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Abstract

An algorithm for learning a subclass of erasing regular pattern languages is pre-
sented. On extended regular pattern languages generated by patterns π of the
form x0α1x1 . . . αmxm , where x0, . . . , xm are variables and α1, . . . , αm strings of
terminals of length c each, it runs with arbitrarily high probability of success using
a number of examples polynomial in m (and exponential in c ). It is assumed that
m is unknown, but c is known and that samples are randomly drawn according to
some distribution, for which we only require that it has certain natural and plausible
properties.

Aiming to improve this algorithm further we also explore computer simulations of
a heuristic.

1 Supported in part by NSF grant number CCR-0208616 and USDA IFAFS grant
number 01-04145.
2 Supported in part by NUS grant number R252-000-127-112.
3 Supported in part by NUS grant number R252-000-212-112. Most work was done
while F. Stephan stayed with the National ICT Australia which is funded by the
Australian Government’s Department of Communications, Information Technology
and the Arts and the Australian Research Council through Backing Australia’s
Ability and the ICT Centre of Excellence Program.

Preprint submitted to Elsevier Science 4 August 2006



1 Introduction

The pattern languages were formally introduced by Angluin [2]. A pattern
language is (by definition) one generated by all the positive length substitution
instances in a pattern, such as, for example, 01xy211zx0 — where the variables
(for substitutions) are letters and the terminals are digits.

Since then, much work has been done on pattern languages and extended pat-
tern languages (which also allow empty substitutions) as well as on various
special cases of the above, see, for example, [2,6–8,13,15,22–25,27–29,32,35]
and the references therein. Furthermore, several authors have also studied fi-
nite unions of pattern languages (or extended pattern languages), unbounded
unions thereof and also of important subclasses of (extended) pattern lan-
guages, see, for example, [5,10,14,33,36,39]. Related work deals also with tree
patterns, see, for example, [1,10,12].

Nix [21] as well as Shinohara and Arikawa [34,35] outline interesting applica-
tions of pattern inference algorithms. For example, pattern language learning
algorithms have been successfully applied toward some problems in molec-
ular biology, see [31,35]. Pattern languages and finite unions of pattern lan-
guages turn out to be subclasses of Smullyan’s [37] Elementary Formal Systems
(EFSs), and Arikawa, Shinohara and Yamamoto [3] show that the EFSs can
also be treated as a logic programming language over strings. The investiga-
tions of the learnability of subclasses of EFSs are interesting because they yield
corresponding results about the learnability of subclasses of logic programs.
Hence, these results are also of relevance for Inductive Logic Programming
(ILP) [4,16,18,20]. Miyano et al. [19] intensively studied the polynomial-time
learnability of EFSs.

In the following we explain the main philosophy behind our research as well
as the ideas by which it emerged. As far as learning theory is concerned,
pattern languages are a prominent example of non-regular languages that can
be learned in the limit from positive data (see Angluin [2]). Gold [9] has
introduced the corresponding learning model. Let L be any language; then a
text for L is any infinite sequence of strings containing eventually all members
of L and nothing else. The information given to the learner are successively
growing initial segments of a text. Processing these segments, the learner has
to output hypotheses about L. The hypotheses are chosen from a prespecified
set called hypothesis space. The sequence of hypotheses has to converge to a
correct description of the target language.

Angluin [2] provides a learner for the class of all pattern languages that is
based on the notion of descriptive patterns. Here a pattern π is said to be
descriptive (for the set S of strings contained in the input provided so far)
if π can generate all strings contained in S and no other pattern having this
property generates a proper subset of the language generated by π. However no
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efficient algorithm is known for computing descriptive patterns. Thus, unless
such an algorithm is found, it is even infeasible to compute a single hypothesis
in practice by using this approach.

Therefore, one has considered restricted versions of pattern language learning
in which the number k of different variables is fixed, in particular the case of a
single variable. Angluin [2] gives a learner for one-variable pattern languages
with update time O(`4 log `), where ` is the sum of the length of all examples
seen so far. Note that this algorithm is also based on computing descriptive
patterns even of maximum length. Giving up the idea to find descriptive pat-
terns of maximum length but still computing descriptive patterns, Erlebach et
al. [8] arrived at a one-variable pattern language learner having update time
O(`2 log `), where ` is as above. Moreover, they also studied the expected total
learning time of a variant of their learner and showed an O(|π|2 log |π|) up-
per bound for it, where π is the target pattern. Subsequently, Reischuk and
Zeugmann [25] designed a one-variable pattern language learner achieving the
optimal expected total learning time of O(|π|) for every target pattern π and
for almost all meaningful distributions. Note that the latter algorithm does
not compute descriptive patterns.

Another important special case extensively studied are the regular pattern
languages introduced by Shinohara [32]. These are generated by the regular
patterns, that is, patterns in which each variable that appears, appears only
once. The learners designed by Shinohara [32] for regular pattern languages
and extended regular pattern languages also compute descriptive patterns
for the data seen so far. These descriptive patterns are computable in time
polynomial in the length of all examples seen so far.

When applying these algorithms in practice, another problem comes into play,
that is, all the learners mentioned above are only known to converge in the
limit to a correct hypothesis for the target language. However the stage of
convergence is not decidable. Thus, a user never knows whether or not the
learning process has already been finished. Such an uncertainty may not be
tolerable in practice.

Consequently, one has tried to learn the pattern languages within Valiant’s
[38] PAC model. Shapire [30] could show that the whole class of pattern lan-
guages is not learnable within the PAC model unless P/poly = NP/poly for
any hypothesis space that allows a polynomially decidable membership prob-
lem. Since membership is NP -complete for the pattern languages, his result
does not exclude the learnability of all pattern languages in an extended PAC
model, that is, a model in which one is allowed to use the set of all patterns
as hypothesis space.

However, Kearns and Pitt [13] have established a PAC learning algorithm
for the class of all k-variable pattern languages, that is, languages generated
by patterns in which at most k different variables occur. Positive examples
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are generated with respect to arbitrary product distributions while negative
examples are allowed to be generated with respect to any distribution. Ad-
ditionally, the length of substitution strings has been required to be poly-
nomially related to the length of the target pattern. Finally, their algorithm
uses as hypothesis space all unions of polynomially many patterns that have
k or fewer variables – more precisely, the number of allowed unions is at
most poly(|π|, s, 1/ε, 1/δ, |Σ|), where π is the target pattern, s the bound on
the length of substitution strings, ε and δ are the usual error and confidence
parameter, respectively, and Σ is the alphabet of terminals over which the
patterns are defined. The overall learning time of their PAC learning algo-
rithm is polynomial in the length of the target pattern, the bound for the
maximum length of substitution strings, 1/ε, 1/δ and |Σ|. The constant in
the running time achieved depends doubly exponential on k and thus, their
algorithm becomes rapidly impractical when k increases.

As far as the class of extended regular pattern languages is concerned, Miyano
et al. [19] showed the consistency problem to be NP -complete. Thus, the
class of all extended regular pattern languages is not polynomial-time PAC
learnable unless RP = NP for any learner that uses the regular patterns as
hypothesis space.

