing with learning with anomalies, the following
further generalization concerning hypothesis spaces is appropriate. A hypothesis space G is
called class admissible for £ provided that G contains for every L from the range of the target
indexed family £ at least one description that constitutes an approximation for L within the
required precision. The resulting learning model is referred to as class admissible learning.
Finally, we call an indexed family £ absolute learnable if it can be inferred with respect to
every class admissible hypothesis space for it.

The results obtained are manifold. First, we show that allowing anomalies does not increase
the learning power as long as inference from positive and negative data is considered. Second,
we establish an infinite hierarchy in the number of allowed anomalies for learning from positive
data. Moreover, we show that every approximately learnable indexed family £ may be even
properly inferred thereby maintaining the number of allowed anomalies. The latter result is
obtained via a characterization of learning with anomalies. Nevertheless, absolute learnability
has its peculiarities as we shall show. Then we investigate the error correcting power of team
learners, and relate the inference capabilities of teams in dependence on their size to one
another. Again, an infinite hierarchy is established.

The paper is structured as follows. Section 2 presents preliminaries, i.e., notations and
definitions as well as further motivation for the research undertaken. Subsequently, we present
our results concerning the learnability of indexed families with anomalies (cf. Section 3). The
4th Section deals with team inference from positive data in the setting of learning indexed fam-
ilies. Finally, we outline conclusions and present open problems (cf. Section 5). All references
are given in Section 6.

2 Preliminaries

Let N = {0,1,2,...} be the set of all natural numbers. We set IN*T = IN \ {0}. In the sequel
we assume familiarity with formal language theory (cf., e.g., Hopcroft and Ullman [19]). By
>) we denote any fixed finite alphabet of symbols. Let ¥* be the free monoid over 3, and let
¥t = ¥*\ {e}, where ¢ denotes the empty string. Every subset L C ¥* is called a language.
By co-L we denote the complement of L. Let L be a language, then we use |L| to denote
the cardinality of L. Furthermore, let L and L be any two languages, and let a € IN; then
we write L =, L iff |L A IA/| < a. Here A denotes the symmetric difference of I and f,, ie.,
LAL=(L\L)U(L\L). Finally, we write L =, L iff [LAL| is finite (abbr. |L A L| < %).

Let L be a language and let ¢ = sg, s1, $2, ... be an infinite sequence of strings from »* such
that range(t) = {sx| k € IN} = L. Then t is said to be a text for L or, synonymously, a
positive presentation. Let L be a language. By text(L) we denote the set of all positive
presentations of L. Furthermore, let i = (sg, bo), (81, b1), -.. be an infinite sequence of elements of
¥* x {+, —} such that range(i) = {sx| k € N} = 2*, it = {sg| (s, b) = ($g, +),k € N} =L
and i~ = {sg| (sx,br) = (sk, —),k € IN} = co-L. Then we refer to i as an informant. If L is
classified via an informant then we also say that L is represented by positive and negative

3



data. Let L be a language. By info(L) we denote the set of all informants for L. Moreover,
let £, 7 be a text and an informant, respectively, and let z be a number. Then ¢, 7, denote the
initial segment of ¢ and i of length z + 1, respectively, e.g., i2 = (8o, bo), (81, b1), (S2,b2). Let ¢
be a text and let € IN. Then we define ¢} = {s;| k£ < x}. Furthermore, by i} and i, we
denote the sets {sg| (sg,+) € 1,k < x} and {si| (sg, —) € i,k < x}, respectively. Finally, we
write ¢, C t, (t, Ct,), iff ¢, is a (proper) prefix of ¢,.

Following Angluin [1], we restrict ourselves to deal exclusively with indexed families of
uniformly recursive languages defined as follows: A sequence Lg, Lq, Lo, ... is said to be an
indexed family L of uniformly recursive languages provided all L; are non-empty and there
is a recursive function f such that for all numbers j and all strings s € ¥* we have

. . 1, if s € Lj,
1,5) = { 0, otherwise.

In the following we refer to indexed families of uniformly recursive languages as indexed
families for short. Examples for indexed families are the canonical enumeration of all regular
languages, of all context-free languages, and of all context-sensitive languages over ¥, respec-
tively (cf. Hopcroft and Ullman [19]). Moreover, we set range(L) = {L;| j € IN} for every
indexed family £ = (L;)jew. Note that the definition of an indexed family includes both,
a description for every language L;, and a particular enumeration of all the languages in its
range. In particular, we may consider the indices of the enumerated languages as compiled
grammars and acceptors, respectively (cf. Hopcroft and Ullman [19]).

As in Gold [17], we define an inductive inference machine (abbr. IIM) to be an al-
gorithmic device which works as follows: The IIM takes as its input larger and larger initial
segments of a text ¢ (or an informant 7) and it either requests the next input, or it first outputs
a hypothesis, i.e., a number encoding a certain computer program, and then it requests the
next input (cf., e.g., Angluin [1]).

