Modeling Incremental Learning from Positive
Data

Steffen Lange* Thomas Zeugmann
HTWK Leipzig Research Institute of
FB Mathematik und Informatik Fundamental Information Science
PF 66 Kyushu University 33
04521 Leipzig, Germany Fukuoka 812, Japan
steffen@informatik.th-leipzig.de thomas@rifis.kyushu-u.ac.jp
Abstract

The present paper deals with a systematic study of incremental learning algo-
rithms. The general scenario is as follows. Let ¢ be any concept; then every infinite
sequence of elements exhausting ¢ is called positive presentation of c. An algorith-
mic learner successively takes as input one element of a positive presentation as well
as its previously made hypothesis at a time, and outputs a new hypothesis about
the target concept. The sequence of hypotheses has to converge to a hypothesis
correctly describing the concept to be learned, i.e., after some point, the learner
stabilizes to an accurate hypothesis. This basic scenario is referred to as iterative
learning.

We refine this scenario by formally defining and investigating bounded example
memory inference and feed-back identification. Bounded example memory and feed-
back learning generalizes iterative inference by allowing to store an a priori bounded
number of carefully chosen examples and asking whether or not a particular element
did already appear in the data provided so far, respectively.

Our results are manyfold. A sufficient condition for iterative learning is provided
that allows non-enumerative learning. We relate the learning power of our models
to one another, and establish an infinite hierarchy of bounded example memory
inference in dependence on the number of examples the learner is allowed to store.
These results nicely contrast previously made attempts to enlarge the learning ca-
pabilities of iterative learners (cf. [16]). In particular, these results provide strong
evidence that incremental learning is the art of knowing what to overlook. More-
over, feed-back learning is more powerful than iterative inference, and its learning
power is incomparable to that of bounded example memory inference. Hence, there
is no unique way to design superior incremental learning algorithms.

Key words: Algorithmic Learning Theory, Computational issues in A.l., Formal language
learning

*This work has been supported by the Japanese International Information Science Foundation under

Grant No. 94.3.3.543

1. Introduction

One of the main topics in cognitive science, epistemology, linguistic and psycholin-
guistic theory as well as of machine learning and algorithmic learning theory is language
acquisition. The human ability to acquire their mother tongue as well as other languages
has attracted a huge amount of interest in all these scientific disciplines. In particu-
lar, the main goal of the research undertaken is to gain a better understanding of what
learning really is. Human language learning can be also considered as a an important
example of incremental learning. However, the human ability to learn is by no means
restricted to languages. Therefore, we consider in the present paper general systems that
map evidence on a concept into hypotheses about it. We deal with scenarios in which
the sequence of hypotheses stabilizes to an accurate and finite description of the target
concept. Consequently, after having seen only finitely many data of the possibly infinite
target, the algorithmic device performing the mapping of the data to hypotheses reaches
its (generally unknown) point of convergence to a correct and finite description of the
target concept. Clearly, then some form of learning must have taken place. Formalizing
the notions “evidence,” “stabilization,” and “accuracy” results in the model of learning
in the limit introduced by Gold [7]. During the last three decades much has been learned
about the classes of formal languages and partial recursive functions that can successfully
learned within Gold’s [7] model and variations thereof (cf., e.g., [16, 21, 22, 27]). We
continue along these lines of research, i.e., we study learning in the limit, too. In partic-
ular, we aim to investigate the principal learning capabilities of learners which perform
incremental learning.

For the purpose of motivation and discussion of our research, we introduce some no-
tations. A positive presentation of a concept ¢ is an infinite sequence of elements that
eventually exhausts all and only the elements of ¢. An algorithmic learner, henceforth
called inductive inference machine (abbr. IIM), takes as input initial segments of a posi-
tive presentation, and outputs, from time to time, a hypothesis about the target concept.
The set H of all admissible hypotheses is called hypothesis space. Furthermore, the se-
quence of hypotheses has to converge to a hypothesis correctly describing the concept to
be learned, i.e., after some point, the IIM stabilizes to an accurate hypothesis. If there is
an IIM that learns a concept ¢ from all positive presentations for it, then ¢ is said to be
learnable in the limit with respect to the hypothesis space H (cf. Definition 1).

However, this model makes the somehow unrealistic assumption that the learner has
access to the whole initial segment of a positive presentation provided so far. Clearly, each
practical learning system has to deal with the limitations of space. Therefore, we formally
define and investigate variations of the general approach described above that restrict
the accessibility of input data. In particular, we deal with ¢terative learning, bounded
example memory inference, and feed-back identification (cf. Definitions 3, 4, 5). All these
models formalize incremental learning, a topic attracting more and more attention in the
machine learning community (cf., e.g. [5, 19]). An iterative learner is required to produce
its actual guesses exclusively from its previous one and the next element in the positive
presentation. Results concerning this learning model can be found in [6, 10, 11, 16, 17,
22, 23, 27]. Osherson et al. [16] also considered the variant that the learners has access to

the last k elements, where k is a priori fixed. Interestingly enough, the latter approach

does not increase the learning power. Alternatively, we study learners that are allowed
to store k carefully chosen examples, where k is again a priori fixed (bounded example
memory inference). Now, we obtain an infinite hierarchy of more and more powerful
learners (cf. Theorem 6). This result provides strong evidence that learning is the art of
knowing what to overlook. A similar approach has been undertaken by Ameur [1] who
refined Angluin’s [3] on-line learning model.

Finally, we study feed-back identification. In this setting, the iterative learner is ad-
ditionally allowed to ask whether or not a particular element did already appear in the
data provided so far. Again, the learning power considerably increases but the supple-
mentary learning power is incomparable to those of bounded example memory inference.
The latter result provides strong evidence that there is no unique way to design superior
space efficient inference procedures.

2. Formalizing Incremental Learning

By IN = {0,1,2,...} we denote the set of all natural numbers. We set IN* = IN'\ {0}.
Let o, ¢1, @a,-... denote any fixed programming system of all (and only all) partial re-
cursive functions over IN, and let @y, ®;, ®,,... be any associated complexity measure

(cf. Machtey and Young [15]).

By (.,.) : N x IN — IN we denote Cantor’s pairing function. Moreover, we use
71 and 7, to denote the projection functions over IN x IN to the first and second
component, respectively. That is, 7 (z,y) = @ and my(z,y) = y for all z,y € IN.

Any discrete set X is called a learning domain. By p(X) we denote the power set
of X. Let C C @(X), and let ¢ € C; then we refer to C and ¢ as to a concept class
and a concept, respectively. Let ¢ be a concept, and let ¢ = xq, 21, 2,,... an infinite
sequence of elements from ¢ such that range(t) = {zx| £ € IN} = ¢. Then ¢ is said to be
a posttive presentation or, synonymously, a text for c. By pos(c) we denote the set of
all positive presentations of ¢. Moreover, let ¢ be a positive presentation, and let y be a
number. Then, ¢, denotes the initial segment of ¢ of length y 41, and t; =g {z| £ <y}
Furthermore, let ¢ = z,...,z, be any finite sequence. Then we use |o| to denote the
length of . Additionally, we use o -t to denote the positive presentation obtained by
concatenating o and ¢ provided ot C range(t).

In the sequel we deal with the learnability of indexable concept classes with uniformly
decidable membership defined as follows (cf. Angluin [2]). A class of non-empty concepts
C is said to be an tndexable class with uniformly decidable membership provided there
are an effective enumeration ¢, ¢, ¢, ... of all and only the concepts in C and a recursive
function f such that for all § € IN and all elements x € X’ we have

. 1, if z€e¢;,
f(J,fc)Z{)

0, otherwise.

In the following we refer to indexable classes with uniformly decidable membership
as to indexable classes for short. Next, we describe some well-known examples of index-
able classes. First, let ¥ denote any fixed finite alphabet of symbols, and let ¥* be the
free monoid over X. We set ¥+ = ¥* \ {¢}, where ¢ denotes the empty string. Then
X = Y¥* serves as the learning domain. As usual, we refer to subsets L. C ¥* as to lan-
guages (instead of concepts). Then, the set of all context sensitive languages, context free

languages, regular languages, and of all pattern languages, respectively, form indexable

classes (cf.]9, 2]).

Next, let X,, = {0,1}" be the set of all n-bit Boolean vectors. We consider X' =
U,>1 X» as learning domain. Then, the set of all concepts expressible as a monomial, a

k-CNF, a k-DNF, and a k-decision list form indexable classes (cf. [20, 18]).

As in Gold [7] we define an inductive tnference machine (abbr. IIM) to be an
algorithmic device which works as follows: The 1IM takes as its input larger and larger
initial segments of a positive presentation ¢ and it either requests the next input element,
or it first outputs a hypothesis, i.e., a number encoding a certain computer program, and
then it requests the next input element.

The indices output by an IIM are interpreted with respect to a suitably chosen hy-
pothesis space H. Since we exclusively deal with indexable classes C we always take as
a hypothesis space an indexable class H = (h;);en. Note that the indices are regarded
as suitable finite encodings of the concepts described by the hypotheses. When an IIM
outputs a number j, we interpret it to mean that the machine is hypothesizing h;. Note
that H must be defined over some learning domain Z comprising the learning domain X’
over which C is defined, and, moreover, H must comprise the target concept class C. We
say that a hypothesis h € H describes a concept c € Ciff c=h,ie,forallz€ Z, 2 € h
if and only if z € c.

Let t be a positive presentation, and let y € IN. Then we use M(t,) to denote the last
hypothesis produced by M when successively fed ¢,. The sequence (M (%,))yen is said to
converge in the limit to the number j if and only if either (M(¢,)),en is infinite and
all but finitely many terms of it are equal to j, or (M(t,)),en is non-empty and finite,
and its last term is j. Now we define some models of learning. We start with learning in
the limit.

Definition 1 (Gold [7]). Let C be an indexable class, let ¢ be a concept, and let
H = (hj)jew be a hypothesis space. An IIM M LIM-identifies ¢ from positive
data with respect to H iff for every positive presentation t for c, there exists a j € IN
such that the sequence (M(t,))yen converges in the limit to j and ¢ = h;.

Furthermore, M LIM —identifies C with respect to H ff, for each ¢ € C, M LIM-
identifies ¢ from positive data with respect to H.

Finally, let LIM denote the collection of all indexable classes C for which there are an
M M and a hypothesis space H such that M LIM-identifies C with respect to 'H.