This is even true for REGPAT1, that is, the set of all extended regular pattern
languages where the length of terminal strings is 1, see below for a formal
definition. The latter result follows from [19] via an equivalence proof to the
common subsequence languages studied in [17].

In the present paper we also study the special cases of learning the extended
regular pattern languages. On the one hand, they already allow non-trivial
applications. On the other hand, it is by no means easy to design an efficient
learner for these classes of languages as noted above. Therefore, we aim to
design an efficient learner for an interesting subclass of the extended regular
pattern languages which we define next.

Let Lang(π) be the extended pattern language generated by pattern π. For
c > 0, let REGPATc be the set of all Lang(π) such that π is a pattern of the
form x0α1x1α2x2 . . . αmxm, where each αi is a string of terminals of length c
and x0, x1, x2, . . . , xm are distinct variables.

We consider polynomial time learning of REGPATc for various data presenta-
tions and for natural and plausible probability distributions on the input data.
As noted above, even REGPAT1 is not polynomial-time PAC learnable unless
RP = NP . Thus, one has to restrict the class of all probability distributions.
Then, the conceptional idea is as follows (see [25–27]).

We explain it here for the case mainly studied in this paper, learning from
text (in our notation above). One looks again at the whole learning process
as learning in the limit. So, the data presented to the learner are growing
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initial segments of a text. However, instead of allowing arbitrary text, we con-
sider texts drawn according to some fixed probability distribution. Next, one
determines the expected number of examples needed by the learner until con-
vergence. Let E denote this expectation. Assuming prior knowledge about the
underlying probability distribution, E can be expressed in terms the learner
may use conceptually to calculate E. Using Markov’s inequality, one easily
sees that the probability to exceed this expectation by a factor of t is bounded
by 1/t. Thus, we introduce, as in the PAC model, a confidence parameter δ.
Given δ, one needs roughly E/δ examples to converge with probability at least
1 − δ. Knowing this, there is of course no need to compute any intermediate
hypotheses. Instead, now the learner firstly draws as many examples as needed
and then it computes just one hypothesis from it. This hypothesis is output,
and by construction we know it to be correct with probability at least 1− δ.
Thus, we arrive at a learning model which we call probabilistically exact learn-
ing 4 , see Definition 7 below. Clearly, in order to have an efficient learner, one
also has to guarantee that this hypothesis can be computed in time polyno-
mial in the length of all strings seen. For arriving at an overall polynomial-time
learner, it must be also ensured that E is polynomially bounded in a suitable
parameter. We use the number of variables occurring in the regular target
pattern, the maximal length of a terminal string in the pattern and a term
describing knowledge about the probability distribution as such a parameter.

We shall provide a learner which succeeds with high probability in polynomial
time on every text which is drawn to any admissible probability distribution
prob. An admissible distribution prob has to satisfy, besides some normality
conditions, also the condition

prob(σ) ≥ |Σ|−|σ|

pol(|σ|)
for σ ∈ L, where

∞∑
n=0

1

pol(n)
≤ 1 .

Here, the polynomial pol is {2, 3, . . .}-valued and increasing, the language L is
a subset of Σ∗ and the pause-symbol # has the probability 1−∑σ∈L prob(σ).
This condition guarantees that long examples are still sufficiently frequent.
The more precise requirements for prob and its texts are given in Definition 5.

Furthermore, probabilistically exact learnability from text for non-empty lan-
guages implies probabilistically exact learnability from pause-free texts and
informants, where pause-free texts are those generated by probability distri-
butions satisfying

∑
σ∈L prob(σ) = 1.

Our algorithm is presented in detail in Section 3 below and runs with all
three models of data presentation in a uniform way. The complexity bounds
are described more exactly there, but, basically, the algorithm can be made
to run with arbitrarily high probability of success on extended regular lan-
guages generated by patterns π of the form x0α1x1...αmxm for unknown m

4 This model has also been called stochastic finite learning (see [25–27]).
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but known c, from number of examples polynomial in m (and exponential in
c), where α1, ..., αm ∈ Σc. Here Σc denotes the set of all strings over Σ of
length c.

Note that having our patterns defined as starting and ending with variables
is not crucial. One can just handle patterns starting or ending with terminals
easily by looking at the data and seeing if they have a common suffix or prefix.
Our results more generally hold for patterns alternating variables and fixed
length terminal strings, where the variables are not repeated. Our statements
above and in Section 3 below involving variables at the front and end are more
for ease of presentation of proof.

While the main goal of the paper is to establish some polynomial bound for
the learning algorithm, Section 4 is dedicated to giving more explicit bounds
for the basic case that Σ = {0, 1} and c = 1. The probability distribution
satisfies

prob(σ) =
|Σ|−|σ|

(|σ|+ 1)(|σ|+ 2)
for σ ∈ L and prob(#) = 1−prob(L). Although the bounds for this basic case
are much better than in the general case, it seems that the current implemen-
tation of the algorithm is even more efficient than the improved theoretical
bounds suggest. Experiments have also been run for alphabets of size 3, 4, 5
and the pattern language classes REGPAT2 and REGPAT3.

2 Preliminaries

Let N = {0, 1, 2, . . .} denote the set of natural numbers and let N+ = N \ {0}.
For any set S, we write |S| to denote the cardinality of S. Furthermore, for all
real numbers s, t with s < t we use (s, t) to denote the open interval generated
by s and t, that is, (s, t) = {r | r is a real number and s < r < t}.

Let Σ be any finite alphabet such that |Σ| ≥ 2 and let V be a countably
infinite set of variables such that Σ ∩ V = ∅. Following a tradition in formal
language theory, the elements of Σ are called terminals. By Σ∗ we denote the
free monoid over Σ, and we set Σ+ = Σ∗ \ {λ}, where λ is the empty string.
As above, Σc denotes the set of strings over Σ with length c. We let a, b, . . .
range over terminal symbols from Σ and α, σ, τ, η over terminal strings from
Σ∗. x, y, z, x1, x2, . . . range over variables. Following Angluin [2], we define
patterns and pattern languages as follows.

Definition 1 A term is an element of (Σ ∪ V )∗. A ground term (or a word
or a string) is an element of Σ∗. A pattern is a non-empty term.

A substitution is a homomorphism from terms to terms that maps each symbol
a ∈ Σ to itself. The image of a term π under a substitution θ is denoted πθ.
We next define the language generated by a pattern.
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Definition 2 The language generated by a pattern π is defined as Lang(π) =
{πθ ∈ Σ∗ | θ is a substitution}. We set PAT = {Lang(π) | π is a pattern}.