At this point we have to clarify what hypothesis space we should choose, thereby also
specifying the goal of the learning process. Gold [17] and Wiehagen [49] pointed out that there
is a difference in what can be inferred depending on whether we want to synthesize in the
limit grammars (i.e., procedures generating languages) or decision procedures, i.e., programs
of characteristic functions. Case and Lynes [11] investigated this phenomenon in detail. As
it turns out, IIMs synthesizing grammars can be more powerful than those ones which are
requested to output decision procedures. However, in the context of identification of indexed
families, both concepts are of equal power. Since we exclusively deal with the learnability of
indexed families £ = (L;)jenv we always take as the hypothesis space an enumerable family
of grammars G = Gy, G1, G, ... over the terminal alphabet ¥ such that membership in L(G;)
is uniformly decidable for all 7 € IN and all strings s € »*. For notational convenience we
use L(G) to denote (L(G;))jen. Note that £(G) constitutes itself an indexed family for all
hypothesis spaces G. When an IIM outputs a number j, we interpret it to mean that the
machine is hypothesizing the grammar G;. Let £ be an indexed family, and let a € IN U {x};
a hypothesis space G = (G;);en is said to be class admissible (class preserving) for L
with respect to a provided that for every L € range(L) there exists an index j such that
L =, L(G;) (range(L) = range(L(G))).

Let o be a text or informant, respectively, and x € IN. Then we use M (o,) to denote the
last hypothesis produced by M when successively fed o,. The sequence (M (0;))zen is said to
converge in the limit to the number j if and only if either (M (0;))zen is infinite and all
but finitely many terms of it are equal to j, or (M (0,))zen is non-empty and finite, and its
last term is j. Now we are ready to define learning in the limit.
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Definition 1. (Gold [17]) Let L be an indexed family, let L be a language, and let G =
(G)jen be a hypothesis space. An IIM M CLIM-TXT [CLIM-INF |-infers L from
text [ informant | with respect to G iff for every text t [informant i | for L, there exists
a j € IN such that the sequence (M(ty))zew [(M(iz))zen] converges in the limit to j and
L=L(G,).

Furthermore, M CLIM-TXT [CLIM-INF |-identifies L with respect to G iff, for each
L € range(L), M CLIM-TXT [CLIM-INF |-identifies L with respect to G.

Finally, let CLIM-TXT [CLIM-INF | denote the collection of all indexed families L for
which there are an IIM M and a hypothesis space G such that M CLIM-TXT [CLIM-INF |-
identifies L with respect to G.

Since, by the definition of convergence, only finitely many data of L were seen by the IIM
up to the (unknown) point of convergence, whenever an IIM identifies the language L, some
form of learning must have taken place. For this reason, hereinafter the terms infer, learn, and
tdentify are used interchangeably.

In Definition 1, LIM stands for “limit.” Furthermore, the prefix C' is used to indicate
class admassible learning, i.e., the fact that £ may be learned with respect to some suitably
chosen class admissible hypothesis space. Note that class admissible learning is sometimes also
referred to as class comprising learning (cf., e.g., Zeugmann and Lange [51] and the references
therein). The restriction of CLIM to class preserving inference is denoted by LIM. That
means LIM is the collection of all indexed families £ that can be learned in the limit with
respect to a suitably chosen class preserving hypothesis space. Moreover, if a target indexed
family £ has to be inferred with respect to the hypothesis space L itself, then we replace
the prefix C' by P, i.e., PLIM is the collection of indexed families that can be properly
learned in the limit. Note that proper learning is sometime also referred to as exact learning
(cf., e.g., Zeugmann and Lange [51]). Finally, we replace the prefix C' by A to denote the
collection of all those indexed families that can be learned in the limit with respect to every
class admissible hypothesis space. The latter learning type is referred to as absolute learning.
We adopt this convention in the definitions of the learning types below.

Definition 1 could be easily generalized to arbitrary families of recursively enumerable lan-
guages (cf., e.g., Osherson et al. [38]). Nevertheless, we exclusively consider the restricted case
defined above, since our motivating examples are all families of uniformly recursive languages.
Furthermore, the following question naturally arises. Does the collection of inferable indexed
families depend on the set of allowed hypothesis spaces introduced above? The answer to this
question has been provided by Lange and Zeugmann [30]. We state their result in the following
proposition that completely clarifies the relations between absolute, proper, class preserving
and class admissible learning in the limit.

Proposition 1.
(1) ALIM-TXT = PLIM-TXT = LIM-TXT = CLIM-TXT,
(2) ALIM-INF = PLIM-INF = LIM-INF = CLIM-INF.

Next, we generalize Definition 1 to learning in the limit with anomalies. That is, now
the hypotheses an IIM converges to are only required to suitably approximating the target
languages.

Definition 2. (Case and Lynes [11]) Let £ be an indezed family, let L be a language, let
G = (Gj)jen be a hypothesis space, and let a € NU {x}. An IIM M CLIM®-TXT

[CLIM®-INF |—infers L from text | informant | with respect to G iff for every text
t [informant i | for L, there exists a j € IN such that the sequence (M (t;))zen [(M(iz))zen]
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converges in the limit to j and L =, L(G).

Furthermore, M CLIM®-TXT [CLIM®-INF |-identifies L with respect to G iff, for each
L € range(L), M CLIM*-TXT [CLIM®-INF |-identifies L with respect to G.

Finally, let CLIM*-TXT [CLIM®-INF | denote the collection of all indexed fami-
lies L for which there are an IIM M and a hypothesis space G such that M CLIM®*-TXT
[CLIM®-INF |-identifies L with respect to G.

Obviously, \LIM®-TXT = ALIM-TXT for all A € {A, P,e,C}. However, for a € NU{*}
there is a peculiarity we would like to mention here. Let £ be an indexed family, and
let G = (Gj)jenw be any class admissible hypothesis space such that £ is CLIM*-TXT-
(CLIM®-IN F)-inferable with respect to G. If a = 0, then class admissible learning implies
range(L) C range(L£(G)). On the other hand, if a > 1, then class admissible learning only re-
quires the existence of hypotheses in range(G) that provide sufficiently precise approximations
for every L € range(L). As a consequence, the proof technique of Lange and Zeugmann [30]
cannot be directly applied to extend Proposition 1 to identification in the limit with anomalies.