In the above definition LIM stands for “limit.” Suppose, an I[IM identifies some con-
cept ¢. That means, after having seen only finitely many data of ¢ the IIM reached its
(unknown) point of convergence and it computed a correct and finite description of the
target concept. Hence, some form of learning must have taken place. Therefore, we use
the terms infer and learn as synonyms for identify.

Within the next definition we consider the restriction that the IIM is never allowed to
output hypotheses describing proper supersets of the target concept. Inductive inference
machines behaving thus are called conservative.

Definition 2 (Angluin [2]). Let C be an indexable class, let ¢ be a concept, and let
H = (hj);en be a hypothesis space. An IIM M CONS V—identifies ¢ from positive
data with respect to H iff

(1) M LIM—identifies ¢ from positive data with respect to H,
(2) for every positive presentation t for ¢ and for all y,k € IN, if M(t,) # M(t,4x) then
by € harge,).
Finallyy, M CONSV-identifies C with respect to H iff, for each ¢ € C, M CONSV-
identifies ¢ from positive data with respect to H.

By CONSV we denote the collection of all indexable classes C for which there are an ITM
M and a hypothesis space H such that M CONSV-identifies C with respect to H.

Looking at the above definitions, we see that an IIM M has always access to the whole
history of the learning process, i.e., in order to compute its actual guess M is fed all
examples seen so far. In contrast to that, next we define sterative IIMs and a natural
generalization of them called bounded example memory ITMs. An iterative 1IM is
only allowed to use its last guess and the next element in the positive presentation of
the target concept for computing its actual guess. Conceptionally, an iterative IIM M
defines a sequence (M,),en of machines each of which takes as its input the output of its
predecessor. Hence, the IIM M has always to produce a hypothesis.

Definition 3 (Wiehagen [23]). Let C be an indezable class, let ¢ be a concept, and
let H = (hj)jen be a hypothesis space. An IIM M IT-identifies ¢ from positive
data with respect to M iff for every positive presentation t = (x;)jen the following
conditions are satisfied:

(1) for all n € IN, M,(t) is defined, where My(t) =4 M(zo) and for all n > 0:
Mo (t) =ap M(M (1), Tn11),
(2) the sequence (M, (t))nen converges in the limit to a number j such that ¢ = h;.

Finally, M IT—identifies C with respect to 'H iff, for each ¢ € C, M IT—-identifies ¢ with
respect to H.

The resulting learning type IT is analogously defined as above.

In the latter definition M, (¢) denotes the last, i.e., (n + 1)st hypothesis output by M
when successively fed the positive presentation t. Since M has to output a hypothesis in
each learning step, it is justified to make the following convention. Let ¢ = zy,...,z, be
any finite sequence of elements over the relevant learning domain. Moreover, let C be any
concept class over X', and let M be any IIM that iteratively learns C. Then we denote
by M, (o) the last hypothesis output by M when successively fed o provided y < n, and
there exists a concept ¢ € C with o7 C ¢. We adopt this convention to the learning types

defined below.

Within the following definition we consider a natural relaxation of iterative learning
which we call bounded example memory inference. Now, an IIM M is allowed to memorize
an a priori bounded number of the examples it already has had access to during the
learning process. Again, M defines a sequence (M,),en of machines each of which takes
as input the output of its predecessor. Consequently, a bounded example memory IIM
has to output a hypothesis as well as a subset of the set of examples seen so far.

Definition 4. Let k € INU {x}, let C be an indexable class, let ¢ be a concept, and let
H = (h;);en be a hypothesis space. An IITM M BEM),—identifies ¢ from positive
data with respect to M iff for every positive presentation t = (x;);ew the following
conditions are satisfied:

(1) for alln € IN, M, () is defined, where Mo(t) =45 M(20) = (jo, So) such that Sy C &
and card(Sy) < k, and for all n > 0: M,11(t) =4 M(M,(t), Zns1) = (Jnt1, Snt1)
such that S,41 € S, U{@nq1} and card(S,4q1) < K,

(Note that k = * means at most finitely many.)

(2) the sequence (71 (Jn, Sn))new of M’s guesses converges in the limit to a number j
such that ¢ = h;.

Finally, M BEM j—identifies C with respect to H iff, for each ¢ € C, M BEM —identifies
¢ with respect to H.

For every k£ € IN, the resulting learning type BEM,, is analogously defined as above.
By definition, IT = BEM as well as BEM, = LIM.

Finally, we define learning by feed-back IIMs. The idea of feed-back learning goes
back to Wiehagen [23] who considered it in the setting of inductive inference of recursive
functions. However, his definition cannot be directly applied to learning from positive
data. Informally, a feed-back IIM M is an iterative IIM that is additionally allowed to
ask a particular type of questions. In each learning Stage n+1 M has access to the actual
input x,41, and its previous guess j,. However, M is additionally allowed to compute a
query from z,,; and j,. The query concerns the history of the learning process. That
is, an element z and a “YES/NO” answer A are computed such that A = 1 iff z € ¢
and A = 0, otherwise. Intuitively, M can just ask whether or not a particular string has
already been presented in previous learning stages.

Definition 5. Let C be an indexzable class, let ¢ be a concept, and let H = (h;)jen be
a hypothesis space. Moreover, let Q: X x N — X', and A: X — {0,1} be computable total
mappings.

An IIM M FB-identifies ¢ from positive data with respect to H iff for every
positive presentation t = (x;);en the following conditions are satisfied:

(1) for all n € IN, M,(t) is defined, where My(t) =4 M(z¢) and for all n > 0:
M (1) =gy MO (8), AQU(2), 2041)): Z0r)

(2) the sequence (M,(1)).en converges in the limit to a number j such that ¢ = h
provided that A truthfully answers the questions computed by ().

Finally, M FB—identifies C with respect to H iff there are computable mappings Q) and A
as described above such that, for each ¢ € C, M FB-identifies ¢ with respect to H.

3. Results

In this section we relate the learning power of all the models introduced to one an-
other. In particular, we deal with the limitations of all models of incremental learning by
comparing their learning power with conservative inference. Moreover, we provide results
showing that rich concepts classes are incrementally learnable.

3.1. On the Limitations of Incremental Learning

All the models of incremental learning introduced above pose serious restrictions to the
accessibility of data provided during the learning process. Therefore, one might readily
expect a certain loss of learning power, i.e., IT C LIM, FB C LIM as well as BEM C
LIM for all £ € IN. As far as iterative learning is concerned, this has been rigorously

6

proved in Lange and Zeugmann [11]. Hence, the more interesting question is how much
learning power is actually lost. Answering this question, we have to take into account
that learnability has been defined with respect to suitably chosen hypothesis spaces. As
pointed out in Lange and Zeugmann [12], conservative learning is sensitive with respect
to the set of allowed hypothesis spaces and so is iterative learning (cf. [27]). Therefore, it
is appropriate to illustrate this dependence which is done by our next theorem.

Theorem 1. There are an indexable class C and a hypothesis space H for it such that
(1) C is iteratively learnable with respect to H, and

(2) no conservative IIM can infer C with respect to H.

Proof. We define the desired indexable class C via the following enumeration of lan-
guages L = (L jy)rjen. Without loss of generality, we may assume that ®(k) > 1 for
all k € IN. Now, let k,j7 € IN; we distinguish the following cases.

Case 1. = (k) <
Then, we set L,y = {a*b'a™| {,m € Nt}
Case 2. Op(k) <j
Set d =3 — (k) + 1.
Subcase 2.1. d < Oy(k)
Let L,y = {a*ba™| 1 < <d, m e Nt}
Subcase 2.2. d > Oy (k)
Now, set Lty = L 0)-
Since the predicate ‘®;(z) < y’ is recursive in 7, y, and z, membership is uniformly decid-

able with respect to the enumeration £ = (L jy)rjew. We set C = range(L), and take £
as the desired hypothesis space H.

Claim 1. There is an iterative [IM M learning C with respect to L.

We define an iterative [IM M which infers C with respect to the hypothesis space L.
Let L € C and let t = (s;);ew € pos(L). The IIM M is defined in stages, where Stage n
conceptually describes M,.

Stage 0. M receives as input so.
Determine the unique & € IN such that so = a*b’a™ for some ¢, m € INT. Set
Jo = (k,0), output jo, and goto Stage 1.
Stage n, n > 1. M receives as input j,_; and the (n + 1)st element s, of ¢.
Determine the k, ¢, m € IN such that s, = a*b’a™.
Case 1. j,_1 = (k,0)
Test whether or not ®4(k) < m. In case it is, set j, = (k, ®x(k)). Otherwise, set
Jn = Jn-1.
Case 2. j,_1 = (k,z) for some z € INT
Determine y = ®,(k). Test whether or not s, = akbla™ € Lz In case it is, set
Jn = Jn—1. Otherwise, set j, = (k,y +(—1).
Output j,, and goto Stage n + 1.

By construction, M is an iterative [IM. We have to show that M infers C. Let k,z € IN,
let L = L.y, and let ¢ € pos(L). If ®;(k) is undefined, then M outputs in every stage
the guess (k,0). By definition, L.y = L) for all 2 € IN, and thus, L = L).

Now assume ®i(k) to be defined. Hence there is a y such that ®,(k) = y. By
C’s definition, L in particular contains all strings s of form a*ba™ with m > y. Since
t € pos(L), M eventually receives a string s = a*ba™, m > y, and verifies ®y(k) < m.
Consequently, it rejects its initial guess (k,0) and changes its mind to (k,y). Afterwards,
M has to distinguish between finitely many possible candidate hypotheses for L, since
L = L y4ry for somer € IN with r < y. By definition, each of these candidate hypotheses
is uniquely characterized by infinitely many strings of form a*6"*'a™. Thus, if M’s actual
guess is still incorrect then M eventually receives one of those strings and changes its
mind to a correct guess for L. By construction, M repeats this guess in every subsequent
stage. Hence, M learns L and Claim 1 is proved.

Claim 2. No conservative IIM learns C with respect to L.

