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Abstract: Clustering algorithms based on a matrix of pairwise similarities (kernel matrix)
for the data are widely known and used, a particularly popular class being spectral clustering
algorithms. Here we propose a clustering algorithm based on the SDP relaxation of the max-
k-cut of the graph of pairwise distances. We compare the algorithm with a spectral relaxation
of a norm-k-cut. Moreover, we propose a simple heuristic for dealing with missing data.

1 Introduction

Consider a set of n objects or data points,
x1, . . . , xn. We might not know anything about the
objects, but assume that their pairwise distances
dij = d(xi, xj) are known. Here, d : M ×M → R is
a distance measure over a set M , i.e., d(x, y) ≥ 0,
d(x, y) = d(y, x) for all x, y ∈ M , and d(x, y) = 0
iff x = y. Then we can cluster the data, i.e., as-
sign the xi to k distinct groups such that the dis-
tances within groups are small and the distances
between the groups are large. This is done as fol-
lows. Construct a graph from the pairwise distances
and choose an algorithm from the large class of re-
cently published methods based on graph-theoretic
cut criteria. As the cuts are usually NP-hard to
optimize, appropriate relaxations have been sub-
ject to intensive research. Two types of relaxations
are particularly important:

(1) Spectral methods, where the top eigenvectors
of the graph’s adjacency matrix are used to project
the data into a lower dimensional space. This gives
rise to new theoretical investigations of the popular
spectral clustering algorithms.

(2) Semi-definite programming (SDP), where the
discrete constraints of the cut criterion are replaced
by continuous counterparts. Then convex solvers
can be used for the optimization.

Surprisingly, all of the clustering approaches sug-
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gested so far work on a graph of similarities rather
than distances. This means that, given the dis-
tances, we need one additional step to obtain simi-
larities from distances, e.g., by applying a Gaussian
kernel. This also involves tuning the kernel width,
a quantity which the clustering algorithm is quite
sensitive to. Hence, it is natural to avoid this step
by using a cut criterion that directly works with
the distance graph, e.g., max-cut. We follow Frieze
and Jerrum [4] and solve the max-cut problem via
an SDP relaxation. We compare this method with
a representative of spectral clustering algorithms,
namely the spectral relaxation of the normalized
cut criterion [12].

As a second contribution of this paper, we pro-
pose a simple heuristic for dealing with missing
data, i.e., the case where some of the pairwise dis-
tances dij are unknown. Then, our aim is to substi-
tute the missing dij by a value which is most likely
to leave the values of the cuts intact. This turns
out to be the mean of the observed dij .

One motivation for considering missing data is
given by the application we shall use to test the
algorithms: Clustering of natural language terms
using the Google distance. The Google distance
[2] is a means of computing the pairwise distance
of any searchable terms by just using the rela-
tive frequency count resulting from a web search.
The Google API provides a convenient way for au-
tomating this process, however with a single key
(which is obtained by prior registration) the maxi-
mum amount of daily queries is currently limited to
1000. Hence, by querying an incomplete sparse dis-



tance matrix rather than a full one, one can speed
up considerably the overall process, as we will see.

The paper is structured as follows. In Section 2,
we introduce the algorithm based on the max-k-cut
relaxation, and recall some theory. We then briefly
review the algorithm based on norm-k-cut in Sec-
tion 3. In Section 4 we address the missing data
problem. Section 5 confronts the two algorithms,
looking on the exact cut criteria rather than the
relaxations, and compares the computational re-
sources required. In Section 6 we present experi-
mental results with the Google distance. Relation
to other work is discussed and conclusions are given
in Section 7.

2 Max-k-cut

Given a fully connected, weighted graph G=(V,D)
with vertices V = {x1, . . . , xn} and edge weights
D = {dij ≥ 0 | 1 ≤ i, j ≤ n} which express pairwise
distances, a k-way-cut is a partition of V into k
disjoint subsets S1, . . . , Sk. Here k is assumed to be
given. We define the predicate A(i, j) = 0 if xi and
xj happen to be in the same subset, i.e., if ∃`[1 ≤
` ≤ k, 1 ≤ i, j ≤ n and i, j ∈ S`], and A(i, j) = 1,
otherwise. The weight of the cut (S1, . . . , Sk) is
defined as

n∑

i,j=1

dijA(i, j) .