Finally, we define learning in the limit by a team of IIMs. Team inference has been
introduced by Smith [47] in the context of inferring recursive functions. Subsequently various
authors have studied it intensively (cf., e.g., Pitt [40], Pitt and Smith [41], Jain and Sharma
[20, 21]). For a survey concerning the results obtained and the problems studied the interested
reader is referred to Smith [48]. Furthermore, in Chapter 3 we provide a summary of results
that are most relevant to the problems studied in this paper.

Definition 3. (Smith [47]) Let £ be an indezed family, let L be a language, let G = (G;) jen
be a hypothesis space, and let n,m € INt, m < n. A team (Mjy,...,My) of IIMs
(m,n)CLIM-TXT [(m,n)CLIM-INF |—infers L from text [ informant | with re-
spect to G iff for every text t [informant i | for L, there exist at least m team members
My, , -+, My, and indices ji,--+,Jm such that the corresponding sequences (My,(t3))ze,
T (Mkm (tw))IEN [(Mk1 (iw))wE]Na T (Mkm (Za:))a:E]N] converge in the limit to Ji 5 Jm and
L = L(G},) for all 1 < z < m, respectively.

Furthermore, (My, - -+, My) (m,n)CLIM-TXT [(m,n)CLIM-INF |-identifies L with re-
spect to G iff, for each L € range(L), (M, -+, M) (m,n)CLIM-TXT [(m,n)CLIM-INF |-
tdentifies L with respect to G.

Finally, let (m,n)CLIM-TXT |[(m,n)CLIM-INF | denote the collection of all indexed
families L for which there are a team (My, - - -, My) of IIMs and a hypothesis space G such that
(My,---My,) (m,n)CLIM-TXT [(m,n)CLIM-INF |-identifies L with respect to G.

In the following we derive some easy consequences from the latter definition. First, it is easy
to see that every indexed family can be inferred in the limit from informant by a single IIM.
In particular, Gold’s [17] identification by enumeration principle serves as a universal learning
method (cf. Zeugmann and Lange [51] for a detailed discussion). Taking this observation as
well as Proposition 1 into account, we directly obtain the following proposition.

Proposition 2. For all m,n € INT, m < n, we have:
(m,n)CLIM-INF = CLIM-INF = ALIM-INF.

Next, we consider team inference from text. Recently, Meyer [34] extended Pitt’s [39]
unification results to the case of learning indexed families from positive data. In particular,
she showed that, for every p € (0, 1] the power of probabilistic IIMs learning with probability
p equals the power of (1,n)-team learning, where n is the unique integer such that 1/(n+1) <
p < 1/n. This result immediately allows the following conclusion.

Proposition 3. For all m,n € INT, m < n, we have:
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(m,n)CLIM-TXT = (1,|m/n|)CLIM-TXT.

Hence, in the following it suffices to deal exclusively with (1,n)CLIM-TXT. Furthermore,
the proof technique of Lange and Zeugmann [30] can be directly applied to relate the learning
capabilities of absolute, proper, class preserving and class admissible team learning to one
another. We display the resulting equality in the next proposition.

Proposition 4. For all n € INT we have:
(1,n)ALIM-TXT = (1,n)PLIM-TXT = (1,n)LIM-TXT = (1,n)CLIM-TXT.

In the following we aim to clarify the remaining relations between absolute, proper, class
preserving and class admissible learning in the limit with anomalies. Moreover, we want
to study the learning power of ALIM®*TXT, A\ € {A,P,e,C} and (1,n)PLIM-TXT in
dependence on the number of allowed anomalies the inferred grammars may have and the
team size n, respectively. This is done in Sections 3 and 4.

3 Inferability with Anomalies from Text

We start our investigations by characterizing learning in the limit with anomalies in terms
of finite tell-tales. The first such theorem goes back to Angluin [1] who characterized proper
learning in the limit accordingly. Recently, several models of learning indexed families have
been successfully characterized in terms of finite tell-tales, too (cf., e.g., Zeugmann, Lange and
Kapur [52]). The characterizations obtained helped to gain a better understanding of what
different learning models have in common and where the differences are. Hence, it is only
natural to ask whether or not identification in the limit with anomalies may be characterized
as well. This is indeed the case as we shall show. In order to do this, we had to generalize
Angluin’s [1] definition of tell-tales as follows.

Definition 4. Let £ = (L;)jen be an indexed family, let a € NU{x}, and let G = (G;) e be
a class preserving hypothesis space for L. A set Q) is said to be an a-tell-tale for L € range(L)
with respect to L(G) provided Q satisfies the following conditions:

(1) Q is finite,
(2) QC L, and
(3) for every j € IN, if @ C L(G;) C L, then L(G;) =, L.
Note that the definition made above essentially coincides with Angluin’s [1] definition of a
tell-tale in case a = 0. Therefore, we refer to O-tell-tales as to tell-tales for short.
Proposition 5. (Angluin [1]) Let £ = (L;)jen be an indexed family. Then following two

conditions are equivalent.

(1) £ e PLIM-TXT,

(2) there exists an effective procedure which, for every j € IN, uniformly enumerates a tell-
tale for L; with respect to L.

Originally, this proposition characterized all those indexed families that are proper inferable
in the limit. However, a straightforward application of Proposition 1 directly results in a
complete characterization of indexed families that are learnable in the limit from positive
data.