Adapting the proof technique developed in Lange and Zeugmann [12], Claim 2 follows
by reducing the halting problem to C € CONSV with respect to the hypothesis space L.
We omit the details. O

The latter result points to a particular strength of iterative IIMs. That is, iterative
learning is not requested to realize the subset principle (cf. [21]). Moreover, the proof of
the latter theorem shows that redundancy in the hypothesis space may lead to a serious
increase in the learning power of iterative [IMs. Since [T C FB as well as IT C BEM}
for all £ € IN, the latter remarks apply to feed-back inference and bounded example
memory identification, too. Consequently, one might be tempted to conjecture that even
IT\ CONSV # {. This has also been claimed in Zeugmann and Lange [27] (cf. Theorem
19, Assertion (3)). However, the proof given there is erroneous, and the stated conjecture
is definitely false. Having the freedom to take a rich enough suitably chosen hypothesis
space does really change the whole picture.

As it turned out, for proving IT C CONSV, FB C CONSV, and BEM; C CONSV,
it is conceptually simpler to use the characterization of conservative learning equating
it with set-driven inference (cf. Lange and Zeugmann [13]). Set-drivenness describes the
requirement that the output of an IIM is only allowed to depend on the range of its input.

Definition 6 (Wexler and Culicover, Sec. 2.2, [22]). Let C be an indexable class.
An IIM s said to be set-driven with respect to C iff its output depends only on the
range of its input; that is, iff M(t,) =]W(fy) for all x,y € IN, all positive presentations
= U.ec pos(c) provided tf = f;'

Whenever the relevant indexable class C is clear from the context we refer to set-
driven with respect to C as set-driven for short. By s-LIM we denote the collection of
all indexable classes that are LIM—-inferable by some set-driven IIM. Moreover, whenever
dealing with set-driven IIMs it is conceptionally advantageous to define or describe them
in dependence on the relevant set obtained as input instead of the initial segments of a
positive presentation usually fed an TIM.

The next proposition completely characterizes the learning capabilities of set-driven

learners (cf. [13]).

Proposition 1. s-LIM = CONSV.
Next, we show that every feed-back learner can be simulated by a set-driven 1IM.
Theorem 2. F'B C s-LIM

Proof. Let X be the relevant learning domain over which C is defined, and assume
C € FB. Then there are an I[IM M and a hypothesis space H = (h;);en such that M
witnesses the feed-back learnability of C with respect to H. For proving C € s-LIM, first
we construct a suitable hypothesis space H = (h)jen. Let F = Fy, Fi, F,, ... denote any
repetition free enumeration of all finite subsets of X'. Furthermore, we assume an effective
procedure computing for every finite set F' C X' its uniquely determined index #(F') in
F. Now we define

. hi, if 7 is even,
h; = g
! Fia, if jis odd.

Moreover, for every non-empty finite set 7' C & we define rf(T') = so, 81, - - ; Scard(T)-1
to be the repetition free enumeration of all the elements of 7' in lexicographical order. By
{(T') we denote the lexicographically largest element of T'. Finally, let o¢, 01,03, ... be any
effective enumeration of all finite sequences of elements from X'. The desired set-driven
IIM M takes as its inputs finite sets 7', and is defined as follows:

IIM M: “On input T do the following:
Test for all k < card(T') whether or not off C T. For all k successively passing this
test check whether or not the following condition is fulfilled for all F* C T

Mgy \(ok) = Mioteara(r)(0k - 1f (F)) = Mioy yeara(ry41 (o - of (F) - ((F)).

If there exists a k passing this test, too, then choose the minimal one, compute
J = Mg, |(o%), output 27, and request the next input.

Otherwise, output 2#(7') + 1, and request the next input.”

By construction, M is set-driven und outputs in each learning step a hypothesis. It
remains to show that A infers C. Let ¢ € C, and let ¢t € pos(c). We distinguish the
following cases.

Clase 1. ¢ is finite.

Then, there exists an n € IN such that t+ = ¢. Thus, it suffices to show that ¢ = hM()-

In case M outputs 2#(c)+1, we are done. Otherwise, M has found a finite sequence o with
ot C ¢ that in particular fulfills M|,(0) = Misj4m(0 - 7f(c)) = Miojymar(0 - 7f(c) - £(c)),
where m = card(c). Hence, M computes j = Ms (o) and outputs 2j. Since 712j = h;,
it suffices to show ¢ = h;. Obviously, { = o - rf(c) - £(c), l(¢),. .. constitutes a positive
presentation for c. We know that j = Mjsjym(o-7f(c)) = My 3my1(a-rf(c)-£(c)). Now, let
Q(7,4(c)) be the query computed by M in Stage |o|+ m + 1. By construction, this query
equals the query computed in Stage |o| + m + 2. Since M has already seen all elements
belonging to ¢, it must receive in both stages the same answer. But this implies that M
computes in every subsequent stage the query Q(j,/(c)), too, thereby always receiving
the same answer. Consequently, (M, (f))nen converges to j. Since M FB-learns ¢, we

have ¢ = h;.

Case 2. ¢ is infinite.

Since M has to learn ¢ from every positive presentation for it, there exists a sequence
o for ¢ such that

Mo ((0) = Mo jrcara(ry (o - 1 (F)) = Migtcara(rya (o - 7f (F) - €(F)) (1)

for all subsets F' C ¢. In particular, every locking sequence must fulfil Condition (1)
(cf. [16]). For proving M’s correctness, we fix the sequence o satisfying (1) that is first
enumerated, i.e., let ¢ = 0,,,, and for all o,, 2 < mg, with ¢ C ¢ we have o, does not
fulfil (1).

Let t¢ be the lexicographically ordered positive presentation of ¢. Then t§ = rf(t57F)
for all n € IN. Consequently, j = M, |(0) = Mj;j4nq1(0 - 1) for all n € IN. Thus M
converges to j when fed o -t°. Moreover, h; = ¢, since M FB-infers c¢. Now, it suffices
to show that A converges to 2j. Let t € pos(c) be arbitrarily fixed, and let ny be the
least index n such that ot C ¢}, and let m = max{ng, mo}. Hence, on every input ¢},
r € IN, M finds at least one k fulfilling the tests described. Moreover, since ,,, is the
first enumerated sequence for ¢ satisfying (1), for every other sequence o, z < mg, there
must be a finite set F' C ¢ such that

M. ((02) = Mjo.|tcara(F) (02 - 7f (F)) = Mio | 4cara(p)+1(0= - vf (F) - L(F))

is not fulfilled. Consequently, M converges to 2M|,|(0) = 27, and we are done. a

The proof technique developed above is also powerful enough to establish the analogous
result for bounded example memory inference. This is done in the next theorem.

Theorem 3. BEM,, C s-LIM for all m € IN.

Proof. We use the same notations as in the proof of Theorem 2. In particular, the
desired hypothesis space H is defined as above. Now, let m € IN be arbitrarily fixed. The
desired set-driven TIM M is essentially defined as in the proof of Theorem 2. However,
we have to modify it appropriately to handle the information contained in the example
memory. The IIM M takes as its inputs finite sets 7', and is defined as follows:

IIM M: “On input T do the following:
Test for all k£ < card(T) whether or not o C T. For all k successively passing this
test check whether or not the following condition is fulfilled for all F* C T'.

T (Miy(0r)) = (Mo prearagry(ok - 1f (F)))
= T1(Mo |4cara(Fy+1(0n - f (F) - L(F)))
= ... =m(Mioppcard(F)r2mtr (o - of (F) - L(F) - ... - ((F)))

(2m+1) times

If there exists a k passing this test, too, then choose the minimal one, compute
J =7 (Ms,(or)), output 27, and request the next input.
Otherwise, output 2#(7') + 1, and request the next input.”

10

By construction, M is set-driven und outputs in each learning step a hypothesis. It
remains to show that A infers C. Let ¢ € C, and let ¢t € pos(c). We distinguish the
following cases.

Clase 1. ¢ is finite.

A

Then, there exists an n € IN such that ¢ = ¢. Thus, it suffices to show that ¢ = h]\?[(c)-

In case M outputs 2#(c) 4+ 1, we are done. Otherwise, M has found a finite sequence o
with ot C ¢ that in particular fulfills

w1 (M(0)) = 1 Miaa(o - 1(0))) = 71 (Migprasa (0 - 17 (c) - €(c)))

= - = Wl(ﬂ’fla|+z+2m+1(0' -1f(c) -((c)27n"'1))7

where z = card(c). Hence, M computes j = 71(M))(0)) and outputs 25. Since ing = hj,
it suffices to show ¢ = h;. Obviously, { = o - rf(c) - £(c),l(¢),. .. constitutes a positive
presentation for ¢. We know that

j =M (Migipalo - 17(0)) = m(Migpyasa(o - 1/(e) - £(0)))
= o = Mo 1f(0) - (™)) (2)

We claim that j = 7"1(]‘4|a|+z+271+r(0 - 1f(c) - {(c)*™*7)) for all r > 1. Having this claim,
we know that M converges on ¢, and we are done.

Clearly, M can change its hypothesis only in case it computes and outputs a set S
not yet tested. Let Siy12, Sioj4z41s - - - Oloj+e42m+1 De the sets output in Stage |o| + 2,
lo|+2z+1, ..., |o|+ 24+ 2m+1, respectively. By definition of BEM,, we have Si5|4,qu41 C
Sloltz4u U {l(c)} for all p = 0,...,2m. Consequently, if M once excludes an element
s # [(c) from the set received as actual input, it cannot include this element again.
It may, however, include /(c) and exclude it afterwards. Nevertheless, if there are two
sets, say Sio|4z4r and Sigyz4r, such that Sipoqr, = Sjoi429r, and ry # ry, then M will
produce a periodic sequence of sets, and Equation 2 implies that the first components of
all hypotheses output afterwards are equal, too. Now, it suffices to argue that this event
must happen. Since card(S|,4+.) < m, M can exclude at most m elements from the set
S|o|+- output in Stage |o| + 2. Additionally, whenever an element is excluded, it may
include {(c), and it may exclude ¢(c). Hence, the longest sequence of pairwise non-equal
sets has length 2m 4 1. Finally, since the last element of rf(c) equals {(c), the IIM M has
tested a sequence of length m + 2, and hence it must have found a period.

Case 2. ¢ is infinite.

Since M has to learn ¢ from every positive presentation for it, there exists a sequence
o for ¢ such that

T(Mp|(0)) = m(Mjgppeara(r)(- 1 (F))) = 71 (Mio|gcara(rya (0 - of (F) - £(F)))
= ... = T(Mppjeaapys2mer (0 - 1if (F) - ((F)*7) (3)
for all subsets F' C c. In particular, every locking sequence must fulfil Condition (3)
(cf. [16]). For proving M’s correctness, we fix the sequence o satisfying (3) that is first

enumerated, i.e., let ¢ = a,,, and for all 0., 2 < ro, with ¢} C ¢ we have that o, does not

fulfil Condition (3).