The max-k-cut problem is the task of finding the
partition that maximizes the weight of the cut. It
can be stated as follows: Let a1, . . . , ak ∈ Sk−2 be
the vertices of a regular simplex, where

Sd = {x ∈ Rd+1 | ‖x‖2 = 1}
is the d-dimensional unit sphere. Then the inner
product ai · aj = − 1

k−1 whenever i 6= j. Hence,
finding the max-k-cut is equivalent to solving the
following integer program:

IP : maximize k−1
k

∑

i<j

dij(1− yi · yj)

subject to yj ∈ {a1, . . . , ak} for all 1 ≤ j ≤ n.

Frieze and Jerrum [4] propose the following semidef-
inite program (SDP) in order to relax the integer
program:

SDP : maximize k−1
k

∑

i<j

dij(1− vi · vj)

subject to vj ∈ Sn−1 for all 1 ≤ j ≤ n and

vi · vj ≥ − 1
k−1 for all i 6= j

(necessary if k ≥ 3).

The constraints vi · vj ≥ − 1
k−1 are necessary for

k ≥ 3 because otherwise the SDP would prefer so-
lutions where vi ·vj = −1, resulting in a larger value
of the objective. We shall see in the experimental
part that this indeed would result in invalid approx-
imations. The SDP finally can be reformulated as
a convex program:

CP : minimize
∑

i<j

dijYij (1a)

subject to Yjj = 1 for all 1 ≤ j ≤ n, (1b)

Yij ≥ − 1
k−1 for all i 6= j (if k ≥ 3) and (1c)

Y = (Yij)1≤i,j≤n satisfies Y º 0. (1d)

Here, for the matrix Y ∈ Rn×n the last condition
Y º 0 means that Y is positive semidefinite. Effi-
cient solvers are available for this kind of optimiza-
tion problems, such as CSDP [1] or SeDuMi [10].
In order to implement the constraints Yij ≥ − 1

k−1
with these solvers, positive slack variables Zij have
to be introduced together with the equality con-
straints Yij − Zij = − 1

k−1 .
Finally, for obtaining the partitioning from the

vectors vj or the matrix Y , Frieze and Jerrum [4]
propose to sample k points z1, . . . , zk randomly on
Sn−1, representing the groups, and assign each vj to
the closest group, i.e., the closest zj . They show ap-
proximation guarantees generalizing those of Goe-
mans and Williamson [5]. In practice however, the
approximation guarantee does not necessarily im-
ply a good clustering, and applying the k-means
algorithm for clustering the vj gives better results
here. We use the kernel k-means (probably intro-
duced for the first time by [9]) which directly works
on the scalar products Yij = vi · vj , without need
of recovering the vj . We recapitulate the complete
algorithm:

Algorithm. Clustering as an SDP relaxation of
max-k-cut
Input: Distance matrix D = (dij) .
1. Solve the SDP via the CP (1a) through (1d).
2. Cluster the resulting matrix Y using kernel k-
means.

3 Normalized k-cut

The normalized cut criterion has emerged as one of
the most widely accepted cut criteria for clustering.
It is defined on a graph G = (V, W ) of pairwise sim-
ilarities rather than distances: W = {wij | wij ∈
[0, 1], 1 ≤ i, j ≤ n}. Here, we identify the edges
of G with their weights given by the similarities.
For a k-way-cut, i.e., a partition of V into k dis-
joint subsets S1, . . . , Sk, the norm-k-cut criterion is



defined as (cf. Yu and Shi [12])

1
k

k∑

`=1

∑
i∈S`,j /∈S`

wij∑
i∈S`,j∈V wij

= 1− 1
k

k∑

`=1

∑
i∈S`,j∈S`

wij∑
i∈S`,j∈V wij

=: 1− knassoc(S1, . . . , Sk), (2)

where knassoc(S1, . . . , Sk) is called the k-way nor-
malized associations criterion. Therefore, minimiz-
ing the norm-k-cut value is equivalent to maximiz-
ing the norm-knassoc value.

