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Abstract

We study the learnability of enumerable families £ of uniformly recur-
sive languages in dependence on the number of allowed mind changes, i.e.,
with respect to a well-studied measure of efficiency. We distinguish be-
tween exactlearnability (£ has to be inferred w.r.t. £) and class preserving
learning (L has to be inferred w.r.t. some suitable chosen enumeration of
all the languages from L) as well as between learning from positive and
from both, positive and negative data.

The measure of efficiency is applied to prove the superiority of class pre-
serving learning algorithms over exact learning. We considerably improve
results obtained previously and establish two infinite hierarchies. Further-
more, we separate exact and class preserving learning from positive data
that avoids overgeneralization. Finally, language learning with a bounded
number of mind changes is completely characterized in terms of recursively
generable finite sets. These characterizations offer a new method to handle
overgeneralizations and resolve an open question of Mukouchi (1992).

1. Introduction

Inductive inference is the process of hypothesizing a general rule from eventu-
ally incomplete data. Within the last three decades it received much attention
from computer scientists. Nowadays inductive inference can be considered as
a form of machine learning with potential applications to artificial intelligence

(cf. e.g. Angluin and Smith, 1987, Osherson, Stob and Weinstein, 1986).

The present paper deals with inductive inference of formal languages, a field
in which many interesting and sometimes surprising results have been obtained
(cf. e.g. Case and Lynes, 1982, Case, 1988, Fulk, 1990). Looking at potential
applications it seemed reasonable to restrict ourselves to study language learning
of families of uniformly recursive languages. Recently, this topic has attracted



much attention (cf. e.g. Shinohara, 1990, Kapur and Bilardi, 1992, Lange and
Zeugmann, 1992, Mukouchi, 1992). The general situation investigated in lan-
guage learning can be described as follows: Given more and more information
concerning the language to be learnt, the inference device has to produce, from
time to time, a hypothesis about the phenomenon to be inferred. The set of
all admissible hypotheses 1s called space of hypotheses. Furthermore, the in-
formation given may contain only positive ezamples, i.e., exactly all the strings
contained in the language to be recognized, as well as both positive and nega-
tive examples, i.e., all strings over the underlying alphabet which are classified
with respect to their containment to the unknown language. The sequence of
hypotheses has to converge to a hypothesis correctly describing the object to be
learnt. Consequently, the inference process is an ongoing one. If dy,ds, ... de-
notes the sequence of data the inference machine M is successively fed with, then
we use hiq, hs, ... to denote the corresponding hypotheses produced by M. We
say that M changes its mind, or synonymously, M performs a mind change, iff
h; # h;y1. The number of mind changes is a measure of efficiency and has been
introduced by Barzdin and Freivalds (1972). Subsequently, this measure has
been intensively studied. Barzdin and Freivalds (1972) proved the following re-
markable result concerning inductive inference of enumerable classes of recursive
functions. Gold’s (1967) identification by enumeration technique yields success-
ful inference within the enumeration but n — 1 mind changes may be necessary
to learn the nth function. On the other hand, there are a learning algorithm
and a space of hypotheses such that the nth function in enumeration can be
learnt with at most O(logn) + o(logn) mind changes. This bound is optimal.
Their result impressively shows that a careful choice of the space of hypotheses
may considerably influence the efficiency of learning. Moreover, Case and Smith
(1983) established a hierarchy in terms of mind changes and anomalies. Wie-
hagen, Freivalds and Kinber (1984) used the number of mind changes to prove
advantages of probabilistic learning algorithms over deterministic ones. Gasarch
and Velauthapillai (1992) studied active learning in dependence on the number
of mind changes.

Hence, it is only natural to ask whether or not this measure of efficiency is of
equal importance in language learning. Answering this question is by no means
trivial, since, in general, at least inductive inference from positive data may be-
have totally different than inductive inference of recursive functions does (cf. e.g.
Case, 1988, Fulk, 1990). This is already caused by the fact that Gold’s (1967)
identification by enumeration technique does not necessarily succeed. The main
new problem consists in detecting or avoiding overgeneralizations, i.e., hypothe-
ses describing proper supersets of the target language. Mukouchi (1992) studied
the power of mind changes for learning algorithms that infer indexed families of
recursive languages within the given enumeration. Moreover, he characterized
language learning with a bounded number of mind changes in case that equality
of languages within the given enumeration is decidable.