Next, we want to extend this characterization theorem to identification in the limit with
anomalies. First, we show that, for every a € IN U {*}, uniformly recursively enumerable
a-tell-tales are sufficient to guarantee class preserving learning in the limit with anomalies.

Theorem 1. Let L = (Lj)jen be an indexed family, let a € INU {x}, and let G = (G})jen
be a class preserving hypothesis space for L. If there exists an effective procedure g which,
for all j € IN, uniformly enumerates a-tell-tales for L(G;) with respect to L(G), then L is
LIM®-T XT-inferable with respect to G.

Proof. Let a € IN U {x} be arbitrarily fixed, and let @); denote the a-tell-tale for L(G;).
Furthermore, for every z € IN, let 7 be the set of all elements enumerated within zth steps
of computation performed by the procedure g. Then, analogously as in Angluin [1] we define
an IIM as follows:

IIM M: “On input t,, execute Stage .

Stage x : Search for the least index j <z which satisfies QF C ¢ C L(G;).
In case such an index j has been found, output it, and request the next input.
Otherwise, output z, and request the next input.”

Let L € range(L) and t € text(L). We have to show that M LIM®-T XT—infers L. Let jj
be the least index j which satisfies Q; C L C L(G;). Since L € range(L) and since G is a class
preserving hypothesis space, such an index has to exist. Note that L =, L(G},) by Property
(3) of a-tell-tales. Now it suffices to show that the IIM M converges to jo.

For every j < jo, take x; which satisfies the following conditions.

(i) In case that Q; Z L, let z; be sufficiently large such that Q;-Dj =Q; € L.
(ii) In case that @; C L and L  L(G}), let z; be sufficiently large such that ¢; ¢ L(G;).

Furthermore, let x;, be the least x such that the a-tell-tale );, is completely enumerated,
ie., Qf = Qj. Let X = max{wz,zs,...,2j,j0}. Then for all x > X, (i) and (ii) imply that
Q7 C tf C L(Gj) does not hold for each j < jo. On the other hand, QF C tf C L(Gj,).
Hence, M converges to 7. O

However, in generalizing Theorem 1 to class admissible learning with anomalies, and in
proving the converse of Theorem 1, and its desired generalization we have to overcome some
difficulties. Therefore, we continue with a lemma providing a useful normalization. The lemma
actually states that any IIM which C'LI M®-T X'T—infers an indexed family £ can be replaced
by another one that converges on every text for every language L € range(L) to a superset
of it, and that also witnesses £ € CLIM®-TXT. Consequently, this lemma nicely contrasts
a corresponding theorem for function learning, where one can always achieve convergence to
subfunctions (cf. Case and Smith [12]).

Lemma 2. Let a € INU {x}. Furthermore, let L be an indexed family, let G = (G;)jen be a
hypothesis space and let M be an IIM witnessing L EAC’LIM“—TXT with respect to G. Then
one can effectively construct a hypothesis space G = (G;)jew and an IIM M such that

(1) M CLIM®-TXT-infers L with respect to G, and

(2) for all L € range(L) and for all t € text(L), if (M (t3))seny converges to k, then L C
L(Gg).



Proof. A hypothesis space G may not have a superset of some language in £. This problem
is solved by mixing G with £. The desired hypothesis space G is defined as follows. For all
7 € IN, we set

. Gy, if 7 is even,
G]' = 2 ep e
grammar of L;-1, if 5 is odd.
2
Furthermore, let wg, ws, ... be any fixed effective enumeration of . For every A C X+
and z € IN, we use A® to denote AN {wo,wy, ..., w,}. Now we are ready to define the desired

IIM M.

IIM M: “On input t,, execute Stage .

Stage r : Let j, = M(t,). Search for the least j < z satisfying (t7)® C L(C:*j)(’”) C
L(G,,) Ut}. If such a j is found, then output it, and request the next input.
Else output z, and request the next input.”

It remains to show that M satisfies Properties (1) and (2). Let L € range(L), let t € text(L),
and z € IN. By assumption, M CLIM®-T XT-infers L with respect to G. Hence, there exist
Z and m such that M(t,) = j, = m for all z > 7 and L(G,) =, L. Let j be the least j which

~

satisfies L C L(G;) C L(Gy,) U L. There exists such a j because £(G) contains L. Inevitably

A A

L =, L(G;). We show that M converges to j.
For every j < 7, let z(j) be the least z which satisfies the following conditions.

() if L € L(Gy), then (1)) € L(G)),
(ii) if L C L(G;) € L(Gy) U L, then L(G;)® € L(G,,) U L.
Moreover let z(7) be the least x such that L(G,,) Ut} = L(G,,) U L. Note that such an
z(7) has to exist, since |L\ L(G,)| < a. Let X = max{Z, z(0),z(1),z(2),...,z(7), 7}

Claim. For every z > X, on input ¢,, the IIM M outputs J.

Obviously, the IIM M outputs 7, if 7 is the least k < z such that (¢1)® C L(Gy)® C
L(G,,) Ut. Hence, it suffices to show that no j < j satisfies this condition and j satisfies it,
provided z > X. Consider any j < 7. We distinguish the following cases.

Case 1. L ¢ L(G;)

In accordance with the choice of 2(j), we directly get (¢7)®) ¢ L(G;). Thus j does not
satisfy the condition.

A

Case 2. L C L(G;) € L(Gy)U L

In accordance with the choice of Z and z(j), L(G;)® ¢ L(G,,) UL = L(G;,) Ut}. Thus j
does not satisfy the condition.

On the other hand, since L C L(G;), we have (¢7)®) C L(G;). Furthermore, L(G;)®) C
L(Gn) UL = L(G;,) Utf. Thus j satisfies the condition.