Optimizing (2) can be restated as solving an in-
teger problem, which is shown to be NP-hard. Yu
and Shi [12] therefore derive a spectral relaxation,
which we shall use in the following (see also [8]).
We briefly point to the fact that the EM proce-
dure used in this spectral relaxation algorithm is
different from, but nevertheless closely related to
the k-means algorithm used in the algorithm based
on max-k-cut and many other spectral clustering
algorithms. For details, please see [12].

4 Missing data

Assume that either the distance matrix D or the
similarity matrix W is not fully specified, but a
portion of the off-diagonal entries is missing. One
motivation for considering this case could be the
desire to save resources by computing only part
of the entries (e.g., for the Google distance dis-
cussed below, normal user registration permits only
a limited amount of queries a day). Suppose that
M = (Mij)1≤i,j≤n ∈ {0, 1}n×n is a matrix such
that Mii = 0 for all i = 1, . . . , n and Mij = 1 if and
only if dij (or wij , respectively) is not missing. As-
sume that the diagonal of D is zero and that of W
is one, and denote the ith column of a matrix X
by X[i]. Define the mean of the observed values,

D̄ =
1∑

i,j Mij

n∑

i=1

D[i]T M [i] or

W̄ =
1∑

i,j Mij

n∑

i=1

W [i]T M [i].

Then, replacing the missing entries in D with the
value D̄, the resulting distance matrix D is an un-
biased estimate for the original full matrix, if the
positions of the missing values are sampled from a
uniform distribution. Hence, the resulting max-k-
cut criterion for each partition is an unbiased es-
timate for the criterion respective to the original
matrix, and this is the best we can do to achieve
our goal that the optimal k-way-cuts of the original
and the completed matrix are the same.

Also in the case of a similarity matrix W , the
missing values should be replaced by the mean of
the observed values. Asymptotically for n → ∞,
this also yields an unbiased estimate for the norm-
k-cut criterion. However, the reasoning is more
difficult here, since the norm-k-cut criterion is a
sum of quotients, and for two random variables X
and Y , we have E[X/Y ] 6= E[X]/E[Y ]. Still, the
actual values of numerator and denominator are
close to their expectations, as one can verify us-
ing concentration inequalities, e.g., Hoeffding’s in-
equality. Then, for large n, with high probability
the quotient is close to the corresponding quantity
for the original (full) similarity matrix.

5 Max-k-cut versus norm-k-cut

In this section, we compare the max-cut and norm-
cut criteria on distance and similarity matrices that
are small enough to allow for a brute-force compu-
tation of the exact criteria. We start from 10 × 10
matrices D0 and W0 consisting of two blocks of each
size 5,
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.

From these matrices, distance matrices D and
similarity matrices W are obtained by (1) perturb-
ing the value by Gaussian noise of varying am-
plitude, (2) making the matrices symmetric and
rescaling them to the interval [0, 1], (3) removing
a fraction of the off-diagonal values and replacing
them by the mean of the remaining values. Another
matrix we use for the norm-cut criterion is a kernel
matrix obtained from the distance matrix using a
Gaussian kernel, WD = exp(− 1

2σ2 D2) (all opera-
tions are meant in the pointwise sense here). Since
the values of the distance matrix are normalized to
[0, 1], we use a fixed σ = 1

3 . The missing values
of WD are replaced by the mean of the observed
values in WD.