11

Let t° be the lexicographically ordered positive presentation of c¢. Then t5 = rf(t5F)
for all n € IN. Consequently, j = 7(M,(0)) = 71 (Ms3n41(0 - £;)) for all n € IN. Thus
M converges to j when fed o - t°. Moreover, h; = ¢, since M BEM ,,~infers c. Now, it
suffices to show that A converges to 2j. Let t € pos(c) be arbitrarily fixed, let ng be the
least index n such that o™ C t}, and let r = max{ng, ro}. Therefore, on every input tr+p,
p € N, M finds at least one k fulfilling the tests described. Moreover, since o, is the first
enumerated sequence for ¢ satisfying (3), for every other sequence o,, z < rq, there must
be a finite set ' C ¢ such that

1 (Mig(0)) = m1(Misitcara(ry(o - 7f (F))) = 71 (Mo jpcara(rys1 (0 - of (F) - £(F)))
= = 1 (M ppeara(Frazman (0 - o (F) - 0(F)?™+1Y)

is not fulfilled. Consequently, M converges to 2M|,|(o) = 27, and we are done. a

The latter theorems immediately allow the corollary that every iterative IIM can be
simulated by a set-driven IIM, too. Nevertheless, we present a separate proof for it, since
the construction considerably simplifies. Note that Kinber and Stephan [6] also proved
this result in the setting of learning recursively enumerable languages.

Corollary 4. IT C s-LIM

Proof. We use the same notations as in the proof of Theorem 2. Then, the desired
set-driven IIM M takes as its inputs finite sets 7', and is defined as follows:

IIM M: “On input T do the following: Compute rf(T'), and (7). Check whether or

not Mca.rd(T (Tf()) =]\Jca.rd(T)(rf(T) . E(T))
If it is, output 2Mearaqry—1(7f (7)), and request the next input.
Otherwise, output 2#(7') + 1, and request the next input.”

By definition, M is set-driven. It remains to show that M LIM-infers C with respect
to H. Let c € C, and let € pos(c). We distinguish the following cases.

Case 1. ¢ is finite.

If AAI() = 2#(c) + 1 we are done by construction. Otherwise, M uq(c)—1(7f(c)) =

Meara(e)(rf(T') - £(c)). Let j = Mcara(e)-1(7f(c)); then rewriting Meara(e)(7f(c) - {(c)) yields

Meazae) (1f (¢) - £(e)) = M(5,4(c)) = M(j,{(c)) = Meara(e)41(n/ (T) {(c)). Hence, M
converges on the positive presentation rf(c) - {(c)> € pos(c). Since M learns ¢, we are
again done.

Case 2. ¢ is infinite.

Let t¢© = wg, wy, wq, ... be the lexicographically ordered positive presentation of c.
Since M iteratively learns ¢ from ¢°, there exists an ng € IN such that A, (¢°) = M, (t°) for
all n > ng. Therefore, we may conclude that M,,11(t5 -w) = M, (t°) for all w € ¢\ 7%+,
For seeing this, let ng + z be the uniquely determined index of w in t° i.e., w = Wy, 2.
Letting j = M, (t°) we have

5= Mays1(t°) = MG, Wngs1) = . = M, Wngs) = Mg (£°).

Consequently, there is an initial segment o = {; of the lexicographically ordered positive
presentation of ¢ on which M is locked provided this segment is extended with elements

12

w € ¢\ t%d*"'. Since M learns ¢ from t° we know that ¢ = h; = izgj. Finally, since
t € pos(c) there exists an index mq such that ¢t C t} . Thus, o is a prefix of rf(},),

and hence]\Af(tj);) = 27 for all m > mq.]

We finish this subsection by proving the following upper bound for the learning capa-
bilities of iterative learning, feed-back inference, and bounded example memory identifi-
cation.

Theorem 5.

(1) IT Cc CONSYV,
(2) FB C CONSV,

(3) Y BEM, c CONSV.

Proof. Since IT C FB as well IT C BEM,, for every k € IN, Assertion (1) directly
follows from (2) or (3). Furthermore, by Theorems 2 and 3 as well as Corollary 4 we obtain
from Proposition 1 the containment of FB, BEM and IT in CONSV, respectively. Thus,
it suffices to prove that the stated inclusions are proper.

Claim 1. CONSV \ FB # 0.

Let L = {a}*, and for all j, k € Nlet L;z = {a™| 1 <m < j+ 1} U{b+ g/ T+,
Let Crp and 'H be the collection and canonical enumeration of all the languages L;; and
L, respectively. One straightforwardly verifies Crg € CONSV with respect to H.

Next, we show Crg € FB. Suppose there is an I[IM M which FB-learns Cpg. Let
o = Sg, ..., S, be a locking sequence for L = {a}* (cf. [16]). Furthermore, let m =
maz{z| a* € o}, and let j, = M,(o). Thus, when fed any finite extension of o with
strings from L, M repeats its guess j,.

Now we select two different finite languages L and L from Crg and show that M fails
to learn at least one of them. Let L = {a*| 1 < z < m}U{b™}, and consider M’s behavior
when successively fed the following text £ € pos(f)). Lett=0-a, ..., a™, b"™
Since M learns L from t, there is a z > n+m+ 1 such that M, after processing the initial
segment 7, does not perform any further mind change. By definition, £y+1 = fy, -a for all
y > z. Consequently, after M has processed the initial segment 7, it must always ask the

y Gy Gy o

same question. Thus, M asks at most finitely many different questions when fed {. Now,
choose any string & € L\ L the IIM M is never asking for, and set L = L U {5}.

Finally,let t =0¢-5, a, ..., ™, b, a, a, Thust € pos(z). Since o is a locking
sequence for L, M outputs j, after processing the initial segment o -3, a, ..., a™.
Afterwards, M receives the string ™. Based on the local input j, and ™, M must ask
the same question, say s’, as in case the initial segment o - a, ..., a™, b™ has been
processed. Since s’ # §, M obtains the same answer and generates, therefore, the same
guess as in the former case. Now, the same argument may be iterated in order to show
that M, when successively fed #, generates afterwards the same sequence of hypotheses
as in case that M is processing . Hence, M is fooled.

Claim 2. CONSV \ Y BEM, #9.

13

For all j € IN, let L; = {a}*\ {a’*'}. Let Coonsv and H = (L;);en be the collection
and canonical enumeration of all these languages L;, respectively. Again, Coonsy €

CONSV can be easily verified.

It remains to show that Coonsy ¢ kg]NBE]Wk. Suppose the converse, i.e., there are
a k € IN, an IIM M, and a hypothesis space H = (h;);ew such that M BEM j—infers
Cconsy with respect to H. Since M has to infer Ly = {a}* \ {a}, there has to be a
locking sequence o for Ly (cf. [16]). Hence, we know that, 7 (M,(0)) = 7 (M)s)4,(0 - 1))
for all ¢ € pos(Lg) and all r € IN.

The following lemma is telling us that the [IM M, while attempting to learn Cconsv,
must almost always include the actual string into its new set of stored examples.

Lemma 1. Let t € pos(Lo) be any positive presentation starting with the locking
sequence o, and let y > |o|. Then, s € mo(My41(t, - s)) for almost all s € Ly.

Suppose the converse, i.e., there exist infinitely many strings s € Lo that satisfy
s ¢ m(My41(t,-s)). By definition of BEM, both mo(M,41(t,-s)) C ma(M,(t,))U{s} and
card(my(My41(ty - s))) < k have to be valid. Since there are at most 2% possible subsets of
mo(M, (ty)), we can effectively find two different strings u, v € Lo with u, v ¢ t} satisfying
To(Myy1(ty - u)) = mo(My41(t, - v)). Moreover, we know that j = m(My41(t, - v)) =
71 (My41(t, - v)), since o is a locking sequence for Ly. Now, set L, = {a}* \ {u} and
L, = {a}*\ {v}, and let ¢’ be any positive presentation of L' = {a}* \ {u,v}. Consider
M’s behavior when fed one of the following texts t* = ¢, -v -t and 1" = ¢, - u -1’ for
L, and L,, respectively. Since ty = 17, we get M, (") = M,(t") for all = < y. By
construction, M, 1(t*) = My41(t¥). Past point y + 1, both texts are identical, and hence
My (t*) = Myy.(tY) for all z > 0, too. Consequently, M produces on both texts the
same sequence of hypotheses, a contradiction. Hence, Lemma 1 is shown.

Now, Lemma 1 may be used to obtain the following insight:

Lemma 2. There are two finite sequences 7 and p of strings from Lo\ o™ with 7+ # p*
as well as a string s € Lo\ (cTUTtUpT) such that Migi4ir41(0-7-5) = Mo |4 |pj41(0-p-5).

Choose k pairwise disjoint sets Wy, ..., Wy_q, Wi_1 such that, for all 0 <: <k —1,
W; C Lo \ oF and card(W;) = m = (4€)*~! are fulfilled. By FS we denote the set of all
finite sequences ¢ = wq, ..., wi_1 with wg € Wy, ..., and wi_; € Wy_y, respectively.

By construction, & # & for all £,¢&, € FS provided & # &. Given any £ € F'S; we
know by Lemma 1 that s" € 73(M,3r41(0 - € - ")) for almost all s’ € Ly. Hence, we can
effectively find a string s € Lo\ (0% UJ,., W;) that satisfies s € mo(Mjs1p41(0- € - 5))
for all ¢ € FS. Next, we show that there must be two finite sequences 7, p € FS with
Migisrg1(0 -7 8) = Migpypq1(0 - p-s).