Since the search reaches j in Stage z, the IIM M outputs j. This proves the claim.

By this claim, Lemma 2 immediately follows. O

Now we are ready to establish both the desired generalization of Proposition 1 as well
as its converse. The next theorem actually states that a-tell-tales may be always uniformly
enumerated with respect to the target indexed family £ itself.

9



Theorem 3. Leta € INU{x}, and let L = (L;) e be an indexed family. If L is CLIM*-TXT-
inferable, then there exists an effective procedure g which, for each j € IN, uniformly enumerates
an a-tell-tale for L; with respect to L.

Proof. Let M be any IIM which C'LIM®-T X T-infers £ with respect to G. Let M and Q
be chosen in accordance with Lemma 2. We show that the following procedure g uniformly
enumerates a-tell-tales with respect to £. Note that this procedure is just the same one Angluin
[1] has used. For every j € IN let wp, wy, ws, ... be any fixed effective enumeration of L;, and
let 79,71, 72, ... be any fixed effective enumeration of all finite sequences of elements of L.

Procedure g:

“On input j € IN, do the following: Initialize oy = wy, output wy. Execute Stage 0 (If
the computation of M (wp) halts without any output, consider that M (wy) is not equal to any
integers.)

Stage z, z € N : Fory=0,1,2,---, compute M(cq-... 0, -T,) until the first y is found such
that M(og-...-0,) # M(0g-... -0y 7,). Then, let 0,11 = 7, - wy11, output all elements
that occur in 0,1, and go to Stage (z + 1).”

It is clear that this procedure is effective since M CLIM®-T X T-infers £. If this procedure
executes infinitely many stages, then ¢ = 0y - 01 - ... becomes a text for L;, because it is
containing all and only the elements of L;. However for this text ¢, the IIM M does not
converge. Hence, the assumption is contradicted. Thus there exists an m such that for all
Ths M(JO S Oy TE) = M(ao .. Op). Let £ = M(ao “ ...+ 0p). Consequently, we may
conclude that L; =, L(G/) as well as L; C L(G), since M is assumed to C'LIM®T X T-infer
£ with respect to G and in accordance with Lemma 2 it converges to supersets. Moreover, in
accordance with the definition of Procedure g we see that the set ); enumerated on input j

satisfies Q; = (09 - ... o) ™.

Next we prove that @; fulfills the Properties (1) through (3) of Definition 4. Obviously Q;
is finite and @; C L;, thus Properties (1) and (2) are satisfied. In order to prove Property (3)
assume any L' € range(L) that satisfies Q; C L' C L;. We have to show that L' =, L;. Let {
be any text for L'. Since Q; C L', we may directly conclude that o - ... -0, - is a text for L',
too. Furthermore, every initial segment £, of ¢ constitutes a finite sequence of elements from
L;, since L' C L;. Therefore, the construction of the finite sequence oy - ... - o, ensures that
the sequence (M ((0g - ... Om - 1)z))sen converges to £. Finally, since M CLIM®-T X T-infers
£ with respect to G, and since L' € range(L), we get L' =, L(Gy). Taking into account that
L' C L; C L(Gy) we can conclude that L'\ L; = 0 as well as a > |L(Gy)\ I'| > |L;\ I'|. Thus,
L' =, L; and Q; is an a-tell-tale for L;. This proves the theorem. O

Note that the above proof exploits a special property of the sequence og - ... - 0,,. This
property is usually referred to as locking sequence, and we shall extensively use it hereafter.
Therefore, we continue with a formal definition of it.

Definition 5. (Osherson, Stob and Weinstein [38]) Let M be an IIM and let L be a
language. Furthermore, let a € IN U {x}, and let G = (G;)jen be a class admissible hypothesis
space for {L} with respect to a. Then, a sequence o is called o locking sequence for L iff

(1) o is a finite sequence, and o™ C L,

(2) for all finite sequences T with 7* C L, M(o - 1) = M(0) and L(G m(s)) =a L-
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Note that within the demonstration of the latter theorem, we have implicitly reproved the
following fact. If £ is an indexed family that can be C'LI M*-T X T-inferred, then for all 7 € IN,
a locking sequence for L; is limiting recursive.

Now, we can completely characterize inference with anomalies. This is done with the
following proposition.

Proposition 6. Let a € INU {*} and £ = (L;)jen be an index family. Then the following
conditions are equivalent.

(i) There exists an effective procedure which, for every j € IN, uniformly enumerates an
a-tell-tale for L; with respect to L.

(ii) £L € PLIM®-TXT.
(iii) £ € CLIM*-TXT.

Proof. By Theorem 1, (i) implies (é7). The implication (i) — (i44) is clear by definition. By
Theorem 3, we have (i7i) — (7). O

The latter theorem immediately allows the following corollary.
Corollary 4. For alla € NU{x}, PLIM*-TXT = CLIM*-TXT.

Hence, in the following it suffices to deal exclusively with PLIM®*-TXT. We continue our
investigations by separating PLIM®TXT and PLIM"TXT for all a,b € IN, a # b.

Theorem 5. For all a € INT there exists an indexed family L, such that

L, € PLIM*TXT\ PLIM“*-TXT.