All values displayed in Figures 1 through 3 below
are means of 1500 independent samples. Figure 1
shows that, when using the max-cut criterion, the
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Figure 1: Average fraction of incorrect cluster-
ings by max-k-cut on a noisy distance matrix
with missing data.
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Figure 2: Difference of the average fraction of
incorrect clusterings by norm-k-cut relative to
max-k-cut, where the similarity matrix WD

was obtained from the distance matrix D as
WD = exp(− 1

2σ2 D2).

relative number of experiments that result in a dif-
ferent clustering than the originally intended one,
grows if either the noise amplitude or the fraction
of missing values increases. Of course this was ex-
pected. The max-cut criterion even yields always
the correct clustering if both noise amplitude and
missing data fraction are sufficiently low.

The same holds in principle for the norm-cut cri-
terion, both for the directly generated similarity
matrices W and for those matrices WD derived
from the distance matrix by means of the Gaus-
sian kernel. However, in Figure 2, where the av-
erage difference of the error rates of the norm-cut
clustering of WD to the max-cut clustering of D
is displayed, we can see: The norm-cut clustering
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Figure 3: Average fraction of incorrect clus-
terings by norm-k-cut: Difference of a WD =
exp(− 1

2σ2 D2) matrix to a directly generated
similarity matrix W .

always produces a higher error rate. The error rate
is even more significantly higher for large fractions
of missing values.

Did we introduce this increased error artificially
by the additional transformation with the Gaussian
kernel? Figure 3 indicates that this is not the case,
as it shows nowhere a significantly positive value.
Precisely, Figure 3 displays the difference of the er-
ror rates of the norm-cut clusterings of WD relative
to the directly generated matrices W .

Next, we turn to the computational resources re-
quired by the algorithms. Both max-cut and norm-
cut are NP-hard to optimize, so let us look at the
relaxations. The spectral decomposition of a n× n
matrix can be done in time O(n3), and if only the
top k eigenvectors are desired, the effort can be
even reduced to O(kn2) by an appropriate Lanc-
zos method. Therefore the norm-cut/spectral al-
gorithm has quadratic or (depending on the imple-
mentation) at most cubic complexity.

On the other hand, solving the SDP in order to
approximate max-cut is more expensive. The re-
spective complexity is O(n3+m3) (see [1]), where m
is the number of constraints. If k = 2, then m = n
and the overall complexity is cubic. However, for
k ≥ 3, we need m = O(n2) constraints, resulting in
an overall computational complexity of O(n6).

Finally, note that the analysis of the eigenvalues
of the similarity matrix can yield a quite useful cri-
terion to automatically determine the number k of
clusters, in case that k is not known. We do not
know of a corresponding method based on the dis-
tance matrix. We shall not further discuss this issue
here and assume in the following that k is known.



6 Experimental results with the
Google distance

We evaluate both clustering algorithms from Sec-
tions 2 and 3 on a set of natural language terms
clustering tasks [2, 8]. We used the following
datasets, which are all available at
http://www-alg.ist.hokudai.ac.jp/datasets.html .

The dataset people2 contains the names of 25
famous classical composers and 25 artists (i.e., two
intended clusters), people3 contains all names from
people2 plus 25 bestseller authors, people4 is ex-
tended by 25 mathematicians, and people5 ad-
ditionally contains 25 classical composers. The
dataset alt-ds contains not terms in natural lan-
guage, but rather titles and authors’ last names
from (almost all of) the papers from the ALT
2004 and DS 2004 conferences. Furthermore we
use the datasets math-med-fin containing 20 terms
each from the mathematical, medical, and finan-
cial terminology, finance-cs-j contains 20 finan-
cial and 10 computer science terms in Japanese,
phil-avi-d has 98 terms from philately and 100
terms from aviation in German, and math-cuisine
has 254 mathematical and 346 cuisine-related terms
(in English). The distance matrices of the last two
data sets are not fully given: in phil-avi only
50% of the entries are known, in math-cuisine it
is only 30%.

For the norm-cut based algorithm, we need to
convert the distance matrix to a similarity ma-
trix. We do this by using a Gaussian kernel
WD = exp(− 1

2σ2 D2) and set the width parame-
ter σ = D̄/

√
2, which gives good results in prac-

tice. Another almost equally good choice is σ = 1
3 ,

which can be justified by the fact that the Google
distance is scale invariant and mostly in [0, 1].