What we present in the sequel is an almost complete investigation of the power
of mind changes. For the sake of presentation we introduce some notations. An



indexed family £ is said to be ezactly learnable if there is a learning algorithm
inferring £ with respect to £ itself. Furthermore, £ is learnable by a class
preserving learning algorithm A, if there is a space G = (G);em+ of hypotheses
such that any G describes a language from £, and M infers £ with respect to
G. In other words, any produced hypothesis is required to describe a language
contained in £ but we have the freedom to use a possibly different enumeration
of £ and possibly different descriptions of any L € L.

We compare exact and class preserving language learning in dependence on
the allowed number of mind changes as well as in dependence on the choice of
the space of hypotheses and on information presentation. The strongest possible
separation is established, i.e., we prove that there are indexed families £ which
are exactly learnable from positive data with at most ¥ + 1 mind changes but
that are not class preservingly learnable from positive and negative data with at
most k& mind changes. This result sheds considerably more light on the power of
one additional mind change than Mukouchi’s (1992) hierarchy of exact learning
in terms of mind changes. Furthermore, we compare exact and class preserving
language learning avoiding overgeneralization and separate them (cf. Corollary
10). Applying the proof technique developed we show that exact language learn-
ing from positive data with a bounded number of mind changes is always less
powerful than class preserving inference restricted to the same number of mind
changes (cf. Theorem 11). Finally, we completely characterize class preserving
language learning in terms of recursively generable finite sets (cf. Theorem 14
and 15). In particular, we offer a different possibility to handle overgeneraliza-

tion than Angluin (1980) did.

2. Preliminaries

By IN = {0,1,2,3,...} we denote the set of all natural numbers. Moreover,
we set INT = IN'\ {0}. In the sequel we assume familiarity with formal language
theory. By X we denote any fixed finite alphabet of symbols. Let X* be the free
monoid over X.. The length of a string s € £* is denoted by |s|. Any subset
L C ¥* is called a language. By co — L we denote the complement of L. Let
L be a language and ¢ = s1, $3, 53, ... an infinite sequence of strings from X*
such that range(t) = {s; | k € Nt} = L. Then ¢ is said to be a tezt for L or,
synonymously, a positive presentation. Furthermore, let i = (s1,51),(s2,b2), ...
be a sequence of elements of ©* x {4, —} such that range(i) = {sy | k € NT} =
it = {sg | (sk,bk) = (sk,+),k € Nt} = L and i~ = {s;, | (sg,bx) =
(sk,—),k € Nt} = co— L. Then we refer to i as an informant. If L is classified
via an informant then we also say that L is represented by positive and negative
data. Moreover, let ¢, i be a text and an informant, respectively, and let =
be a number. Then %, 7, denote the initial segment of ¢ and 7 of length z,
respectively.

We restrict ourselves to deal exclusively with indexed families of recursive
languages defined as follows (c¢f. Angluin, 1980):

A sequence Lq, Lo, L3, ... is said to be an indezed family L of recursive languages



provided all L; are non—empty and there is a recursive function f such that for
all numbers j and all strings s € ©* we have

(1, if sel;
f(],s)_{ 0 , otherwise.

In the sequel we often denote an indexed family and its range by the same
symbol £. What is meant will be clear from the context.

As in Gold (1967) we define an inductive inference machine (abbr. IIM) to be
an algorithmic device which works as follows: The ITM takes as its input larger
and larger initial segments of a text ¢ (an informant 7) and it either requires
the next input string, or it first outputs a hypothesis, i.e., a number encoding
a certain computer program, and then it requires the next input string (cf. e.g.
Angluin, 1980).

At this point we have to clarify what space of hypotheses we should choose.
Gold (1967) and Wiehagen (1977) pointed out that there is a difference in what
can be inferred in dependence on whether we want to synthesize in the limit
grammars or decision procedures. Case and Lynes (1982) investigated this phe-
nomenon in detail. As it turns out, IIMs synthesizing grammars can be more
powerful than those ones which are requested to output decision procedures.
However, in the context of identification of indexed families both concepts are of
equal power as long as uniform decidability of membership is required. Never-
theless, we decided to require the ITMs to output grammars, since this learning
goal fits better with the intuitive idea of language learning. Furthermore, since
we exclusively deal with indexed families £ = (L;j);emn+ of recursive languages
we almost always take as space of hypotheses an enumerable family of grammars
G1,G5,Gs, ... over the terminal alphabet ¥ satisfying £ = {L(G;) | j € INt}.
Moreover, we require that membership in L(G}) is uniformly decidable for all
j € INT and all strings s € £*. The IIM outputs numbers j which we interpret
as Gj.