Proof. Let a € INT, we define the desired indexed family £, = (L;) e as follows. Set Ly = 37,
and let Ly, Lo, ... be the canonical enumeration of all languages obtained by removing just a
strings from Y. Obviously, £, € PLIM®TXT; one may simply take the IIM M that always
outputs 0. Now, suppose that £, € PLIM* -TXT. Then, by Proposition 6 every language
L € range(L,) must possess an (a — 1)-tell-tale with respect to £,. Consider any finite set
@ which satisfies Q@ C Ly = X*. Clearly, there exists a language L € range(L,) such that
Q CLC Lyand |L A Ly| = a, ie, L =, Ly but L #,_1 Lyg. This violates Property
(3) of Definition 4. Therefore Ly does not possess an (a — 1)-tell-tale with respect to £,, a
contradiction. O

Next we extend Theorem 5 to the a = * case.

Corollary 6.
\J PLIM*-TXT C PLIM*-TXT

acN

Proof. Let Lq,Ls,... be the indexed families defined above, and let £ be the canonical
enumeration of all the languages enumerated in the indexed families £q, Lo, .... Obviously
L € PLIM*-TXT. Suppose L € Uyewy PLIM®-TXT. Then there exists an a € IN such that
L € PLIM®TXT. However there exists no a-tell-tale for X% with respect to £. In fact,
for every finite set @ C X, there exists a language L € range(Lq11) C range(L) such that
@ C L C X*. This is a contradiction. Hence £ ¢ Uyeny PLIM®-TXT. O

11



With the next corollary we generalize a classical result of Gold [17]. Note that Case and
Lynes [11] obtained a similar generalization but provided a completely different proof for it.

Corollary 7. Let L be any super-finite indexed family, i.e., L involves all finite sets and at
least one infinite language L. Then L is not PLIM*-T XT-inferable.

Proof. Assume () C L is an arbitrary finite set. Since £ is super-finite, @) € range(L) and of
course @ C @ C L hold. However |L A Q| = oco. Therefore, no *-tell-tale for L exists. By
Theorem 6, £ is not PLIM*-T XT-inferable. O

Finally in this section we study the learning capabilities of absolute learning with anomalies.
Our next theorem shows that the requirement to learn absolutely considerably restricts the
learning power.

Proposition 7. Let a € IN. Then, ALIM*-TXT C PLIM*-TXT.

Proof. ALIM*-TXT C PLIM®TXT is clear by definition. Let £, = (L;);jen be the indexed
family defined in Theorem 5. Hence, we know that £, € PLIM*TXT. Next we show that
Lo & ALIM-TXT.

Let G be a hypothesis space such that £(G) = (Lj;1)jen. Note that X & range(L£(G)).
Obviously, G is an admissible hypothesis space for £,. Assume any IIM M that ALIM®-
T X T-infers £, with respect to G. Then there exists a locking sequence o for Ly = X*. In
particular, there has to be a 5 € IN such that

(A) for every finite sequence 7 with 77 C X%, j = M(0 - 7) = M(0), and L(G;) =, 7.

Note that by construction L(G;) has to be a language obtained by removing just a strings
from X*. However there exists a language L € range(L,) such that o™ C L C X1 and
|L A L(Gj)| = 2a. Hence M cannot CLIM“infer L from every text for it that contains o as
prefix, a contradiction. O

The proof of the latter theorem points to the following interesting problem. As we have
seen, for every a € INT there are indexed families £, class admissible hypothesis spaces G for
L with respect to a but no IIM can C'LIM®—infer £ with respect to G. Furthermore, the
example provided by Proposition 7 forces any IIM M to converge sometimes to hypotheses
that contain 2a anomalies. Hence, it is only natural to ask whether or not there is a universal
upper bound for the number of anomalies that are inevitable provided the given hypothesis
space is class admissible with respect to a. The answer is provided by our next theorem.

Theorem 8. For all a € IN we have:

Let L be an indexed family such that L € CLIM®-TXT. Then, for every class admissible
hypothesis space G for L with respect to a there exists an IIM M such that M CLIM?*-TXT -
learns L with respect to G.

Proof. (Sketch) Suppose an 1IM M witnesses £ € CLIM®TXT with respect to a hypothesis
space G. Without loss of generality, we may assume M and G satisfies conditions in lemma
2. Let G be arbitrary class admissible hypothesis for £ with respect to a. An IIM M works
as following: On input ¢,, simulate M and let G be a hypothesis an index of which is the last
guess of M. Search for the least index of a hypothesis G from G which satisfies | L(G)\ L(G)|+
[t7\ L(G)| < a (condition #) and, if any, output the index.

Next, we show that M CLIM2a—TXT—1earn§ L. Suppose a text ¢ for a language L €
range(L) is given. After sufficiently long time, G satisfies L =, L(G) and L C L(G) by the
assumption. Since G is class admissible for £ with respect to a, there exists G € range(G) such
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that L(G) =, L. Then, \L(G)\L(G)| +|L\ L(G)| < |L(G)\ L|+|L\ L(G)| = |L(G) A L| < a.
Hence, there exists a hypothesis which satisfies the condition # in the limit.

On the other hand, assume M converged to the index of a hypothesis G'. Then, it has to
hold that |L(G") \ L(G)| +|L\ L(G")| < a. Therefore |L A L(G")| = |L(G")\ L|+|L\ L(G")| <
IL(G)\ L(G)| + |L(G) \ L| + |L \ L(G")| < 2a. Hence, L =5, L(G"). M works correctly. This
completes the proof. O

We finish this section with the following figure that summarizes the results obtained.