Note that we consider extended (or erasing) pattern languages, that is, a
variable may be substituted with the empty string λ. Though allowing empty
substitutions may seem a minor generalization, it is not. Learning erasing
pattern languages is more difficult for the case studied within this paper than
learning non-erasing ones. For the general case of arbitrary pattern languages,
already Angluin [2] showed the non-erasing pattern languages to be learnable
from positive data. However, Reidenbach [22] proved that even the terminal-
free erasing pattern languages are not learnable from positive data if |Σ| = 2.
Reidenbach [23,24] extended his results: The terminal-free erasing pattern
languages are learnable from positive data if |Σ| ≥ 3; general erasing pattern
languages are not learnable for alphabet sizes 3 and 4.

Definition 3 (Shinohara[32]) A pattern π is said to be regular if it is of
the form x0α1x1α2x2 . . . αmxm, where αi ∈ Σ∗ and xi is the i-th variable. We
set REGPAT = {Lang(π) | π is a regular pattern}.

Definition 4 Suppose c ∈ N+. We define

(a) regm
c = {π | π = x0α1x1α2x2 . . . αmxm, where each αi ∈ Σc}.

(b) regc =
⋃

m regm
c .

(c) REGPATc = {Lang(π) | π ∈ regc}.

Next, we define the learning model considered in this paper. As already ex-
plained in the introduction, our model differs to a certain extent from the
PAC model introduced by Valiant [38] which is distribution independent. In
our model, the learner has a bit of background knowledge concerning the class
of allowed probability distributions. So, we have a stronger assumption, but
also a stronger requirement, that is, instead of learning an approximation for
the target concept, our learner is required to learn it exactly. Moreover, the
class of erasing regular pattern languages is known not to be PAC learnable,
see [19] and the discussion within the introduction.

Definition 5 Let #, # /∈ Σ, denote a pause-symbol and D ⊆ Σ∗∪{#}. Given
a polynomial pol, a probability distribution prob on D is called pol-regular if

(a) prob(σ) ∗ |Σ||σ| ≥ 1/pol(|σ|) for all σ ∈ D \ {#} and
(b) prob(σ) ∗ |Σ||σ| ≤ prob(τ) ∗ |Σ||τ | for all σ, τ ∈ D \ {#} with |σ| ≥ |τ |.

Note that a distribution prob on D generates only elements from D. The
second item in the definition of the pol-regular probability distribution enforces
that in D strings of the same length have the same probability, besides the
distribution being nonincreasing in length of the data.

Next, we define the different sources of information for the learners considered
in this paper.
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Definition 6 Let L ⊆ Σ∗ be a language.

(a) A probabilistic text for L with parameter pol is an infinite sequence
drawn with respect to any pol-regular distribution prob on the domain
D = L ∪ {#}.

(b) If L 6= ∅ then a probabilistic pause-free text for L with parameter pol is a
probabilistic text for L with parameter pol with respect to any pol-regular
distribution prob on the domain D = L.

(c) A probabilistic informant for L with parameter pol is an infinite sequence
of pairs (σ, L(σ)) where σ is drawn according to a pol-regular distribution
prob on D = Σ∗, L(σ) is 1 for σ ∈ L and L(σ) is 0 for σ /∈ L.

In the following, we shall frequently omit the words “probabilistic” and “with
parameter pol” when referring to these types of text, pause-free text and
informant, since it is clear from the context what is meant.

Definition 7 A learner M is said to probabilistically exactly learn a class
L of pattern languages if for every increasing {2, 3, . . .}-valued polynomial pol
with

∞∑
n=0

1

pol(n)
≤ 1

there is a polynomial q such that for all δ and every language L ∈ L, with
probability at least 1 − δ, M halts and outputs a pattern generating L after
reading at most q(|π|, 1

δ
) examples from a probabilistic text for L with parame-

ter pol. That is, for all δ and every pattern π generating a language L ∈ L and
for every pol-regular distribution prob on L ∪ {#}, with probability 1− δ, M
draws at most q(|π|, 1

δ
) examples according to prob and then outputs a pattern

π such that L = Lang(π).

It should be noted that learning from pause-free text can be much easier than
learning from text. For example, the class of all singletons {σ} with σ ∈ Σ∗

is learnable from pause-free text: the learner conjectures {σ} for the first
example σ in the text and is correct. But it is not learnable from informant
since for each length n, the strings σ ∈ Σn satisfy that prob(σ) ≤ |Σ|−n and
the learner sees with high probability exponentially many negative examples of
low information content before (σ, 1) comes up. Furthermore, every informant
can be translated into a text as follows: one replaces (σ, 1) by σ and (σ, 0)
by #. Thus the class of all singletons is not probabilistically exactly learnable
from text. So permitting pauses satisfies two goals: (a) there is a text for the
empty set; (b) it is enforced that learnability from text implies learnability
from informant. The latter also holds in standard inductive inference.

Lange and Wiehagen [15,40] presented an algorithm which learns all non-
erasing pattern languages by just analyzing all strings of shortest length gen-
erated by the target pattern. From these strings, the pattern can be recon-
structed. Similarly, in the case of erasing pattern languages in REGPATc, the
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shortest string is just the concatenation of all terminals. Knowing c, one can
reconstruct the whole pattern from this string. But this algorithm does not
succeed for learning REGPATc, even if one is learning from pause-free texts.
The distributions probL given as

probL(σ) =
|Σ|−|σ|/pol(|σ|)∑

τ∈L |Σ|−|τ |/pol(|τ |)
for all σ ∈ L

witness this fact where L ranges over REGPATc. Let m ∗ c be the number of
terminals in the pattern generating L. By Proposition 11 there is a polyno-
mial f such that at least half of the words of length f(m) are in L. So the
denominator is at least 0.5/pol(f(m)). On the other hand, the numerator for
the shortest word in L is exactly |Σ|−m/pol(m). So the probability of this word
is at most 2 ∗ |Σ|−m ∗ pol(f(m))/pol(m) and goes down exponentially in m.

3 Main Result

In this section we show that REGPATc is probabilistically exactly learnable.
First we need some well-known facts which hold for arbitrary distributions,
later we only consider pol-regular distributions. The following lemma is based
on Chernoff Bounds (see, for example, [11]). Here, we use e to denote the base
of the natural logarithm.

Lemma 8 Let X, Y ⊆ Σ∗, let δ, ε ∈ (0, 1/2), and let prob(X) ≥ prob(Y ) + ε.
If one draws at least

2

ε2
∗ − log δ

log e

many examples from Σ∗ according to the probability distribution prob, then
with probability at least 1 − δ, elements of X show up more frequently than
elements of Y .

Note that the number 2
ε2∗δ is an upper bound for 2

ε2 ∗ − log δ
log e

. More generally,
the following holds.

Lemma 9 One can define a function r: (0, 1/2) × (0, 1/2) × N −→ N such
that r(ε, δ, k) is polynomial in k, 1

ε
, 1

δ
and for all sets X, Z, Y1, Y2, . . . , Yk ⊆ Σ∗,

the following holds.

If prob(X) − prob(Yi) ≥ ε, for i = 1, 2, . . . , k, prob(Z) ≥ ε and one draws at
least r(ε, δ, k) many examples from Σ∗ according to the distribution prob, then
with probability at least 1− δ

(a) there is at least one example from Z;
(b) there are strictly more examples in X than in any of the sets Y1, ..., Yk.
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Since any regular pattern π has a variable at the end, the following lemma
holds.