A sequence (jg)zeN+ of numbers is said to be convergent in the limit iff there
is a number j such that j, = j for almost all numbers z.

Definition 1. (Gold, 1967) Let L be an indezed family of languages, L € L,
and let G = (Gj)jen+ be a space of hypotheses. An IIM M LIM —TXT (LIM —
INF)-identifies L on a textt (an informant i) with respect to G iff it almost
always outputs a hypothesis and the sequence (M (t))semn+ ((M(3z))zem+) con-
verges in the limit to a number j such that L = L(G}).

Moreover, M LIM — TXT (LIM — INF)-identifies L, iff M LIM — TXT
(LIM — INF)—identifies L on every text (informant) for L. We set:

LIM —TXT(M) = {L € L | M LIM — TXT — identifies L} and define
LIM — INF(M) analogously.

Finally, let LIM — TXT (LIM — INF) denote the collection of all families
L of indexed families of recursive languages for which there is an IIM M such
that £ C LIM — TXT(M) (£ C LIM — INF(M)).

Definition 1 could be easily generalized to arbitrary families of recursively



enumerable languages (cf. Osherson et al., 1986). Nevertheless, we exclusively
consider the restricted case defined above, since our motivating examples are all
indexed families of recursive languages. Moreover, it may be well conceivable
that the weakening of £ = {L(G;) | j € N*} to £ C {L(Gy) | j € Nt} may
increase the collection of inferable indexed families. However, it does not, as the
following proposition shows.

Proposition 1. Let £ be an indexed family and let G = (Gj)jen+ be any
space of hypotheses such that £L C {L(G;) | j € Nt} and membership in L(G})
1s uniformly decidable. Then we have: If there is an IIM M inferring L on text
(informant) with respect to G, then there is also an IIM M that learns £ on text
(informant) with respect to L.

Nevertheless, the proof of Proposition 1 does not preserve the number of mind
changes. As we shall see later, the efficiency of learning may be well influenced
by the choice of the space of hypotheses.

Within the next definition we consider the case that the number of allowed
mind changes is bounded by an a priorily fixed number.

Definition 2. (Barzdin and Freivalds, 1972) Let £ be an indezed family
of languages, G = (Gj)jew+ @ space of hypotheses, k € INU {x}, and I € L.
An IIM M LIMy — TXT (LIMy — INF)—identifies L on text t (informant i)
with respect to G iff for every text t (informant i) the following conditions are
fulfilled:

(1) L € LIM = TXT(M) (L € LIM — INF(M))

(2) For any L € L and any text t (informant i) of L the IIM M performs,
when fed with t (i), at most k (k = * means at most finitely many) mind
changes.

LIMy —TXT(M), LIMy — INF(M) as well as LIMy — TXT and LIMy —
INF are defined in the same way as above.

Obviously, LIM, —TXT = LIM —TXT as wellas LIM, —INF = LIM —
INF.

Next to we sharpen Definition 1 in additionally requiring that any mind
change has to be caused by a “provable misclassification” of the hypothesis to
be rejected.

Definition 3. (Angluin, 1980) Let L be an indezed family, L € £, and let
G = (Gj)jen+ be a space of hypotheses. An IIM M CONSERVATIVE-TXT
tdentifies L on textt with respect to G iff for every textt the following conditions
are satisfied:

(1) L € LIM = TXT(M)

(2) If M on input t, makes the guess j, and then makes the guess jpyr # jo at
some subsequent step, then L(G;,) must fail to contain some string from
tz-{-k

CONSERVATIVE-TXT(M) as well as the collections of sets CONSERV A-
TIVE-TXT are analogously defined as above.