Table 1 shows the number of clustering errors,
i.e., the number of data points that are sorted to a
different group than the intended one, respectively,
on the data sets just described. One can see that
both algorithms perform well in principle, in fact
many of the “errors” displayed are in reality am-
biguities of the data, e.g., the only misclustering
in the math-med-fin data set concerns the term
“average” which was intended to belong to the
mathematical terms but ended up in the financial
group.

We remark that the constraints (1c) and the re-
sulting huge SDP size were really necessary in or-
der to get reasonable results: Without these con-
straints, e.g., clustering the people5 data set with
the SDP algorithm, the resulting average number
of errors is 36.
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Figure 4: Comparison of the max-cut/SDP
(dark bars) and the norm-cut/spectral algo-
rithm (light bars) with variable fraction of
missing data and variable number of clus-
ters and data set size, on the data sets
people2-people5.

Looking on the computation times in Table 1
(measured on a 3 Ghz Pentium IV), the spectral
method is clearly much faster than the SDP, in
particular for k = 3 or more clusters. Here the
quadratic number of constraints in the SDP and
the resulting 6th order computation time are re-
ally expensive. Actually, the available SDP soft-
ware (CSDP, SeDuMi) do not even work at all with
much larger problems if k ≥ 3.

Next we consider a situation with varying frac-
tion of missing data, shown in Figure 4 for
the data sets people2-people5. Here the max-
cut/SDP algorithm consistently outperforms the
norm-cut/spectral algorithm, in particular if the
number of clusters or the fraction of missing data
grows. The same can be observed for other data
sets. Both algorithms work quite well until about
70% missing data, after that the error increases
sharply. The figure is based on 20 independent sam-
ples of missing data each, where the missing data
locations were sampled in a balanced way such that
each row and column of the distance matrix has the
same fraction of missing values.

7 Relations to other work and
Conclusions

There are many papers on clustering based on sim-
ilarity matrices, in particular spectral clustering. It
seems that norm-(k-)cut is quite established as an
ideal criterion here, but there are different, such



data set information clustering errors and comp. time
name size #clusters missing data max-cut/SDP norm-cut/spectral
people2 50 2 0% 0 (4 sec) 0 (0.07 sec)
people3 75 3 0% 0 (∼ 90 sec) 2 (0.13 sec)
people4 100 4 0% 1 (∼ 876 sec) 5 (0.2 sec)
people5 125 5 0% 4 (∼ 2544 sec) 8 (0.35 sec)
alt-ds 64 2 0% 1 (3 sec) 1 (0.1 sec)
math-med-fin 60 3 0% 1 (∼ 36 sec) 1 (0.1 sec)
finance-cs-j 30 2 0% 4 (1.8 sec) 1 (0.05 sec)
phil-avi-d 198 2 50% 5 (12 sec) 6 (2 sec)
math-cuisine 600 2 70% 23 (137 sec) 22 (16.6 sec)

Table 1: Empirical comparison of the algorithms on the basic data sets (without removing additional data).

as min-max cut [3]. But also SDP has been used
in connection with spectral clustering and kernels:
[11] propose a SDP relaxation for norm-k-cut clus-
tering based on a similarity matrix, while [6] and
[7] use SDP for completion and learning of kernel
matrices, respectively.

To our knowledge, this is the first time that a dis-
tance matrix and a max-(k-)cut criterion for simi-
lar clustering tasks have been used, which is natu-
ral in many applications where distances are given
instead of similarities. We have seen that a SDP
relaxation works quite well and yields results which
tend to be superior to the spectral clustering re-
sults, in particular if the fraction of missing values
grows. However, the SDP relaxation is expensive
for k = 3 or more clusters. Thus we conclude with
the open question of how to obtain a more efficient
relaxation of max-k-cut, for instance a spectral one.
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