Lemma 10 For every regular pattern π and all k ∈ N, |Lang(π) ∩ Σk+1| ≥
|Σ| ∗ |Lang(π) ∩ Σk|.

Proposition 11 For every fixed constant c ∈ N+ and every finite alphabet Σ,
|Σ| ≥ 2, there is a polynomial f such that for every π ∈ regm

c , at least half of
the strings of length f(m) are generated by π.

Proof. Suppose that π = x0α1x1α2x2 . . . αmxm and α1, α2, ..., αm ∈ Σc.

Let d be the least number with (1 − |Σ|−c)d ≤ 1
2

and consider any τ ∈ Σc.
Thus, a random string of length d ∗ c has τ as substring with probability at
least 1/2, as c successive symbols are equal to τ with probability at least |Σ|−c.
Thus, at least half of the strings in Σd∗c contain τ as a substring, that is, are
in the set

⋃d∗c−c
k=0 ΣkτΣd∗c−k−c.

Now let f(m) = d ∗ c ∗m2. We show that given π as above, at least half of the
strings of length f(m) are generated by π.

In order to see this, draw a string σ ∈ Σd∗c∗m2
according to a fair |Σ|-sided

coin such that all symbols are equally likely. Divide σ into m equal parts of
length d ∗ c ∗m. The i-th part contains αi with probability at least 1− 2−m as
a substring. Thus by using Bernoulli’s inequality, we see that the whole string
is generated by pattern π with probability at least 1 − m ∗ 2−m. Note that
1−m ∗ 2−m ≥ 1/2 for all m and thus f(m) meets the specification.

Lemma 12 Consider any pattern π = x0α1x1α2x2...αmxm ∈ regm
c and X0 =

{λ}. For i ∈ {1, . . . ,m} and every h ∈ N, let

• πi−1 = x0α1x1...αi−1xi−1,
• Xi be the set of all strings σ such that σ but no proper prefix of σ belongs

to Σ∗α1Σ
∗ . . . Σ∗αi,

• Yi,β = Xi−1βΣ∗,
• C(i, β, h) be the cardinality of Yi,β ∩ Lang(π) ∩ Σh.

Then for h > 0, i ∈ {1, . . . ,m} and β ∈ Σc\{αi}, C(i, β, h) ≤ |Σ|∗C(i, αi, h−
1) ≤ C(i, αi, h).

Proof. Let σ ∈ Yi,β ∩ Lang(π). Note that σ has a unique prefix σi ∈ Xi−1.
Furthermore, there exist s ∈ Σ, η, τ ∈ Σ∗ such that

(I) σ = σiβsητ and
(II) βsη is the shortest possible string such that βsη ∈ Σ∗αi.

The existence of s is due to the fact that β 6= αi and |β| = |αi| = c. So the
position of αi in σ must be at least one symbol behind the one of β. If the
difference is more than a symbol, η is used to take these additional symbols.
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Now consider the mapping t: Lang(π) ∩ Yi,β −→ Lang(π) ∩ Yi,αi
replacing βs

in the above representation (I) of σ by αi – thus t(σ) = σiαiητ . The mapping
t is |Σ|-to-1 since it replaces the terminal string β by αi and erases s (the
information is lost about which element from Σ the value s is).

Clearly, σi but no proper prefix of σi is in Xi−1. So σiαi is in Xi−1αi. The posi-
tion of αi+1, . . . , αm in σ are in the part covered by τ , since σiβsη is the shortest
prefix of σ generated by πi−1αi. Since πi−1 generates σi and xiαi+1xi+1...αmxm

generates ητ , it follows that π generates t(σ). Hence, t(σ) ∈ Lang(π). Fur-
thermore, t(σ) ∈ Σh−1 since the mapping t omits one element. Also, clearly
t(σ) ∈ Xi−1αiΣ

∗ = Yi,αi
. Therefore, C(i, β, h) ≤ |Σ| ∗ C(i, αi, h − 1) for

β ∈ Σc \ {αi}. By combining with Lemma 10, C(i, αi, h) ≥ |Σ| ∗C(i, αi, h− 1)
≥ C(i, β, h).

Lemma 13 Let i ∈ {1, . . . ,m} and consider all variables as in statement of
Lemma 12. There is a length h ≤ f(m) such that

C(i, αi, h) ≥ C(i, β, h) +
|Σ|h

2 ∗ |Σ|c ∗ f(m)

for all β ∈ Σc \ {αi}. In particular, for every pol-regular distribution with
domain Lang(π) or domain Lang(π) ∪ {#},

prob(Yi,β) +
1

2 ∗ |Σ|c ∗ pol(f(m)) ∗ f(m)
≤ prob(Yi,αi

).

Proof. Let D(i, β, h) = C(i,β,h)
|Σ|h , for all h and β ∈ Σc. Lemma 12 implies that

D(i, β, h) ≤ D(i, αi, h− 1) ≤ D(i, αi, h) .

Since every string in Lang(π) is in some set Yi,β, using Proposition 11, we
conclude that

D(i, αi, f(m)) ≥ 1

2 ∗ |Σ|c
.

Furthermore, D(i, αi, h) = 0 for all h < c, since m > 0 and π does not generate
the empty string. Thus, since D(i, αi, h) is monotonically increasing in h, there
is an h ∈ {1, 2, ..., f(m)} with

D(i, αi, h)−D(i, αi, h− 1) ≥ 1

2 ∗ |Σ|c ∗ f(m)
.

For this h, it holds that

D(i, αi, h) ≥ D(i, β, h) +
1

2 ∗ |Σ|c ∗ f(m)
.
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The second part of the claim follows by taking into account that h ≤ f(m)
implies pol(h) ≤ pol(f(m)), since pol is monotonically increasing. Thus,

prob(σ) ≥ |Σ|−h

pol(h)
≥ |Σ|−h

pol(f(m))

for all σ ∈ Σh ∩ Lang(π).

The previous two lemmas motivate the algorithm LRP 5 below for learning
REGPATc. Essentially, the above lemmas allow us to choose appropriate αi at
each stage by looking at the most frequent β which appears right after πi−1.
The algorithm has prior knowledge about the function r from Lemma 9 and
the function f from Proposition 11. It takes as input c, δ and knowledge about
the probability distribution by getting pol.

Algorithm LRP : The learner has parameters (Σ, c, δ, pol) and works as fol-
lows. The variables A, A0, A1, . . . range over multisets.

(1) Read examples until an n is found such that the shortest non-pause ex-
ample is strictly shorter than c ∗ n and the total number of examples
(including repetitions and pause-symbols) is at least

n ∗ r

(
1

2 ∗ |Σ|c ∗ f(n) ∗ pol(f(n))
,
δ

n
, |Σ|c

)
.