Since o is a locking sequence for Lg, we know that 7 (M,((0)) = 71 (Mo 3441(0 - € - 5))
for all ¢ € FS. Hence, it suffices to estimate the maximal number N of pairwise different
sets of cardinality at most £ that may be output by M after having fed o - £ - s, where ¢
ranges over FiS. Let S = my(M|,)(7)); and assume the worst case, that is, card(S) = k.
By Ng, Ny, ..., N, we denote the number of possible sets of cardinality 0, 1 ..., k,
respectively, M may output after having been fed o - ¢ - s, where ¢ ranges over F'S. By
construction we know that s € 73(M|sj4r41(0 - € - 5)) for all £ € FIS. Hence, Ny = 0, and
Ny = 1. In general, a set of cardinality j can contain ¢ elements maintained from S, and

14

J — 1 — 1 elements stored while processing a sequence ¢ € FS, where 0 < ¢ < j— 1, and
it must contain s. Thus, we obtain:

£t

Since card(my(Ms|4rt1(0 - € - 5))) < k, we get from (4):

=SS

Next, we estimate N by replacing m?~* by m?, and by applying Vandermonde’s convolu-

tion (cf. [8]). Thus, (5) yields:

k—1 J
. . k k
N < ‘ mJE (€>(j—€>
=0 =0

7 J4
k-1
2k
= mj< .) (6)
; J
7=0

Finally, we estimate m? by m*~'. This leaves essentially a partial sum of the 2kth row in
Pascal’s triangle. Unfortunately, there is no closed form for such partials sums. Therefore,
we apply the well-known estimate

d
d
Z(j)g(%) foralln >d>1 (7)
J=0

Putting it all together, we obtain from (6) and (7):

k-1

. — .\ k—1
N < mF! <2k> < mk_l(2ke)
—\J - E—1

15

Since card(FS) = m* = ((4e)*1)F = m*~1(4e)*~! Inequality (8) tells us that there are
more sequences in FS than sets M may possibly output. Thus, there must exist 7 and
p € FS with 7% # p* such that My, 4, 41(0 - 7 - 5) = Mpsjqpp41(0 - p - 5). This proves
Lemma 2.

Now we are ready for showing that M fails to identify Coonsy. We define two languages
j) L e Cconsy witnessing M’s weakness. Select 7, p, and s in a way such that the
requirements of Lemma 2 are fulfilled. By assumption, 7\ pT # 0 as well as pt \ 7% # 0.
Select any w € pt \ 7+ and any & € 7+ \ p*. Set L = Lo\ {&b} and L = Ly \ {w} Let t/
be a,ny positive presentation of Lg \ {0, w}. Since (rT Upt)Nnot =0, & € p* \ 7 and
s ¢ pt, we may conclude that @ # s and w ¢ ot U rt. Thus, f = ¢ -7 -5 -t defines a
posmve presentation of L. Slmllarly, it can be easily verified that t=0-p-s-t belongs
to pos(L) By Lemma 2, A[n+k+1() = 1Mn+k+1({). Past point n + k + 1, both texts are
identical, and hence]\[n+k+1+z() M, 4 r414-(1) for all z > 0, too. Consequently, M fails
to learn I or L when fed { and t, respectively, a contradiction. This finishes the proof of
Claim 2. O

3.2. On the Strength of Incremental Learning

Now we study to what extend, if ever, feed-back learning and bounded example mem-
ory inference, respectively, enlarges the learning capabilities of iterative learning. Inter-
estingly, even the ability to store exactly one distinguished example seriously increases
the learning capabilities of iterative [IMs. Moreover, the ability to ask whether or not a
particular element did already appear in the initial segment of the positive presentation
processed so far considerably increases the learning capabilities of iterative IIMs, too.

Theorem 6.

(1) IT C FB,
(2) IT C BEM;,
(3) BEM) C BEM 4 for all k € IN.

Proof. Since IT C FB, IT = BEM,, and BEM;, C BEM 44 for all k£ € IN, it suffices

to show that all the stated inclusions are proper.
Claim 1. FB\ IT # 0.

The indexable class Coonsy used in the proof of Theorem 5 witnesses the desired
separation, too. Since Coonsy ¢ UkE]N BEM,,, it suffices to prove Coonsy € FB. Let
H = (Lj>jE]Na where LJ = {CL}+ \ {Clj+1}. Let L € CCONSV; and let ¢t = (Sj)jE]N -
pos(L). The desired feed-back IIM M is defined in stages, where Stage n conceptually
describes M,,.

Stage 0. On input so do the following.
Set jo = 0, output jo, and goto Stage 1.

Stage n, n > 1. On input j,—1 and s, do the following.
Make the query ‘a'*/n-1.’ If the answer is ‘NO,” set j, = j,_1, output j,, and goto
Stage n + 1.
If the answer is “YES,” set 7, = j.—1 + 1, output j,, and goto Stage n + 1.

16

Let L =L, = {a}*\ {a*t'}. Since t is a text for L, there is a least n € IN such that the
initial segment ¢,, contains all strings ™ with 1 < m < z. By definition, M asks the oracle
in Stage n + 2 whether or not the string a*** has already been presented. Since a**' ¢ L,
the reply is ‘NO’. Thus, M repeats this query in every subsequent stage. Finally, the
oracle’s reply enables M to output the correct guess z. Hence, M FB-learns L from {.

Claim 2. BEM, \ IT # 0.

Recall the definition of the indexable class Crp introduced in the demonstration of
Theorem 5, Claim 1. That is, Cpp is the collection consisting of the language L =
{a}* and of all the languages L;; = {a™| 1 < m < j+ 1} U {¥+ at1+*} We set
Ceem, = Crp, and show that Cggy, witnesses the desired separation. Since Cggy, € FB
(cf. the demonstration of Theorem 5, Claim 1) and IT C FB, it suffices to show that
Ceem, € BEM,.

Let Hpgam, = (h;)jen be the canonical enumeration of all the languages in Cggar,. We
define an IIM M which BEM;-identifies Cpgyr, with respect to Hpgar,. Let L' € Carum,,
and let t = (s;)jew € pos(L'). The IIM M is defined in stages, where Stage n conceptually
describes M,,.

Stage 0. On input sq do the following.
If s = a**! for some k € IN, then set Sy = {a**'} and compute the canonical index
z for L = {a}t.
Otherwise, i.e., so = b**! for some k € IN, set Sy = (), and determine the canonical
index z for Lyo = {a™| 1 <m <k +1}U {b1}.
Set jo = z, output (jg, o), and goto Stage 1.

Stage n, n > 1. On input (j,—1, 5,—1) and s, do the following.
If 5, = b**! for some k € IN, then determine the canonical index z for the language
LyoU S,y Set j, =z, S, =0, output (j,, S,), and goto Stage n + 1.

If s, = a**' for some k € IN, test whether S,_; = 0. If it is, then determine the
canonical index z for the language h,_; U {ak"'l}, and set S, = () and j, = z.

If S,—1 # 0 then set j, = jo—1. Let S,_; = {s}; check whether |s,| > |s|. If it is,
set S, = {s,}. Otherwise, let S, = {s}.

Output (j,, S.), and goto Stage n + 1.

It remains to show that M infers L'. Obviously, if L’ = L, then M outputs in every stage
a correct guess for L'. Now, let L' = L;; for some j, k € IN. Hence, there must be an n
such that s, = ¥*!. By construction, S,_; contains the longest string of form a™*!, say
s, which has been presented so far. If s = a/**¥+! or L' = [, then M outputs in this and
every subsequent stage a correct guess for L’. Otherwise, M guesses the finite sublanguage
L;o of L' in Stage n. Since t € pos(L'), M eventually receives in some subsequent stage
the string a’**+'. Then it changes its mind to a correct guess for L’ that is repeated in
every subsequent stage. Thus, M BEM-learns L', and Claim 2 is shown.

Claim 3. BEM ., \ BEM, # 0 for all k € IN.

Because of BEMy = IT, the k = 0 case has been already shown (cf. Claim 2). The
general case is handled by enlarging the indexable class Cpgpy,. Let & € INT, and let

(lo,..., L) be any k 4 1-tuple of natural numbers. For every j € N let Loty =
{a™| 1 <m <j+1}U{p*ta", ... a*}, and let [= {a}*. By Cpewm,,, and Hppw,,,

17

we denote the collection and canonical enumeration of all the languages L; 4, .0,y and L,
respectively. By definition, Cppar, € Crpary,, -

CBEMyy, € BEM 1y with respect to Hpgar,,, can be shown using a minor modification
of the IIM M defined in Claim 2 above. As long as no string of the form b™ occurs, the
modified TIM M simply stores the (k4 1)st longest strings of the form a” seen so far, and
outputs the canonical index for {a}* along with this set. If a string w of the form ™
appears, M outputs the canonical index for the least language L’ which contains both w
and the (k£ 4 1)st longest string from L seen so far. Past that point, there is no need to
store any further string, since the target language has to be a finite superset of L', and
moreover, in case that L’ does not equal the target language, the missing strings have to
appear in some subsequent step. We omit further details.

The remaining part, i.e., Cppar,,, € BEMy, is harder to prove. Suppose the converse,
i.e., there is a hypothesis space H and a BEM), IIM M inferring Cpgar,,, with respect to
H. Since M learns L = {a}*, there has to be a locking sequence ¢ for L (cf. [16]). Hence,
we know that, j = 7 (M,(0) = 7 (Ms|4,(0 - 1)) for all & € pos(L) and all r € IN.

The following lemma is telling us that the ITM M, while attempting to infer Cppar,,,,
must almost always include the actual string into its new set of stored examples. In-
terestingly, if M violates this constraint it would even fail to learn the proper subclass
CreM, -

Lemma 3. Let t € pos(L) be any positive presentation starting with the locking
sequence o, and let y > |o|. Then, s € mo(My41(ty, - s)) for almost all s € L.

Suppose the converse, i.e., there exist infinitely many strings s € L satisfying s ¢
mo(My41(ty - s)). By definition of BEM,, we know that both mo(M,41(t,-s)) C m2(M,(t,))
and card(my(My41(t, - 8))) < k have to be valid. Since there are at most 2* possible
subsets of m3(M,(t,)), we can effectively find two different strings u, v € L with |u|, |v| >
m =max{j| o’ € t]} that satisfy my(My41(t, - u)) = 7o(Myq1(ly, - v)). Furthermore, j =
T (Myp1(ty-u)) = 7 (My41(t,-v)), since o is a locking sequence for L and t; U{u,v} C L.
Now,set L' ={a"| 1 <r <m}, L, = L'U{b", u} and L, = L'U{b™", v}, and let ¢’ be any
positive presentation of L’. Consider M’s behavior when fed one of the following texts
tt=t,-u-b" -t and t' =t,-v- 0" -t for L, and L,, respectively. Since t; = t;, we get
M, (t*) = M,(t") for all z <y. By construction, M, ,(t*) = M,,(t"). Past point y 4 1,
both texts are identical, and hence M,(t") = M,4.(t") for all z > 0, too. Consequently,
M produces on both texts the same sequence of hypotheses, a contradiction, and Lemma 3
is shown.

