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1 Introduction

Consider the problem of searching for a complexity-theoretic reduction between
two decision problems, P and Q. Such a reduction is a function r satisfying
x ∈ P ⇐⇒ r(x) ∈ Q for all structures x for which it makes sense to consider
P . It is not difficult to show that determining the existence of reductions is
undecidable in general. However, sufficiently restricting the class of reductions
and structures considered results in a simpler, decidable variant that is still
meaningful from a complexity-theory perspective.

Once we can encode these reductions and structures in a finite number of bits,
the problem becomes a QBF instance with one quantifier alternation (2QBF):

∃r ∀x (x ∈ P ⇐⇒ r(x) ∈ Q) . (1)

Therefore, reduction finding in this setting is essentially a Σp
2 problem and it

is possible to apply QBF solvers and ASP solvers supporting disjunctive logic
programs. In this paper, we introduce various reduction-finding instances in-
tended for benchmarking QBF solvers. For additional background, details and
comparisons with other approaches, see [3]. Automatic reduction finding was
first considered by [1]. More generally, reduction finding is a form of program
synthesis, and similar approaches can be used more widely, see [4].

2 Background

Although polynomial-time reductions are perhaps the most traditional, we focus
on a weaker class of quantifier-free logical reductions used in descriptive com-
plexity. We do not introduce descriptive complexity and the full motivation for
this class here, see [3] for the definitions we use and [2] for additional material.

The weaker class of logical reduction we consider has a number of advantages.
First, the logical formulas defining the reduction make the explicit construction
of (1) reasonable. Although the class of reductions we consider is extremely lim-
ited, it still suffices to characterize complexity classes and complete problems
generally remain complete under these reductions. Proving that a computation
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cannot be done in polynomial-time is notoriously difficult, while there are tech-
niques for proving that something cannot be done in, e.g., first-order logic. So
our reductions are strong enough that they suffice to determine the relationship
between complexity classes, but weak enough to hope for progress.

2.1 Parameters

An instance of a reduction-finding problem is determined by several parameters,
which thus determine the difficulty of the underlying problem. First, we must
fix the two decision problems of interest: P and Q in (1). Our system supports
defining these problems in first-order logic extended by a reflexive transitive-
closure (TC) operator, corresponding to the complexity class NL.

The choice of properties is important: choosing, e.g., the trivial properties
always true and always false results in an easy instance that is not interesting.
From the complexity-theoretic perspective, the hardness of properties defined in
first-order (without TC) is fairly well-understood. Therefore, formulas using TC
are most interesting and seem significantly harder.

Next, there are several parameters that determine the class of reductions
being considered. Several parameters determine which atomic formulas are al-
lowed to occur in the reduction. In particular, these parameters control whether
successor is allowed between variables (x = y + 1), and whether certain nu-
meric constants (min,max) are available. Then, there is a parameter k fixing
the dimension of the reduction (informally, the dimension determines how much
larger the output of a reduction can be compared to the original structure). Our
reductions are defined by tuples of formulas in DNF – there is also a parameter
c determining how many conjunctions may occur in the DNF.

Finally, there is a parameter n determining the size of structure considered
in (1); we search only3 for reductions that are correct on structures of size n.

Given these parameters, our generator constructs the corresponding QBF
instance of (1) in several formats: qdimacs, negated qdimacs (to avoid an addi-
tional quantifier alternation from CNF conversion), qpro and lparse. Increasing c
provides additional power to the class of reductions (instances become more pos-
itive), and increasing k is similar. Increasing n usually places more restrictions
on the reduction (instances become more negative). A balance between param-
eters is important: large c with small n is unlikely to be meaningful because the
reduction is too powerful for the small class of structures.

3 Instances

Let us describe how we instantiate the parameters described above in practice,
and present some experimental results on a few parameter sets.

For the two decision problems of interest, P and Q in (1), we use one of
48 properties that were translated from the first paper on automatic reduction

3 We support searching for reductions correct on a range of sizes n1 ≤ n2 when using
CEGAR, see [3].



finding [1] to allow to compare performance to their system (c.f. [3]). The names
we use for the problems correspond to the names used in the system from [1], and
are always 6 characters long. Below, we give a list describing these 48 problems,
to give an overview what is included.