Let A be the multiset of all positive examples (including pause-symbols)
and Aj (j ∈ {1, 2, . . . , n}) be the multiset of examples in A whose index
is j modulo n; so the (k ∗ n + j)-th example from A goes to Aj where k
is an integer and j ∈ {1, 2, ..., n}.

Let i = 1, π0 = x0, X0 = {λ} and go to Step (2).

(2) For β ∈ Σc, let Yi,β = Xi−1βΣ∗.

If some string in Xi−1 is also in the multiset A, then let m = i − 1 and
go to Step (3).

Choose αi as the lexicographically first β ∈ Σc, such that the strings
from Yi,β occur in Ai at least as often as the strings from Yi,β′ for any
β′ ∈ Σc \ {β}.

Let Xi be the set of all strings σ such that σ is in Σ∗α1Σ
∗α2Σ

∗ . . . Σ∗αi,
but no proper prefix τ of σ is in Σ∗α1Σ

∗α2Σ
∗ . . . Σ∗αi.

Let πi = πi−1αixi, let i = i + 1 and go to Step (2).

(3) Output the pattern πm = x0α1x1α2x2 . . . αmxm and halt.

5 LRP stands for Learner for Regular Patterns.
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End

Note that since the shortest example is strictly shorter than c∗n it holds that
n ≥ 1. Furthermore, if π = x0, then the probability that a string drawn is λ
is at least 1/pol(0). A lower bound for this is 1/(2 ∗ |Σ|c ∗ f(n) ∗ pol(f(n))),
whatever n is, due to the fact that pol is monotonically increasing. Thus λ
appears with probability 1− δ/n in the set An and thus in the set A. So the
algorithm is correct for the case that π = x0.

It remains to consider the case where π is of the form x0α1x1α2x2 . . . amxm for
some m ≥ 1 where all αi are in Σc.

Theorem 14 Let c ∈ N+ and let Σ be any finite alphabet with |Σ| ≥ 2.
Algorithm LRP probabilistically exactly learns the class of all Lang(π) with
π ∈ regc from text, from pause-free text and from informant.

Proof. Since an informant can be translated into a text, the result is only
shown for learning from text. The proof also covers the case of learning from
pause-free text, it is almost identical for both versions. Let prob be a pol-
regular distribution on Lang(π) or Lang(π) ∪ {#}.

A loop invariant (in Step (2)) is that with probability at least 1− δ∗(i−1)
n

, the
pattern πi−1 is a prefix of the desired pattern π. This certainly holds before
entering Step (2) for the first time.

Case 1. i ∈ {1, 2, ...,m}.

By assumption, i ≤ m and πi−1 is with probability 1− δ∗(i−1)
n

a prefix of π,
that is, α1, ..., αi−1 are selected correctly.

Since αi exists and every string generated by π is in Xi−1Σ
∗αiΣ

∗, no element
of Lang(π) and thus no element of A is in Xi−1 and the algorithm does not
stop too early.

If β = αi and β′ 6= αi, then

prob(Yi,β ∩ Lang(π)) ≥

prob(Yi,β′ ∩ Lang(π)) +
1

2 ∗ |Σ|c ∗ f(m) ∗ pol(f(m))

by Lemma 13. By Lemma 9, αi is identified correctly with probability at
least 1 − δ/n from the data in Ai. It follows that the body of the loop in
Step (2) is executed correctly with probability at least 1 − δ/n and the
loop-invariant is preserved.

Case 2. i = m + 1.

By Step (1) of the algorithm, the shortest example is strictly shorter than
c ∗ n and at least c ∗m by construction. Thus, we already know m < n.

13



With probability 1− δ∗(n−1)
n

the previous loops in Step (2) have gone through
successfully and πm = π. Consider the mapping t which omits from every
string the last symbol. Now, σ ∈ Xm iff σ ∈ Lang(π) and t(σ) /∈ Lang(π).
Let D(π, h) be the weighted number of strings of length h generated by π,

that is, D(π, h) = |Σh∩Lang(π)|
|Σ|h . Since D(π, f(m)) ≥ 1

2
and D(π, 0) = 0, there

is an h ∈ {1, 2, . . . , f(m)} such that

D(π, h)−D(π, h− 1) ≥ 1

2 ∗ f(m)
≥ 1

2 ∗ |Σ|c ∗ f(n)
.

Note that h ≤ f(n) since f is increasing. It follows that

prob(Xm) ≥ 1

2 ∗ |Σ|c ∗ (f(n) ∗ pol(f(n)))

and thus, by Lemma 9, with probability at least 1 − δ
n

a string from Xm

is in Am and in particular in A. Therefore, the algorithm terminates after
going through Step (2) m times with the correct output with probability at
least 1− δ.

To get a polynomial time bound for the learner, note the following. It is
easy to show that there is a polynomial q(m, 1

δ′
) which with sufficiently high

probability (1−δ′, for any fixed δ′) bounds the parameter n of algorithm LRP.
Thus, with probability at least 1− δ′− δ algorithm LRP is successful in time
and example-number polynomial in m, 1/δ, 1/δ′. Hence, for any given δ′′, by
choosing δ′ = δ = δ′′/2, one can get the desired polynomial time algorithm.

If one permits the pattern to start or end with some terminal parts and these
parts are not too long, then one can learn also this derived class by read-
ing polynomially more data-items and skipping off the common prefixes and
suffixes of all data. Consequently, we have the following result.

Theorem 15 Let c ∈ N+ and let Σ be any finite alphabet with |Σ| ≥ 2.
Then, the class {αLang(π)β | α, β ∈ Σ∗, |α| ≤ d, |β| ≤ d, π ∈ regc} is
probabilistically exactly learnable from text where the polynomial bound for the
number of examples has the parameters pol and c, d.

4 Experimental Results

Looking at the results proved so far, we see that the theoretical bounds are
very large. Therefore, we are interested in finding possible improvements.

First, we fix the polynomial pol. Linear functions cannot be used, since the sum
of their reciprocals diverges, thus pol is taken to be quadratic. More precisely,
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pol is taken such that, for all n ∈ N,

pol(n) = (n + 1) ∗ (n + 2) and
1

n + 1
=

∞∑
m=n

1

pol(m)
.

Second, we study the special case that Σ = {0, 1} and REGPAT1 is being
learned. For this particular setting, we improve the theoretical bounds, see
Theorem 16 below.

Then, we provide some evidence, that even these bounds are not optimal,
since experiments run for small alphabets Σ and small values of m, c give
much better results. These experiments use Algorithm HLRP 6 which does
not compute the number of examples in advance but monitors its intermediate
results and halts if a hypothesis looks sufficiently reasonable with respect to
the data seen so far. More details will be given below.

Theorem 16 For Σ = {0, 1} and considering only (n + 1)(n + 2)-regular
distributions, Algorithm LRP can be adapted such that it probabilistically ex-
actly learns REGPAT1. For every L ∈ REGPATm

1 and confidence 1 − δ, for
all δ ∈ (0, 1/2), it needs at most

8 ∗ (4m− 1)2 ∗ (4m + 1)2 ∗ (4m + 2)2 ∗ (2m + 2) ∗ log(2m + 2)− log δ

log e

positive examples including pauses.