Let m = max{j| a’ € ot}, and set L' = {a"| 1 < r < m}. Similarly as in the
demonstration of Theorem 5, we may use Lemma 3 to arrive at the following conclusion:

Lemma 4. There are two finite sequences 7 and p of strings from L\ L' with T+ # p*
and a string s € L\ (L' U Tt U pt) such that My yjr31(0 -7 - 5) = Migyip41(0 - p - 5).

Select k pairwise disjoint sets Wy, ..., Wi_y, Wi_q such that, for all 0 <z < k-1,
W; C L\ L' and card(W;) = m = (4e)*~! are fulfilled. Let FS be the set of all finite
sequences £ = wq, ..., Wr_; with wg € Wy, ..., and w,_; € Wj_q, respectively. By

construction, & # &F for all €1, &, € FS provided & # &. Given any ¢ € F'S; Lemma 3
results in 8" € wy(Ms 3r41(0-€ ")) for almost all s’ € L. Consequently, we can effectively
determine a string s € L\ (L' UJ,, Wi) that satisfies s € mo(M|g4r41(0 - € - 5)) for all

18

¢ € FS. Now, we show that there must be two finite sequences 7, p € FS that satisfy
Mlo|+k+1(0 Tes) = Mlcr|+i~:+1(J p-s).

Since ¢ is a locking sequence for L, we know that m(M,(c)) = 71 (Migj4r41(0 - € - 5))
for all £ € FS. Hence, it suffices to estimate the maximal number N of pairwise different
sets of cardinality at most k that may be output by M after having fed o - £ - s, where ¢
ranges over FiS. Let S = my(M|,)(7)); and assume the worst case, that is, card(S) = k.
By Ng, Ny, ..., N, we denote the number of possible sets of cardinality 0, 1 ..., &
respectively, M may output after having been fed o - £ - s, where ¢ ranges over F'S. By
construction we know that s € my(Ms|1r41(0 - € - 5)) for all £ € FS. Hence, Ny = 0, and
Ny = 1. In general, a set of cardinality j can contain ¢ elements maintained from 5, and
J — 1 — { elements stored while processing a sequence ¢ € FS, where 0 < ¢ < j — 1, and
it must contain s. Thus, we obtain:

7

,_A

SO

Together with card(my(Mjs)4rq1(0 - € - 5))) < k we get from (9):

N = Z N; (10)
7=0

Finally, the same calculation as in the demonstration of Theorem 5, Lemma 2 gives us

the following bound:
N < mF1(4e)k-1 (11)

Since card(FS) = mF = ((4€)*~1)F = mF=1(4e)*, Tnequality (11) tells us that there are
more sequences in FS than sets M may possibly output. Thus, there must exist 7 and
p € ES with 7% # p* such that Migjjrp1(o - 7 -5) = Migjqppi+1(0 - p - s). This proves
Lemma 4.

Now we are ready for showing that M is not able to identify CBEMHl- We fix two
languages L, Le CpEM,,, Witnessing M’s weakness. Choose 7, p, and s in accordance
with Lemma 4. Note that k& = |7| = |p| as well as k& = card(*) = card(pt). Set
IL=ru {bm syUrt and L=1I1'U {b™,s}Upt. Obv1ously, L L € Cpgum,,,, and, because
of 7t # pT as well as L'N (7T Upt) = () we have L # L. Let t' be any posfmve presentation
of L', and consider M’s behavior when fed one of the following texts t=c-7-5-0™-t and
t=0-p-s-b™-t for L and L, respectively. By Lemma 4, we know that Mg |prga(t) equals
Mo 4ri(t {). Past point |o| —I—k—l— 1, both texts are 1dent1cal Hence by definition of BEM |,
we may conclude that Af|a|+k+1+z() = Mis4rt14-(1 {) for all z > 0, too. Consequently, M,
if ever, converges on both texts to the same hypotheses, a contradiction. Thus, Claim 3
follows. O

The demonstration of Claim 2 above and of Claim 1 in Theorem 5 immediately imply
that feed-back TIMs are not always able to compensate the additional learning power of
ITMs that are allowed to store exactly one example.

19

Corollary 7. BEM,;\ FB #

However, the increase in the learning power obtained by bounded examples memories
and feed-back queries is incomparable as we shall see. Consequently, there is no unique
way to design superior learning algorithms when space limitations are a serious concern.
However, our overall goal is a bit more ambitious. We aim to compare the learning power
of finite inference from positive and negative data (abbr. FIN—INF', cf. Definition 7 below)
with those of bounded example memory learning and feed-back identification. As it turns
out, feed-back learning from positive data can simulate finite inference from positive and
negative data while bounded example memory learning cannot. This is interesting, since
it addresses the issue whether information presentation can be traded versus memory
limitations.

Next, we provide the formal definitions needed. Let X be a learning domain, and let C
be any concept class defined over X'. Furthermore, let ¢ € C, and let ¢ = (¢, bo), (21, b1), -..
be an infinite sequence of elements of X' x {4, —} such that range(i) = {zx| £ € N} = X,
it = {sp| (z1,br) = (2p,+),k € N} = cand i~ = {zp| (21,b) = (24, —),k € N} =
co-c = X'\ ¢. Then we refer to ¢ as an tnformant. If ¢ is classified via an informant then
we also say that ¢ is represented by positive and negative data. Let ¢ be a concept;
by info(c) we denote the set of all informants for c.

Definition 7 (Gold, [7]). Let C be an indexable class, let ¢ be a concept, and let H =
(hj)jen be a hypothesis space. An IIM M FIN-INF—-identifies ¢ from informant
with respect to H iff for every informant i for ¢, there exists a j € IN such that M,
when successively fed © outputs the single hypothesis j, ¢ = hj, and stops thereafter.

Furthermore, M FIN — IN F-identifies C with respect to 'H iff, for each ¢ € C, M
FIN—IN F-identifies ¢ with respect to H.

The resulting learning type is denoted by FIN—INF.

We start our investigation of whether or not information presentation can be traded
versus the mode of convergence and memory limitation with the following observation.

Corollary 8.
(1) IT # FIN—INF
(2) U BEM, # FIN-INF

Proof. Let Cy;, be the class of all finite languages over some fixed alphabet 3. Obvi-
ously, Cy;,, witnesses IT \ FIN—INF # {).

For showing FIIN—INF \ | e BEM . #) we use the indexable class Cconsy. Since
Coonsv & Upew BEM . (cf. Theorem 5, Claim 2), it remains to show that Coonsy €
FIN—INF. Recall that every language L. € Cconsy is characterized by its uniquely
determined negative example z € {a}* \ L. Clearly, a finite learner has simply to wait
until (z, —) appears in the data. Then it outputs the canonical index of the corresponding
language L = {a}* \ {z} from Cconsv, and stops.]

The latter result is nicely contrasted by our next theorem establishing that feed-back
learners capture the whole learning power of finite inference from positive and negative
examples.

20

Theorem 9. FIN—INF C FB.

Proof. By definition IT C FB. Thus, FB\ FIN—INF # () follows from Corollary 8.
Next, we show FIN—INF C FB. Let C € FIN—INF, and let M be any IIM finitely
learning C from informant with respect to some hypothesis space H = (%;);en. Without
loss of generality, we may assume that range(H) = C (cf. Lange and Zeugmann [12]).
Furthermore, we may also assume M to be total, i.e., for every finite sequence of elements
from X% x {4, —} M either outputs a hypothesis or it request the next input (cf. Lange

et al. [14]).

The desired simulation is based on the following idea. The feed-back learner aims to
find an initial segment of an informant for the target language. Such an initial segment can
be successively fed to the finitely learning I[IM M until M stops or the segment is finished.
If M makes an output (referred to as ordinary hypothesis), the feed-back learner maintains
this guess as long as it is compatible with all the data provided afterwards. However, if a
string s is presented that does not belong to the guessed language then the whole process
must be iterated. Since a feed-back learner is restricted to one query per one learning
stage, we need auziliary hypotheses to memorize the results of the queries made until a
new possible initial segment of an informant for the target language is found. Clearly,
this idea will only work, if the strategy described above realizes the subset principle.

In order to design the desired feed-back IIM M we use the following hypothesis space
H = (iLJ‘)J‘E]N. Let iz2j = h; for all j € IN, i.e., even indices describe the possible ordi-
nary hypotheses. Odd indices are used for auziliary hypotheses. For defining them, let
Fy, Fi, F,, ... be any effective enumeration of all finite subsets of ¥% including the
empty set. For for all k, z € IN, set iL2<k’x)+1 = F, U F,. The underlying semantics is as
follows. The pair (Fy, F,;) represents the fact that that all strings belonging to Fj have
already been presented, whereas no string in F, did appear in the data read so far. For
the sake of readability, we use the following convention. When M is forced to output
an auxiliary hypothesis, say 2(k,z) + 1, we use instead the phrase that M is outputting

the pair (Fy, F,). Let sg, sy, sy, ... denote any effective repetition free enumeration of
all and only the strings in ¥*. Given any pair (F, F;) that satisfies Fi, N F, = § and
FrUF, ={s;| j <z=card(F, U F,) — 1}; we set i(Fi, F,), = (s0,b0), -.-, (52,0.),

where, for all j <z, b; =1, if s; € F}, and b; = 0 in case that s; € F,.

Next, we define the feed-back learner M. Let L € C, and let ¢t = (wy)nen € pos(L).
As usual, we define M in stages, where Stage n conceptually describes M,,.

Stage 0. On input wy do the following.
Make the query ‘so.” If the answer is ‘NO,’ then output the pair (0, {sq}), and goto
Stage 1. If the answer is ‘YES,” then output the pair ({so},0), and goto Stage 1.

Stage n, n > 1. M receives as input j,—1 and the (n + 1)st element w, of ¢.
Case A. j,_; 1s an ordinary hypothesis.

If w, € iL]‘n_l, set 7, = jn_1, output j,, and goto Stage n + 1. Otherwise, make the
query ‘sg.” If the answer is ‘NO,’ then output the pair (, {so}), and goto Stage n+1.
If the answer is ‘YES,” then output the pair ({so},), and goto Stage n + 1.