Learning in dependence on the number of anomalies allowed

and on the hypothesis spaces admzissible

PLIMS-TXT c PLIM-TXT C --- C U PLIM®*TXT c PLIM*TXT
I H = ||
LIM-TXT c LIM-TXT C --- C U LIM-TXT < LIM*TXT
I || R ||
CLIM°-TXT c CLIM-TXT C --- C UC’LIM“-TXT Cc CLIM*TXT

a€IN
Figure 1

4 Inferability by a Team of IIMs from Text

In this section, we investigate the relation between inference allowing anomalies and team
inference. As we shall see, our results mainly resemble similar results obtained in the setting of
function learning instead those ones established in learning recursively enumerable languages.

We start our investigations by comparing the learning capabilities of teams of two IIMs
and learning with an arbitrarily but a prior: fixed number of allowed anomalies. The next
theorem shows that a team of two IIMs has sometimes more learning power than every 1IM
learning with anomalies.

Theorem 9. For alla € N, (1,2)PLIM-TXT \ PLIM*-TXT # 0.

Proof. Let L4411 = (Lj)jen be the indexed family defined in theorem 5. Define a team of two
ITMs M; and M, as follows: M; always outputs 0. The IIM M can be straightforwardly defined
to identify Ly, Lo, - - - from positive data. It is easy to see this team (1,2)PLIM-T X T-infers
Ls11. On the other hand, we already know L,1 ¢ PLIM®-TXT by theorem 5. O

Moreover, the next theorem shows that teams of size a+ 1 can be used to correct at most a
anomalies a single machine may make. Note that a similar result has been obtained by Daley
[13] in case of learning recursive functions.

Theorem 10. Let a € INT. Then,
PLIM®*-TXT C (1,a+1)PLIM-TXT.

Proof. (Sketch) Let M be any IIM witnessing £ € PLIM®-TXT. Without loss of general-
ity, we may assume that M converges to supersets (cf. Lemmasuperset). Construct a team
(My, My, ..., M,) of a+ 1 IIMs as follows:
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(i) My= M.

(ii) For every k = 1,2,...,a, we define an IIM M. On input t,, the values of My(t,) are
uniformly defined via the following Stage z.

Stage z: Let j, = M(t,) and let vy, vs, ..., vy be first k strings in L;, \ t] occurring in

the fixed enumeration of ¥*. Search for the least index j < z which satisfies Lgfc)
(Lj, \ {v1,va,...,v;})® by generating the lexicographically ordered informants of
lengths z + 1 of L; and L;,, respectively. If such a j is found, then output it, else

output z.

Suppose a text ¢ of language L € range(L) is input and that M converges to m. Then,
L, =, L and L C L,, holds. Let vy, vs, ..., v be all strings of L, \ L in the order occurring
in the enumeration of ©* (inevitably k£ < a). After sufficiently large stages, the first k strings
in L;, \ t7 become equal to vy, vs, ..., vy. Moreover, if z is sufficiently large, then the kth IIM
M, always outputs the first index of language L,, \ {vi, va, ..., vx} = L. O

Furthermore, the number a + 1 of team members used in the above theorem to correct a
anomalies cannot be decreased, as we shall show (cf. Theorem 12). In order to prove this, we
need a further generalization of the tell-tale concept which is provided by the next definition.

Definition 6. Let £ be an indexed family and L € range(L).

A set () is said to be a 0-depth tell-tale for L with respect to L if it satisfies the following
conditions:

(i) @ is finite,
(ii) Q@ C L, and
(iii) no L' € range(L) exists such that Q C L' C L .

(that is, Q) is an ordinary tell-tale set for L).

We proceed inductively. Let n > 1. Then a set () is said to be a n-depth tell-tale for L
with respect to L if it satisfies following conditions:

(i) Q is finite,
(ii) Q C L and

(iii) for all L € range(L), Q C L C L implies the existence of an (n — 1)-depth tell-tale for L
with respect to L.

Note that an n-depth tell-tale is a variation of n-bounded finite tell-tales introduced by
Mukouchi [37]. The next lemma describes a necessary condition for team inference from
positive data in terms of n-depth tell-tales.

Lemma 11. Let n € IN and let £ be any indexed family that is (1,n + 1)PLIM-TXT-
inferable. Then, for all L € range(L), there exists an n-depth tell-tale for L with respect to
L.

Proof. Since L € (1,n + 1)PLIM-TXT, there exists a team (Mg, My, ..., M,) of IIMs that
(1,n+ 1)PLIM-T XT—infers £. We continue with the proof of a technical claim that is very
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helpful in showing the existence of n-depth tell-tale. This claim describes that there exists a
“locking sequence” in case of team inference also.

Claim. Let L' € range(L) and let o be an arbitrary finite sequence which satisfies o™ C L'
Then, there exist a finite sequence 7 and k € {0,1,...,n} such that

(i) 7t C L', and

(ii) there exists j such that My(o-7-1) = j for every finite (maybe empty) sequence 9 with
Y+ C L and L' = L;.

Proof of Claim. Assume there does not exist a pair (7, k) which satisfies Conditions (i) and
(ii). Let wq,ws, - .. be a fixed effective enumeration of L'. We define finite sequences oy, o1, . . .
inductively as follows:

(a) gp = Wy

(b) (0-0¢-... 04, 1)" C L' by inductive definition of oy, ...,0, 1. Since the team infers L,
there exists 7 such that 7= C L' and
P(r) = {(k,7)l Mg(oc-0¢-01-...- 051 -7) = jand L; = L'} # 0. Note that
|P(7)| < n+1. Let (k1,71), - -, (kr, jr) be any enumeration of P(7). By the assumption,
a pair (g ... 0,1 -7, k1) does not satisfy (ii). Hence we may conclude that there is a
finite sequence v, such that ¢{ C L' and j; # My, (0 -0 01+ ... 04_1 -7 -11). Since a
pair (oq ... 0,_1 -7 -1, k1) does not satisfy (ii), there exists 1, such that 15 C L' and
Jo# My, (00001 ... 041711 -1s). By iterating this construction, we effectively
find a finite sequence 9 = 1y - 15 - ... - 1), which satisfies (i) ¥t C L' and (ii) M} outputs
another number than j between ¢ -0¢-...- 0,1 -7Tand c-0¢ ... -0,_1 -7 -7 for all
(k,j) € P(1). Let 0, = 7 - - w,.

t = o0g-o01-... constitutes a text for L'. However the team can not infer L' from ¢ by
construction (infinitely many mind changes occur). This is a contradiction. Here, the claim is
proved.