Proof. We can improve the bounds on the number of examples needed by
using Lemma 8 instead of Lemma 9. We need enough examples to guarantee
with probability 1− δ

m+2
the following three conditions:

• A data-item of length 2m or less is drawn in Step (1);
• For i = 1, 2, . . . ,m, the right αi ∈ {0, 1} is selected in Step (2);
• For i = m + 1 a data-item in A ∩Xi−1 is found.

For the first condition, one has to draw an example of length 2m which is
generated by the pattern. The number of strings of length 2m generated by π
is equal to the number of binary strings of the same length containing at least
m 0s. This is at least half of the strings of length 2m. Thus, the probability
that a randomly drawn datum has length 2m and is generated by π is at least

1
2(2m+1)(2m+2)

.

For the second condition, the bound in Lemma 13 can be improved by con-
sidering h = 2m. For this purpose, let us consider the following three regular
expressions, where the third one gives the difference between the choice of
correct versus incorrect ai.

• (1−a1)
∗a1 . . . (1−ai−1)

∗ai−10{0, 1}∗ai(1−ai)
∗ai+1(1−ai+1)

∗ . . . am(1−am)∗;

6 HLRP stands for Heuristic Learner for Regular Patterns.
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• (1−a1)
∗a1 . . . (1−ai−1)

∗ai−11{0, 1}∗ai(1−ai)
∗ai+1(1−ai+1)

∗ . . . am(1−am)∗;
• (1− a1)

∗a1 . . . (1− ai−1)
∗ai−1ai(1− ai)

∗ai+1(1− ai+1)
∗ . . . am(1− am)∗.

The number of strings of length 2m generated by the first and generated by the
second expression is the same. But the one generated by the third expression
is exactly as large as the number of strings of length 2m− 1 which consist of
m zeros and m− 1 ones. This number has the lower bound 1

2m−1
22m−1. Since

the strings of length 2m have the probability 1
(2m+1)(2m+2)

, one can conclude
that the value ai is favored over the value 1− ai with probability at least

ε =
22m−1

(2m− 1)(22m)
∗ 1

(2m + 1)(2m + 2)
=

1

2(2m− 1)(2m + 1)(2m + 2)
.

For the last condition to enforce leaving the loop, one has the same probabil-
ity ε. One just obtains this value by setting i = m + 1 in the above regular
expressions where of course then the part ai(1 − ai)

∗ . . . am(1 − am)∗ has to
be omitted from the expression. Furthermore, ε is a lower bound for the first
probability.

Using Lemma 8, it suffices to draw (m + 2) ∗ 2 ∗ ε−2 ∗ log(m+2)−log δ
log e

examples.

Note that the algorithm uses the parameter n as a bound for m, that is,
n = 2m.

So with probability at least 1 − δ, the algorithm uses at most the following
quantity of data:

8 ∗ (2n− 1)2 ∗ (2n + 1)2 ∗ (2n + 2)2 ∗ (n + 2) ∗ log(n + 2)− log δ

log e
.

The entry “upper bound” in Figure 1 has the specific values obtained for
m = 2, 3, . . . , 20 and δ = 1/3.

We have tried to find further improvements of these bounds. These improve-
ments have no longer been verified theoretically, but only be looked up exper-
imentally. For that, we applied the following experimental setting.

Experimental Setting 1 The heuristic used is Algorithm HLRP which ig-
nores pause-symbols. This algorithm reads data and tries in parallel to find
the pattern. It stops reading data when the process has given a pattern with
sufficiently high estimated confidence.

Learning L, the experiments were run for the following two distributions which
are the extreme (n + 1)(n + 2)-regular distributions with respect to having as
many pauses as possible and no pauses at all where σ ∈ L:

probL,#(σ) =
|Σ|−|σ|

(|σ|+ 1) ∗ (|σ|+ 2)
;
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probL,#(#) = 1−
∑
τ∈L

probL,#(τ);

probL(σ) =
probL,#(σ)

1− probL,#(#)
.

The probabilities can be obtained from probΣ∗,# as follows: In the case of
probL,#, one draws an example string σ and then provides σ to the learner
in the case that σ ∈ L and provides # to the learner otherwise. In the case
of probL, one draws examples according to probΣ∗,# until an example in L is
found which one then provides to the learner.

Since Algorithm HLRP ignores pause-symbols, the experiments were run with
examples drawn according to probL,#. While the algorithm runs, one can count
the number a of non-pause examples drawn and the number b of pauses drawn.
The example complexities with respect to probL and probL,# are a and a + b,
respectively. So the experiments cover both cases at once where only the way
to count the number of drawn examples are different for probL and probL,#.

The two main modifications in Algorithm HLRP to the theoretical model are
the following: The algorithm alternately draws a data item and tries to learn
from the data seen so far until it thinks that the result of the learning-trial gives
a sufficiently reasonable hypothesis. Furthermore, only sufficiently short data-
items are considered. The constant 1.4 below was determined experimentally
to be a good one, see further discussion after the algorithm.

Algorithm HLRP (for learning regular patterns):

Repeat

Initialize bound by a default constant, g a function determined below and let
A be the empty multiset.

Repeat

Draw example σ;

Put σ into A if

• σ is not the pause symbol;
• |σ| ≤ bound;
• |σ| ≤ 1.4 ∗ |τ | for all τ already in A;

Until Either there are m and ρ = x0a1x1a2x2 . . . amxm such that

• ρ generates all data in A;
• for all i ∈ {1, . . . ,m} and b ∈ Σ \ {ai}, the number of data-items in A

generated by the regular expression

(Σ \ {a1})∗a1 . . . (Σ \ {ai−1})∗ai−1aiΣ
∗
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minus the number of the data-items in A generated by

(Σ \ {a1})∗a1 . . . (Σ \ {ai−1})∗ai−1bΣ
∗

is at least g(m);
• the number of data-items in A generated by the regular expression

(Σ \ {a1})∗a1 . . . (Σ \ {am})∗am

is at least g(m).

Or default bounds on memory usage and number of examples are exceeded.

Until The previous loop ended in the “either-case” or has been run for ten
times.

If no such pattern ρ has been found Then Halt with error message
Else consider this unique ρ.

If |Σ| ≥ 3 Then For k = 1 to m− 1 Remove the variable xk from the pattern
whenever it can be removed without becoming inconsistent with the data
stored in A. (ITF)

Output the resulting pattern ρ and Halt.
End

Note that in the second condition on ρ, the regular expressions for i = 1 are
a1Σ

∗ and bΣ∗; for i = 2 the corresponding expressions are (Σ \ {a1})∗a1a2Σ
∗

and (Σ \ {a1})∗a1bΣ
∗.