Case B. j,_1 is an auxiliary hypothesis, say (P, N).

21

Test whether or not w, € PU N. If not, then set P’ = P and N’ = N. Otherwise,
set P = PU{w,} and N' = N\ {w,}. Determine z = card(P’ U N'), and make
the query ‘s,.” If the answer is ‘NO,” set N' = N U {s,}. Else, set P = P U {s,}.
Determine ¢(P’, N'),, and execute Instruction (/).

(3) Compute successively M (i(P', N')o), M(:(P',N')1), ..., M(i(P',N'),) until M
outputs a hypothesis j, say on (P, N'),, r < z, or the whole initial seg-
ment has been fed. If there was no output or j does not fulfill P’ C iLQj and
(PN N iLQJ' = (), output the pair (P’, N’), and goto Stage n + 1.
Otherwise, output the ordinary hypothesis 25 and goto Stage n + 1.

Obviously, M is a feed-back IIM. It remains to show that M learns L as required. We start
with some helpful observations. Suppose M outputs in Stage n an auxiliary hypothesis,
say (P,N). Let z = card(P U N), and let P’ and N’ be the corresponding finite sets
M has generated before executing Instruction (3) within Stage n + 1. (* Note that
card(P' U N') = z + 1. *) By construction, in all the Stages n — z + 1,..., n — 1 the IIM
M has output auxiliary hypotheses, too. Hence, we have:

Observation 1. P' C L

Observation 2. P'UN' = {s;| j < z}

Observation 3. For all j < z, s; € t} implies s; € P'.

For verifying the latter observation recall that M has successively queried sq,...,s,.
Clearly, if sy, 1 < ¢ < z, has been presented before the query is made, then the answer is
‘YES,” and thus s, € P’. Now assume s, is queried, say in Stage k, £ < n, but s, ¢ ¢}.
Since s, € t:_l_l, the string s, must appear as input in one of the Stages k + 1, ..., n 4+ 1.
However, then we are in Case B, and hence s, has to be in P’ and cannot belong to N'.

Furthermore, since two successively output auxiliary hypotheses are definitely different,
M cannot converge to an auxiliary hypothesis.

Claim A. M converges.

Let ¢(L) be the lexicographically ordered informant of L. Let y, be the least number
y such that M after having successively fed ¢(L), outputs a hypothesis, say j and stops.
Since M has to learn L from i(L) such a y must exist, and furthermore, L = h;. Now, let
ng be the least number n satisfying (L)} C ¢f.

Suppose M has not yet converged when entering Stage ng. Then there are two possible
cases.

Case 1. jn,—1 1s an ordinary hypothesis.

Since M has not yet converged, this hypothesis must be changed in some subsequent
stage, say in Stage ng + p, ¢ > 0. Consequently, M begins in Stage ng + p to query
an initial segment of the lexicographically ordered informant for . by asking ‘sg,” and it
outputs the corresponding auxiliary hypothesis (P, N). Note that the label of s, must
be correct by the choice of ng. In Stage ng + p + 1 the next query, i.e., ‘s;,” is made.
Again, the resulting label of s; must be correct. Now, M enters Instruction (B). If
yo < 1, then M outputs 7, and thus, M outputs 2j. Since L = ing, this guess is repeated
in every subsequent stage. Consequently, M converges. On the other hand, if yo > 1,
then, by the choice of y3, M cannot make an output. Thus, M outputs the auxiliary

22

hypothesis correctly describing the labeling of sy and s;. Iterating this argument, we see
that M outputs exclusively auxiliary hypotheses until the correct initial segment ¢(L),,
is obtained. Then, entering Instruction (/) results in obtaining j. By Observation 1, iLQj
comprises all the positive data seen so far. Finally, izgj is disjoint from the data labeled
‘-7 thus 25 passes the test, and M converges.

Case 2. j,,-1 1s an auxiliary hypothesis.

Now, the same argument applies mutatis mutandis. Either M produces in some sub-
sequent stage an ordinary hypothesis and converges to it, or we are back to Case 1. This
proves Claim A.

Finally, we have to show that the hypothesis M converges to is a correct one.
Claim B. If M converges, say to 2k, then L = hap.

Since M converges, we know that 2k is an ordinary hypothesis. Suppose L # hi. Let
m be the first stage in which £ is output. By construction, the hypothesis output in Stage
m — 1 must have been an auxiliary hypothesis, say (P, N). Let z = card(P U N), and let
P" and N’ be the corresponding finite sets M has generated before executing Instruction
(3) within Stage m. By ¢(P’, N'), we denote the corresponding initial segment of some
informant. Furthermore, let r < z be such that & = M(:(P',N'),). If ¢«(P',N'), is an

initial segment of ¢(L),,, then r = y,, and we are done.
Now assume i(P’, N'), to be not an initial segment of ¢(L),,. Then i(P', N')¥ Z i(L)}

Yo
or i(P',N') € i(L),, . Since M has verified P’ C hop and i(P,N")- N hop = 0, we know
that L # hog. By Observation 1, we additionally have P’ C L, thus we may conclude
i(P',N"); N L # 0. Because of i(P',N'); N har = 0, we know that there exists a string
se(LNP, N\ hax. Taking into account that 2k has been first produced in Stage
m, we are done if s € t;+p\t;{; for some p > 1. Finally, assume s € ¢} . By Observation 3,
the uniquely determined index p with s = s, must satisfy y > z, since otherwise s € P/,
and P’ C hy. would be contradicted. However, s € (LNi(P',N")) yielding p < z by

Observation 2. This contradiction proves Claim B. O

The issue whether information presentation can be traded versus the mode of conver-
gence has been treated in Lange et al. [14], too. In particular, in [14] we addressed the
question to what extend the subset principle must be weakened if only positive data are
available. The results obtained in this context imply FIN—INF C CONSV. Because of
FB C CONSV (cf. Theorem 5, Assertion (2)), our last theorem strengthen this result.

Finally, putting the results obtained together, we obtain the already announced result
that the increase in the learning power obtained by bounded example memories and feed-
back queries is incomparable.

Theorem 10.
(1) FB\ Y\ BEM,, # 10,
(2) BEMyy1 # FB for all k € IN.

Proof. Clearly, Assertion (1) follows directly from Theorem 9 and Corollary 8. Fur-
thermore, BEM, \ FB # 0 by Corollary 7, and hence, Assertion (2) follows. |

23

3.3. A Sufficient Condition for Incremental Learning

There are several well-known criteria that ensure learnability in the limit of indexable
classes from positive data, i.e., finite thickness and finite elasticity. Both conditions
are sufficient but not necessary. Hence, it is only natural to ask whether or not these
conditions guarantee any form of incremental learning, too. Unfortunately, the general
answer is negative. However, a natural sharpening of these conditions directly yields
sufficient conditions for all models of incremental learning introduced above.

Definition 8 (Angluin [2]). Let C be an indezable class. C has finite thickness if
and only if for every x € X there are at most finitely many ¢ € C satisfying x € c.

Proposition 2. There is an indexable class C ¢ CONSV which has finite thickness.

Proof. Consider the following indexable class C of languages L ;y defined as follows.
For all k& € IN, we set Lo = {a*b"| n € IN}. Note that a® = ¢ by convention. For all
k€ IN and all 7 > 0, we distinguish the following cases:

Case 1. = ®y(k) <

Then we set Ly = Lo

Case 2. Op(k) <

We distinguish the following subcases.

Subcase 2.1. j < 2@, (k)

Let r = 20, (k) — j. Weset Ly ;) = {a*b™| 1 <m <r}.

Subcase 2.2. 3 > 2@, (k)

Then we set L ;y = {a*b}.

Finally, let £ = (L,));ren, and let C = range(L). Moreover, C has finite thickness
by construction. On the other hand, we know that C ¢ CONSV (cf. [12], Theorem 1). O

Because of Theorem 5 we may conclude:

Corollary 11. There is an indexable class C having finite thickness which does not
belong to IT U FBU Y BEM,.

Next, we define recursive finite thickness. Let X’ be any recursively enumerable learn-
ing domain, and let zq, x1, x4, ... be any effective enumeration of all elements in X'.
Furthermore, assume an effective enumeration Ny, Ny, N,, ... of all finite subsets of IN.

Definition 9. Let C be an indexable class. C has recursive finite thickness provided
there are an indexing co, ¢, C2, ... of C and a total recursive function g such that, for
all m, k € N, x,, € ¢, if and only if k € Nym) or there is a j € Nym) with ¢; = cj.

It is easy to verify that the class of all concepts describable by a monomial, a k-
CNF, a k-DNF, a k-decision list, respectively have recursive finite thickness. The pattern
languages provide another interesting example of a concept class having recursive finite
thickness. The following theorem establishes the iterative learnability of all these concept
classes.

Theorem 12. Let C be an indexable class. If C has recursive finite thickness, then
Cell.

Proof. Let ¢q, ¢1, ¢2, ... be an indexing of C and let g be the corresponding recursive

24

function which satisfies the requirements of Definition 9. For showing C € IT we choose
kENg(J)Ck. We

define an IIM M [T-inferring C with respect to H. Let ¢ € C and let t = (s;);emw € pos(c).
The IIM M is defined in stages, where Stage n conceptually describes M,,.

the following hypothesis space H = (h;);en. For every j € IN, let h; =

Stage 0. M receives as input so.
Determine the unique m € IN with z,, = sq. Output g(m), and goto Stage 1.

Stage n, n > 1. M receives as input its last guess, say j, and the (n+1)st element s, of ¢.

Case 1. s, € h;
Output j, and goto Stage n + 1.

Case 2. s, € h;

For all k € Nj, test whether or not s,, € ¢;. Collect all k successfully passing
the test within the set CONS. Determine the uniquely defined index z for
CONS,ie., N, =CONS. Output z, and goto Stage n + 1.