For any mode of inference defined above we use the prefix £ to denote exact
learning, i.e., the fact that £ has to be inferred with respect to L itself. For
example, ELI My —T XT denotes exact learnability with at most £ mind changes
from text. Despite the fact that LIM —TXT = FLIM—-TXT, LIMy—TXT =
ELIMy — TXT as well as LIM — INF = ELIM — INF, LIMy— INF =
ELIMy— INF none of the analogous statements is true for the other modes of
inference defined above, as we shall see.

3. Separations

The aim of the present chapter is to relate the different types of language
learning defined above one to the other.

Theorem 1. (Mukouchi, 1992)
ELIMy—-TXT C ELIM,-TXT C ELIM;—-TXT C ...C ELIM,-TXT

We want to strengthen the theorem above in two directions. Our first sharp-
ening is a refinement of Theorem 1.

Theorem 2. Jpon LIMy —TXT C LIM —TXT
The proof of Theorem 2 allows the following corollary.
Corollary 3. ECONSERVATIVE-TXT\Upen LIMy —TXT # 0

Our next theorem shows that, in general, one additional mind change can
neither be traded versus information presentation nor versus an appropriate
choice of the space of hypotheses.

Theorem 4. For allk >0: ELIMpy1 — TXT\ LIM;, — INF #0
The following hierarchy is an immediate consequence of the latter theorems.

LIMy—-TXTCLIM; —TXTC..CLIM, -TXTC..C UkE]NLI]Wk -
TXTCLIM-TXT

We have shown that LIMy — INF CCONSERVATIVE-TXT (cf. Lange,
Zeugmann and Kapur, 1992). Surprisingly, it makes a real difference, if an TIM
is allowed to change its mind at most one time.

Theorem 5. FELIM; —INF\LIM —TXT #0

Moreover, LIM—TXT C LIMy—INF. Since LIMy—TXT C LIMy—INF
Theorem 5 yields the following corollary.

Corollary 6.

(1) Forallk >0, LIM, —TXT C LIM, — INF

(2) LIMy— INF C LIMy —INF C LIMy —INF C ...C LIM, — INF
As above, this result can be sharpened, too.
Lemma 7. Jyen LIMy —INF CLIM —INF

The latter result has the following consequence.
Corollary 8. LIM —TXT # Uke]N LIMy — INF.



Summarizing the results above we obtain the following hierarchy:

LIMo—INF C LIMy —INF C ... C LIMy = INF C ... C Upen LIMy, —
INF CLIM—-INF

Finally, we want to compare exact and class preserving language learning
with an a priori bounded number of mind changes. Moreover, we compare
conservatively working IIMs with those ones performing a bounded number of
mind changes. The next theorems and a corollary thereof relate these different
modes of inference one to the other. In particular, we show class preserving
learning with at most one mind change has to be performed by conservatively
working ITMs. Moreover, one mind change is already sufficient to beat exact
conservative learning.

Theorem 9.

(1) LIM, = TXT C CONSERVATIVE-TXT
(2) LIMy — TXT \ ECONSERVATIVE-TXT #

The following corollary is an immediate consequence of the latter theorem.
Corollary 10.
(1) ECONSERVATIVE-TXT C CONSERVATIVE-TXT

(2) ELIM, —TXT C LIM, —TXT

Finally, a nontrivial modification of the proof technique above may be applied
to obtain the desired separation of exact and class preserving language learning
with a bounded number of mind changes.

Theorem 11. For all k > 1:
(1) ELIMy — TXT C LIMy, — TXT

(2) ELIMy —INF C LIMy — INF

However, some problems remained open. The most intriguing question is
whether LIMy —TXT \ CONSERVATIVE-TXT # 0. In Lange, Zeugmann and
Kapur (1992) we have shown that there is an indexed family £ € LIM —TXT\
CONSERVATIVE-TXT. Nevertheless, the proof given there does not yield any
a priori bound for the number of allowed mind changes. On the other hand, a
careful analysis of our proof showed that the IIM witnessing £L € LIM —TXT
does not work semantically finite. An IIM is said to work semantically finite
iff for all L € £, any text ¢t of L the following condition is satisfied: Let j be
the hypothesis the sequence (M (ty))yemn+ converges to and let z be the least
number such that M(¢,) = j. Then L(Gun,)) # L(G;) for all y < z. That
means, a semantically finite working IIM is never allowed to reject a guess that
is correct for the language to be learnt. As it turns out, this phenomenon is a
general one.