The For-Loop labeled (ITF) removes variables not needed to generate the
data. It is included for the case considered later where the above algorithm
is adapted to learn regular patterns outside REGPAT1. Surprisingly, for all
experiments done with the alphabet {0, 1, 2}, there were no errors caused
by removing superfluous variables in an otherwise correct pattern. Thus this
routine was actually always activated when |Σ| ≥ 3, even when learning lan-
guages from REGPAT1 where this routine is superfluous. The routine is not
used for Σ = {0, 1} since there the patterns are not unique: Lang(x00x11x2) =
Lang(x001x2).

Algorithm HLRP has been implemented such that at every learning trial it is
permitted to store up to 106 digits belonging to 50000 examples and draw up to
107 examples. The algorithm tries up to 10 times to learn a pattern without
violating the resource-bounds and then gives up. The parameter bound is
initialized to 2000 at each learning trial which is 0.2% of the available memory
to store the data-items in A and g(m) being the constant 10. The existence
of the pattern ρ can be checked effectively by constructing it inductively as in
Algorithm LRP.
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m correct without pause with pause % used upper bound

10 1000 4064.909 81633.997 4.42 3 ∗ 1012

20 999 4184.943 167777.073 5.42 447 ∗ 1012

30 993 4909.675 294712.912 7.37 7999 ∗ 1012

40 970 6439.009 515298.445 9.05 62110 ∗ 1012

50 967 8895.355 889807.785 9.79 304901 ∗ 1012

60 946 11980.308 1438119.953 10.53 1119325 ∗ 1012

70 933 15777.699 2209051.668 11.44 3361797 ∗ 1012

80 927 20792.314 3325566.018 12.03 8716312 ∗ 1012

90 917 27871.036 5017601.075 12.63 20197744 ∗ 1012

100 897 48742.807 9749833.913 13.24 42832613 ∗ 1012

Fig. 1. Learning REGPATm
1 where Σ = {0, 1}.

Figure 1 gives a table on the outcome of running Algorithm HLRP in order to
learn for each m ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} exactly 1000 patterns
having m terminals. These patterns have been chosen according to the uniform
distribution over REGPATm

1 . The algorithm itself does not know m. The first
column gives the number m of terminals of the pattern x0a1x1a2x2 . . . amxm to
be learned. For each m, 1000 patterns were randomly drawn with the param-
eters a1, a2, . . . , am being chosen according to the uniform distribution. The
second column gives how many of these pattern have been learned correctly
and the third and fourth column state the average number of examples needed.
The third column counts the examples drawn excluding the pause-symbols and
the fourth column counts the examples drawn including the pause-symbols.
That is, the third column refers to the distribution probL and the fourth col-
umn refers to the distribution probL,# discussed in the Experimental Setting 1.
The fifth column states the percentage of the examples from the third column
which were actually used by the algorithm and not skipped. The other ex-
amples were too long and not processed by the learner. The upper bound
is the theoretically sufficient number of examples with respect to confidence
1 − δ = 2/3. Only trials for patterns in REGPAT80

1 , REGPAT90
1 , REGPAT100

1

were aborted and rerun, but each of these patterns was learned within the first
10 trials. So the incorrect learning processes are due to incorrect hypotheses
and not due to violating memory or example bounds in each of the 10 trials.

Algorithm HLRP does not use all data different from the pause-symbol but
only the sufficiently short ones. This can be justified as follows: The underlying
probability distribution produces with probability 1

n+1
a string which has at

least the length n and the longer the string, the more likely it is in the language
to be learned. Thus if the length is very high, the data reveals almost nothing
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|Σ| correct repetitions without pause with pause % used

2 967 0 8895.355 889807.785 9.79

3 980 0 22604.453 3366611.336 4.60

4 993 8 44111.067 8735098.330 2.78

5 995 82 80512.278 19891099.233 1.90

Fig. 2. Learning REGPAT50
1 in dependence of the alphabet size.

about the language and might confuse the learner more by being random.
Skipping long examples has been justified experimentally: Algorithm HLRP
was correct on all 1000 random patterns when learning REGPAT10

1 for the
alphabet {0, 1}. The algorithm was run for the same class with the factor
in the third condition for the selection of data, namely that |σ| ≤ 1.4 ∗ |τ |
for all previously seen data τ , being relaxed to 1.6, 1.8 and 2.0. The number
of correct patterns was 998, 998 and 994 respectively. Larger factors give
even worse results. Relaxing the third condition and permitting longer strings
reduces the confidence of the algorithm.

The parameter bound itself should not be there if sufficient resources are avail-
able since it makes it definitely impossible to learn patterns having more than
bound terminals. But if one has a memory limit of length `, then, on average,
every `-th learning experiment has a first example of length ` or more. There-
fore one cannot avoid having such a bound in an environment with a memory
limitation. The choice bound = `/500 looks a bit arbitrary, but this choice is
not severe for the learning problems investigated. For learning much longer
patterns, one would of course have to revise this decision.

Choosing the parameter g(m) = 10 is debatable. If one wants to learn large
patterns with sufficient high confidence, then g has to be a growing function.
Otherwise, as indicated by the experimental data, the confidence goes down for
large m. More precisely, the larger the parameter m, the less likely the learner
succeeds to learn any given pattern from REGPATm

c . Repairing this by having
larger values for g(m) has the obvious disadvantage that Algorithm HLRP
draws more examples in the learning process. That is, learning is slowed down
by increasing g(m).

Figure 2 shows the result for learning patterns having 50 terminals in depen-
dence of the alphabet size. The larger the alphabet, the more restrictive is the
length bound on the choice of data considered. So, on one hand the number of
incorrect hypotheses went down from 33 to 5. On the other hand, the amount
of data needed goes up. Furthermore, for alphabets of size 4 and 5, some repe-
titions on the inner repeat loop take place and the learning algorithm is rerun
on the same pattern. For the alphabet {0, 1, 2, 3, 4}, it was four times needed
to repeat the learning process twice.
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|Σ| c m∗c correct rptts. without pause with pause % used

2 1 12 1000 0 5130.285 123529.904 3.58

2 2 12 920 9 23256.913 738004.683 1.08

2 3 12 890 17 37152.843 1542162.670 0.71

3 1 12 1000 15 98571.932 3460717.043 0.36

3 2 12 957 159 268867.961 14615063.504 0.11

3 3 12 922 1034 611210.432 58396686.666 0.06

4 1 12 1000 294 436565.410 20142491.835 0.12

4 2 12 711 3677 1905036.705 171744393.587 0.04

4 3 12 23 8922 1924946.265 396696831.533 0.03

Fig. 3. Learning REGPAT12
1 , REGPAT6

2 and REGPAT4
3.

An attempt was made to adapt the algorithm for c = 2, 3 and to run it
for larger alphabet sizes. Since the provenly correct algorithm needs a large
quantity of data exceeding any practical bound, the heuristic approach al-
ready implemented in Algorithm HLRP was chosen: One uses the learner for
REGPAT1 in order to figure out the terminals in the pattern. For the alpha-
bet {0, 1}, one then interprets this sequence of terminals as being the one for
REGPATc where c = 2, 3. For the alphabets {0, 1, 2} and {0, 1, 2, 3}, the last
three lines of Algorithm HLRP were run and taken into account at the check
for correctness.