In order to finish the proof of the lemma, we have to show that every L € range(L) possesses
an n-depth tell-tale. Assume L does not have any n-depth tell-tale. Consider the following
(n + 1) stages.

Stage 0: By the claim, there exist a finite sequence 75 and ko < n such that 77 C L and My,
is locked to j, with L;, = L having 7y. Since L does not have any n-depth tell-tale, there
exists L' € range(L) which satisfies 77 C L' C L and L' does not have any (n—1)-depth
tell-tale.

Stage z (1 <z <n-—1): Since (g7 +...-7,_1)" C L*, by the claim there exist a finite
sequence 7, and k, < n such that 7t C L* and My, is locked to j, with L; = L® having
To*- .. Tg. Since L® does not have any (n—z)-depth tell-tale, there exists L**! € range(L)
which satisfies (15 +...-7,)" C L**! C L® and L**! does not have any (n — z — 1)-depth
tell-tale.

Stage n: Since (17971 - ... T,—1)T C L", by the claim there exist a finite sequence 7, and
k., < n such that 7,7 C L™ and My, is locked to j, with L; = L™ having 75 -...- .
Since L™ does not have any 0-depth tell-tale, there exists L™t € range(L£) which satisfies
(ro-...-m)T C Lt C L™
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In Stage n, L"*! € range(L) is defined. Let ¢ be a text for L"*!. Then, 75-...- 7, -t is also

a text for L"*'. However My,, My,, -, M, are locked to jg, 1, -, Jn Tespectively, having
To ... Tn. And by the construction, L"** C L; C L;, , C -+ C Lj,. That is, all IIMs are
locked to indices of languages which are not equal to L™*! having 7 - ... - 7,. Hence the team
cannot infer L™ from its text 7y - ... 7, - t, a contradiction. O

Theorem 12. Let a € INT. Then,

PLIM®TXT\ (1,a)PLIM-TXT # 0.

Proof. For all k € {0,1,...,a}, let £L*) be the canonical enumeration of all sets obtained by
removing just (a —k) strings from X. And let £ be the canonical enumeration of all languages
in the indexed families £, £V ... £@  Clearly, £L € PLIM*TXT.

Claim. Let k =1,...,a and L € range(£™®). Then, L does not have any (k—1)-depth tell-tale
with respect to L.

Proof of Claim. We prove this claim by induction.

Base step: Let L € range(L™Y)). For every finite set Q C L, there exists L' € range(L©)
such that Q C L' C L. Hence L does not have any 0-depth tell-tale.

Induction step: Let L € range(L**V). For every finite set Q C L, there exists L' €
range(L™®) such that Q C L' C L. From the induction hypothesis, L’ does not have
(k — 1)-depth tell-tale. Hence L does not have any k-depth tell-tale.

By mathematical induction, the claim was proved.

As we have seen by the claim made above =+ € range(£(*)) does not have an (a — 1)-depth
tell-tale. Thus, by lemma 11, £ is not (1,a) PLIM-T X T-inferable. O

Figure 1 illustrates the relations between inference with anomalies and team learning.
Note that every relation not explicitly mentioned indicates incomparability of the relevant
identification criteria.

Figure 1: a relation between two criteria

PLIMS-TXT = (1,1)PLIM-TXT

N N
PLIM*TXT C (1,2)PLIM-TXT
N N
PLIM*TXT < (1,3)PLIM-TXT
N N

PLIM*-TXT C (1,4)PLIM-TXT
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5 Conclusion

In the present paper, we mainly studied the learnability of indexed families from positive data
by IIMs that are allowed to converge to approximations as well as by teams. In particular,
two new infinite hierarchies have been established.

Moreover, within Definition 4 we introduced the notion of a-tell-tales, and succeed in
characterizing inference allowing anomalies. These results extend Angluin’s [1] Theorem to
the case of approximate inference. Furthermore, the characterization mentioned enabled us to
completely clarify the relation between proper learning, class preserving and class admissible
learning with anomalies. The proved equality generalized Lange and Zeugmann’s [30] relevant
result to approximate inference. Additionally, in the process of proving the characterization
theorem we found Lemma 2. This lemma describes an important property of anomaly allowing
inference, and it also plays an important role in clarifying the relationship between team
inference and approximative learning (cf. Theorem 10).

In order to investigate team inference, we introduced a notion of n-depth tell-tales, a
further generalization of Angluin’s [1] fundamental concept. However, the uniform recursive
enumerability of n-depth tell-tales could only be proved to be necessary for learning by a team
of n machines with success ratio 1/n. On the other hand, it remained open whether or not
this condition is sufficient, too.

Finally, concerning absolute learning several problems also remain open. Finding necessary
and sufficient conditions for absolute learning with anomalies is a challenge for further research.
Furthermore, we did not succeed in completely clarifying whether or not ALIM* C ALIM®*!
for all @ € IN.
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