– trivial, ntrivil, trueque, falsequ, query15, query30 (trivial or almost
trivial problems that we include for correctness testing)

– reachqu (reachability, NL-complete), nreachq (negated reachability, coNL-
complete), query10 (symmetric reachability, SL-complete),

– query06, query31, query33, query34, query36 (L-complete), and query71

(negated query06, coL-complete),
– query42, query44 (non-reflexive reachqu/nreachq, NL/coNL-complete),
– query48, query49 (non-reflexive SL/coSL-complete),
– query54 (strongly connected, NL-complete), query55 (symmetric query54),
– query57, query58, query60, query64 (minor variations of the above),
– the others4 are defined in plain FO and thus correspond to AC0 problems

Above, we mention the classes coNL, coL, SL and coSL, however, NL=coNL
and L=coL=SL=coSL. Instances corresponding to discovering these famous col-
lapses are interesting and appear hardest among the instances we consider.

We use the largest class of reductions supported: we allow min and max and
successor in the atoms (-min -max -succ) and also the use of numbers when
defining constants (-nbrs). As for the dimension k (-dim), number of conjunc-
tions c (-cls), and structure size n (-elems), the most basic set of parameters
we used was k = 1, c = 1, n = 3. Our generator is ReductionTest.native5 and
the following command can be used to generate the qdimacs file for the above
parameters and P = nreachq, Q = reachqu.

./ReductionTest.native -min -max -succ -nbrs

-from nreachq -to reachqu -dim 1 -cls 1 -elems 3 -qdimacs

It is also possible to directly generate files for all problems we consider for a
given parameter set using the -gen [directory] option.

./ReductionTest.native -min -max -succ -nbrs

-dim 1 -cls 1 -elems 3 -gen .

In addition to generating files, the generator can test the existence of a re-
duction. This is done with CEGAR using a specified SAT-solver (at present
-minisat, -glueminisat or the standard solver from Intel’s Decision Procedure
Toolkit). For example, one can check the existence of a reduction from P =
nreachq to Q = reachqu with the specified parameters as follows.

4 exquery, eequery, nxquery, axquery, query01, query02, query03, query04,
query05, query07, query08, query09, query11, query21, query23, query24,
query25, query26, query27, query23, query45, query50, query51, query52

5 The generator with instructions and the collection of generated files we used for
testing are available from http://toss.sf.net/reductGen.html.

http://toss.sf.net/reductGen.html


./ReductionTest.native -min -max -succ -nbrs

-from nreachq -to reachqu -dim 1 -cls 1 -elems 3 -glueminisat

From the 48 properties included, the method above can generate 48 × 48 =
2304 qdimacs files for each parameter set. To avoid an extra quantifier alter-
nation due to CNF conversion in qdimacs, we also tested negating the QBF
formula before CNF conversion – but results were worse than with the added
alternation (c.f. [3]). To give an intuition about the hardness of the generated
QBF instances, we present below the results from [3] showing the number of
timeouts on these 2304 instances for 5 QBF solvers. The tests were performed
on an Opteron 1385 (using 1 core) and with a timeout of 120s.

c = 1 n = 3 c = 2 n = 3 c = 3 n = 3 c = 1 n = 4 c = 2 n = 4 c = 3 n = 4
rareqs 0 0 16 19 65 204
depqbf 0 142 547 16 297 711
qube 10 536 949 82 760 1082
cirqit 58 673 1138 511 1092 1357
skizzo 522 1058 1156 975 1327 1434

On our instances, rareqs, a recently introduced CEGAR solver, performed
best. For non-CEGAR solvers, depqbf and qube outperform skizzo and cirqit.
Between depqbf and qube the situation is less clear, some instances work much
better with one of these solvers, others with the other. The comparison between
skizzo and cirqit is difficult as well. As to the dominance of depqbf and
qube over skizzo and cirqit, it holds for almost all queries. Still, there are a
few outliers such as the reduction from query26 to query01, on which depqbf
and qube time out, but skizzo answers almost immediately.

Of course, our generator is not restricted to these problems – any problem in
NL can be defined in first-order logic with transitive closure, and these formulas
can be directly used with the -from and -to options.

Although some interesting reductions can be expressed with dimension 1,
usually this does not suffice. However, even parameters such as k = 2, c = 1, n =
4 or k = 3, c = 1, n = 3 seem to produce very hard instances. Instances with k >
1 where the properties use transitive-closure are often hard, but achieving better
performance on such instances is an important step to finding new reductions
and hopefully new complexity-theoretic knowledge.
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