Figure 3 gives a summary of these results obtained from the following ex-
periments: For each of the alphabets {0, 1}, {0, 1, 2}, {0, 1, 2, 3} and each c ∈
{1, 2, 3}, 1000 patterns containing 12 terminals were tried to learn where the
terminals a1, a2, . . . , a12 were chosen independently from the alphabet under
the uniform distribution. Since the distributions of the correct data for pat-
terns from REGPAT1 and REGPATc with c > 1 are not the same, the perfor-
mance of the algorithm goes down and the patterns to be learned in the data
for Figure 3 had always 12 terminal symbols. It turned out that the data for
the experiments in Figure 3 are much more sensitive to the alphabet size than
those for the experiments in Figure 2. Algorithm HLRP had its best perfor-
mance for the alphabet {0, 1, 2}. For the alphabet {0, 1}, the main problem
was errors due to figuring out the sequence of terminals incorrectly.

For the alphabet {0, 1, 2, 3}, the main problem are too excessive usage of
memory and time, so that many trials were aborted or rerun. For only 23 out
of the 1000 languages from REGPAT4

3, Algorithm HLRP terminated in any
of the ten trials. But in that case, it always gave the correct pattern. Note
that for REGPAT4

3, the average number of examples drawn heavily depends
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on the choice of parameters: every trial reads at most 4 ∗ 107 examples (with
pauses) and the overall number of examples drawn is at most 4 ∗ 108 since
there are at most 10 trials per pattern. The measured average complexity
is 3.96696831533 ∗ 108, that is, it is only slightly below the maximal upper
bound imposed by running-time constraints. Therefore, the main message of
these entries in the table is just the following one: Learning REGPAT6

2 and
REGPAT4

3 for alphabet with four or more symbols is clearly beyond what the
current implementation is capable to handle; maybe that on a faster computer
with less severe running time constraints, Algorithm HLRP has a similar
performance for the alphabet {0, 1, 2, 3} as the current implementation has
for the alphabet {0, 1, 2}. The next experiments deal with the case where not
only the terminals but also the exact form of the pattern is selected randomly.
Based on the reasons just outlined, the alphabet {0, 1, 2} was chosen for these
experiments.

Experimental Setting 2 Figure 4 shows experiments to learn patterns over
the alphabet {0, 1, 2} where the pattern π is chosen by iteratively executing
always the first of the following cases which applies.

• When generating the first symbol of π, this is taken to be a variable.
• If the currently generated part of π contains less than m terminals and ends

with a variable, then the next symbol is a terminal where each digit has the
probability 1/3.

• If the currently generated part of π contains less than m terminals and
ends with one, two or three terminals following the last variable, then, with
probability 1/2, one adds a further variable and with probability 1/6 the digit
a for a = 0, 1, 2.

• If the currently generated part of π contains less than m terminals and its
last four symbols are all terminals then one adds a variable.

• If the currently generated part contains m terminals, then one adds a vari-
able at the end and terminates the procedure since the pattern is complete.

The first entry in the table of Figure 4 is the parameter m of the above pro-
cedure. For m = 5, 6, . . . , 15, this protocol was used to generate 1000 patterns
and run the learning algorithm on these pattern-languages.

The experiments shown in Figure 4 gave that for m ≤ 13 most errors were due
to conjecturing false terminals. Furthermore, for m = 12, 13, 14, 15, the num-
ber of learning processes which failed in all 10 trials to give a hypothesis, was
1, 12, 97, 109, respectively, compared to 16, 33, 66, 96 errors due to incorrectly
conjectured patterns.

Note that the probability to draw the smallest string generated by the pattern
is 3−15 ∗16−1 ∗17−1 = 1/3902902704 for m = 15. So the expected value for the
number of examples to be drawn until one has seen this string is approximately
3902902704 which is by a factor of approximately 41.51 above the average
number 94019439.240 of examples drawn by the algorithm. This shows that
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m correct repetitions without pause with pause % used

5 1000 0 13666.581 303467.013 2.95

6 1000 0 30471.300 854851.633 1.30

7 1000 0 69797.807 2504307.913 0.59

8 999 1 78186.534 3526912.510 0.47

9 997 13 134352.582 7190948.532 0.25

10 997 71 177112.452 11066283.854 0.19

11 992 244 259912.841 19128675.970 0.13

12 983 351 284064.711 24450019.647 0.11

13 955 568 365624.652 35745664.161 0.10

14 898 974 511091.000 54322939.087 0.09

15 795 1850 779662.091 94019439.240 0.08

Fig. 4. Learning regular patterns with Σ = {0, 1, 2} following Setting 2.

the current algorithm is better than the trivial heuristic to draw sufficiently
many examples such that the shortest example has shown up with sufficiently
high probability and then to run the part of Algorithm HLRP which figures
out the positions of the variables in the pattern.

5 Conclusion

In Theorem 14, it is shown that the class of c-regular pattern languages is
probabilistically exactly learnable from any text drawn from a probability
distribution prob satisfying

prob(σ) =
|Σ|−|σ|

pol(|σ|)
where

∞∑
n=0

1

pol(n)
= 1,

pol is a {2, 3, . . .}-valued increasing polynomial and prob(#) is chosen accord-
ingly. Actually, Algorithm LRP also works for distributions which are suffi-
ciently near to the just mentioned ones and succeeds on texts as defined in
Definition 5. Proposition 15 extends the learning algorithm to the case where
patterns starting or ending with a constantly bounded number of terminals are
permitted. Algorithm HLRP is a heuristic based on Algorithm LRP, which
has been implemented to learn the class REGPAT1. Its parameters have been
determined experimentally. This permits to learn the classes REGPATm

1 faster
for small m but these improved bounds are not theoretically generalized for
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all m. Furthermore, only small alphabets Σ have been considered, all experi-
ments were run for alphabets of sizes 2, 3, 4, 5 only. An interesting observation
is that by skipping long examples, Algorithm HLRP has an experimentally
improved performance compared to the version where all non-pause examples
are taken into account. The intuitive reason is that long examples reflect less
about the pattern to be learned and have more random components which
might lead the learner to wrong conclusions. While Algorithm HLRP gave
very good results for REGPAT1, its performance for REGPATc with c > 1
was not so convincing. The difficult part is to figure out the order of the ter-
minals in the string of the pattern while, for alphabet size 3, 4, 5, it was easy
to figure out between which terminals is a variable and between which not. On
one hand, for alphabets having a finite size of 3 or more, future work should
more focus on improving the method determining the sequence of terminals
in a regular pattern than on determining the position of the variables. On
the other hand, this second part needs attention for the special case of the
alphabet {0, 1} since there the solution is not unique.

Future research should also address the problem to determine the precise in-
fluence of the alphabet size to the difficulty of learning in the setting discussed
within this paper. Such an analysis has been performed for Lange and Wieha-
gen’s [15] algorithm. In this setting it could be shown that larger alphabets
reduce the minimal number of examples needed for learning (cf. citeZeu:j:98).
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