Theorem 12. Let £ be an indexed family, and let G = (Gj)jen+ be a
space of hypotheses. If there is an IIM M working semantically finite such that
LE€LIM —TXT(M), then L € CONSERVATIVE-TXT.



Finally, we obtain the following characterization of conservatively working
ITMs.

Theorem 13. Let £ be an indexed family. Then L € CONSERVATIVE-
TXT iff there 1s a space G of hypotheses and an IIM M inferring £ semantically
finite 1n the limit with respect to G.

4. Characterization Theorems

Characterizations play an important role in that they lead to a deeper insight
into the problem how algorithms performing the inference process may work (cf.
e.g. Blum and Blum, 1975, Wiehagen, 1977, Angluin, 1980, Zeugmann, 1983,
Jain and Sharma, 1989). Moreover, characterizations may help gain a better
understanding of the properties objects should have in order to be inferable in
the desired sense. A very illustrative example is Angluin’s (1980) characteriza-
tion of those indexed families for which learning in the limit from positive data
is possible. In particular, this theorem provides insight into the problem how
to deal with overgeneralizations. Our next theorem offers an alternative way to
resolve this question. We characterize LIMy — T X T in terms of recursively gen-
erable finite tell-tales. A family of finite sets (7;);emn+ is said to be recursively
generable, iff there is a total effective procedure g which, on input j, generates
all elements of T; and stops. If the computation of g(j) stops and there is no
output, then 7} is considered to be empty. Finally, for notational convenience we
use L(G) to denote {L(G;) | j € INT} for any space G = (G});jew+ of hypotheses.

Theorem 14. Let L be an indezed family of recursive languages, and k €
IN. Then: L € LIMy — TXT 1f and only if there is a space of hypotheses
G = (Gj)jen+, a computable relation < over INt, and a recursively generable

famaly (Tj)jen\H of finite and non—empty tell-tale sets such that
(1) range(L) = L((j)
(2) Forall z€ N+, T, C L(G.).

(3) Forall L€ L, any z € Nt if T, C L, L(G,) # L, then there is a j such
that z < j, T, CTj and L(G;) = L.

(4) For all L € L, there is no sequence (z;)j=1,_m with m > k+ 1 such that

zj < zj41 as well as Tz]. C sz+1 CL, forallj <m.
Next we give a characterization of LIM} — IN F. For that purpose we define
a relation < over pairs of sets as follows. Let A, B, C, D be sets. Then (A, B) <
(C,D)iff ACC, BC Dand AC C or BC D. Note that < is computable
if A,B,C,D are finitely generable. Now we are ready to state the announced
characterization.

Theorem 15. Let £ be an indezed famuly of recursive languages and k € IN.
Then: £ € LIMy — INF iff there are a space of hypotheses G = (G;)jew+ and

recursively generable families (Pj);jen+ and (Nj)jen+ of finite sets such that

(1) range(L) = L((j)



(2) Forall j € INt, () £ P; C L(G;) and N; C co — L(Gy)

(3) Forall L € L and z € INt, lfp,; CL# L(G’z) and N, C co— L, then
there is a j € INT such that (P,, N,) < (Pj, N;) as well as L = L(G).

(4) For all L € L there is no sequence (sz)NZj)jzlwm with m > k + 1 such
that (sz,sz) ~< (sz+1)NZj+1) < (L,co—L), for all j < m.

5. Conclusions and Open Problems

We have dealt with the learnability of enumerable families £ of uniformly
recursive languages in dependence on the number of allowed mind changes. Ap-
plying this measure of efficiency we could prove that class preserving learning
algorithms are superior to exact learnability. Moreover, in improving Mukouchi’s
(1992) results we established two new infinite hierarchies. On the other hand,
we also proved that even a single additional mind change can neither be com-
pensated by a suitable choice of the space of hypotheses nor by information
presentation. Furthermore, we have separated exact and class preserving lan-
guage learning that avoids overgeneralization. Finally, we presented a complete
characterization of language learning in terms of recursively generable finite sets.
These theorems resolved the problem that remained open in Mukouchi (1992).
Additionally, they offer a new approach to handle overgeneralized hypotheses.
However, some problems remained open. It would be very interesting to know
how many mind changes are necessary to learn indexed families that cannot be
inferred by class preserving conservatively working ITMs.
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