Now it is straightforward to show that M iteratively infers C with respect to H. We
omit the details. O

The proof given above has some interesting features we want to point to. First of
all, the learning algorithm produces its hypotheses in a rather constructive manner. This
nicely contrasts the enumerative character of many inference procedures often provided
in abstract studies within Gold’s [7] model (cf., e.g., [4, 7, 16]). In contrast, our general
learning algorithm immediately produces a finite subspace of hypotheses from which it
computes its actual guess. Subsequently, it deletes all nonrelevant hypotheses from this
subspace. Moreover, the algorithm learns by generalization, i.e., the sequence of its guesses
constitutes an augmenting chain of concepts. As a matter of fact, the converse is also true.
Whenever the learning process can be exclusively performed by generalization, then one
can learn iteratively, too (cf. [11]). However, the generality of the result above does not al-
ways yield the most effective iterative learning algorithm. For example, a straightforward
application of Valiant’s [20] proof technique directly yields iterative learning algorithms
for the class of all concepts describable by a k-CNF and k-DNF, respectively, that are
much more efficient. Another example are the pattern languages. In this case, Lange and
Wiehagen’s [10] iterative learning algorithm is the much better choice (cf. Zeugmann [26]
for a detailed analysis).

As our next result states, recursive finite thickness is only a sufficient criterion that
ensures the learnability by iterative IIMs.

Theorem 13. There is an indexable class C € IT which does not have recursive finite
thickness.

Proof. For all j € IN, let Lo = {a}*, and L;3y = {a™| 1 <m < j+ 1} U {¥*'}. Let
C denote the collection of all those languages L;. Obviously, there are infinitely many
different languages which contain the string a. Thus, C even does not have finite thickness.

On the other hand, C € IT (cf. Lange and Zeugmann [11]). O

Next, we consider finite elasticity introduced by Wright [25].

25

Definition 10. Let C be an indexable family. C has infinite elasticity if and only
if there are an infinite sequence of strings xo, =y, Ty, ... and an infinite sequence of
concepts ¢y, ¢1, €3, ... each in C such that, for all n € N*, {zo,...,2,_1} C ¢, but
T, &€ ¢,. C has finite elasticity provided that C does not have infinite elasticity.

Obviously, finite thickness implies finite elasticity. Therefore, Corollary 11 yields:
Corollary 14. There is an indezable class C ¢ [T U FB U kg]NBE]Wk which has finite

elasticity.

On the other hand, the indexable class C used in the demonstration of Theorem 13
does not have finite elasticity as well. For seeing this, set z; = a’*! and ¢; = [; for all
J € IN. By construction, {zo,...,2,—1} C ¢, but 2, ¢ ¢,. Thus C has infinite elasticity.
Consequently:

Corollary 15. There is an indexable class C € IT which does not have finite elasticity.

4. Conclusions and Open Problems

During the last decade algorithmic learning has attracted a continuously growing in-
terest in the computer science community. Additionally, machine learning techniques are
sought after in a wider range of industrial and scientific applications, e.g., in knowledge
engineering, in robotics, in pattern recognition, in financial prediction, in molecular bi-
ology, in natural language processing, and in machine discovery. Since every practical
learning system has to deal with the limitations of space available, incremental learning
techniques are of special interest. Moreover, it is well-known that too little information
causes learning systems to fail. On the other hand, too much information may also lead
to a degrading performance, a loss of efficiency, and it may even affect the accuracy.
Therefore, it is of central importance to gain a better understanding of what data must
be preserved during the learning process, and of what information can be overlooked.
Clearly, these problems have various facets, and several of them have been studied in
inductive inference (cf., e.g., Wiehagen and Zeugmann [24] and the references therein).

The present paper addresses some of these problems from a new perspective by pro-
viding a systematic study of incremental learning for indexable concept classes. Different
models of incremental learning from positive data have been defined and investigated.
These model differ in the way and extent they restrict the accessibility of the input data
stream. We distinguished between iterative learning, bounded example memory inference
and feed-back identification.

An iterative learner is required to produce its actual hypothesis exclusively from its
previous guess and the next example presented. Bounded example memory and feed-back
learning generalize iterative inference by allowing to store an a prior:i bounded number
of carefully chosen examples and asking whether or not a particular element did already
appear in the input data provided so far, respectively.

As it turned out, all the formal models defined correspond to learning scenarios that
are generally less powerful than conservative learning (cf. Theorem 5). On the other hand,
by realizing a suitable interplay between the learning algorithm and the hypothesis space
chosen, incremental learning may outperform conservative learning, too (cf. Theorem 1).
Moreover, as the proof of Theorem 1 shows redundancy in the hypothesis space may

26

seriously increase the learning capabilities of incremental learners. Future research should
address the problem of what properties hypothesis spaces must have to be well suited for
incremental learning.

Moreover, both feed-back learning and bounded example memory inference are more
powerful than iterative learning. In particular, we established a new infinite hierarchy of
more and more powerful bounded example memory learners parametrized by the num-
ber of examples storable. However, feed-back learning and bounded example memory
inference extend the learning capabilities of iterative learners in different directions. This
insight allows the conclusion that there is no unique way to design superior incremental
learning algorithms.

Finally, an easy verifiable sufficient condition for incremental learning has been elabo-
rated. Applying this criterion, the iterative learnability of all concepts describable by a
monomial, a k-CNF, a k-DNF, a k-decision list, respectively, and of all the pattern lan-
guages can be shown. The importance of this criterion is mainly based on its simplicity.
Once it is known that there exist an iterative learning algorithm future research can con-
centrate on improving its efficiency. Clearly, it would be highly desirable to have similar
conditions for feed-back learning and bounded example memory inference. Ideally, one
should elaborate conditions that are both necessary and sufficient for the different models
of incremental learning.

5. References

[1] F. Ameur, A space-bounded learning algorithm for axis-parallel rectangles, Proc.
2nd European Conference on Computational Learning Theory, EuroCOLT’95, (P.
Vitanyi, Ed.), Lecture Notes in Artificial Intelligence 904, Springer-Verlag, Berlin,
1995, pp. 313 - 321.

[2] D. Angluin, Inductive inference of formal languages from positive data, Information

and Control, 45 (1980), 117 — 135.
[3] D. Angluin, Queries and concept learning, Machine Learning 2 (1988), 319 — 342.

[4] L. Blum and M. Blum, Toward a mathematical theory of inductive inference, Infor-
mation and Control 28 (1975), 122 — 155.

[5] A. Cornuéjols, Getting order independence in incremental learning, Proc. European
Conference on Machine Learning 1993, (P.B. Brazdil, Ed.), Lecture Notes in Arti-
ficial Intelligence 667, Springer-Verlag, Berlin, 1993, pp. 196 — 212.

[6] E. Kinber and F. Stephan, Language learning from texts: Mind changes, limited
memory and monotonicity, Proc. 8th Annual ACM Conference on Computational
Learning Theory, (W. Maass, Ed.), ACM Press, New York, 1995, pp. 182 — 189.

[7] E.M. Gold, Language identification in the limit, Information and Control, 10 (1967),
447 — 474.

[8] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics (Addison-
Wesley, Reading, Massachusetts, 1989).

[9] J.E. Hopcroft and J.D. Ullman, Formal Languages and their Relation to Automata,
Addison-Wesley, Reading, Mass., 1969.

27

[10] S. Lange and R. Wiehagen, Polynomial-time inference of arbitrary pattern lan-
guages, New Generation Computing, 8 (1991), 361 — 370.

[11] S. Lange and T. Zeugmann, Types of monotonic language learning and their char-
acterization, Proc. 5th Annual ACM Workshop on Computational Learning Theory,
ACM Press, New York, 1992, pp. 377 — 390.

[12] S. Lange and T. Zeugmann, Language learning in dependence on the space of hy-
potheses, Proc. 6th Annual ACM Conference on Computational Learning Theory,
ACM Press, New York, 1993, pp. 127 — 136.

[13] S. Lange and T. Zeugmann, Set-driven and rearrangement-independent learning of
recursive languages, Mathematical Systems Theory, to appear.

[14] S. Lange, T. Zeugmann and S. Kapur, Monotonic and dual-monotonic language
learning, Theoretical Computer Science 155 (1996), 365 — 410.

[15] M. Machtey and P. Young, An Introduction to the General Theory of Algorithms,
North-Holland, New York, 1978.

[16] D. Osherson, M. Stob and S. Weinstein, Systems that Learn, An Introduction to
Learning Theory for Cognitive and Computer Scientists, MIT Press, Cambridge,
Mass., 1986.

[17] S. Porat and J.A. Feldman, Learning automata from ordered examples, Proc. First
Workshop on Computational Learning Theory, Morgan Kaufmann Publ., San Ma-
teo, CA, 1988, pp. 386 - 396.

[18] R. Rivest, Learning decision lists, Machine Learning 2 (1987), 229 — 246.

[19] L. Torgo, Controlled redundancy in incremental rule learning, Proc. European Con-
ference on Machine Learning 1993, (P.B. Brazdil, Ed.), Lecture Notes in Artificial
Intelligence 667, Springer-Verlag, Berlin, 1993, pp. 185 — 195.

[20] L.G. Valiant, A theory of the learnable, Communications of the ACM 27, 1134 —
1142.

[21] K. Wexler, The subset principle is an intensional principle, In Knowledge and Lan-
guage: Issues in Representation and Acquisition (E. Reuland and W. Abrahamson,

Eds.), Kluwer Academic Publishers, 1992.

[22] K. Wexler and P. Culicover, Formal Principles of Language Acquisition, MIT Press,
Cambridge, Mass., 1980.

[23] R. Wiehagen, Limes—Erkennung rekursiver Funktionen durch spezielle Strategien,

Journal of Information Processing and Cybernetics (EIK), 12 (1976), 93 — 99.

[24] R. Wiehagen and T. Zeugmann, Learning and Consistency, in “Algorithmic Learn-
ing for Knowledge-Based Systems” (K.P. Jantke and S. Lange, Eds.), Lecture Notes
in Artificial Intelligence 961, pp. 1 — 24, Springer-Verlag 1995.

[25] K. Wright, Identification of unions of languages drawn from an identifiable class,
Proc. 2nd Annual ACM Workshop on Computational Learning Theory, Morgan
Kaufmann, San Mateo, 1989, pp. 328 — 333.

28

[26] T. Zeugmann, Lange and Wiehagen’s pattern language learning algorithm: An
average-case analysis with respect to its total learning time, RIFIS Technical Report

RIFIS-TR-CS-111, RIFIS, Kyushu University 33, April 20, 1995.

[27] T.Zeugmann and S. Lange, A guided tour across the boundaries of learning recursive
languages, in “Algorithmic Learning for Knowledge-Based Systems” (K.P. Jantke
and S. Lange, Eds.), Lecture Notes in Artificial Intelligence 961, pp. 193 — 262,
Springer-Verlag 199.

29

