On Case-Based Learnabilty of Languages

Authors: Christoph Globig, Klaus P. Jantke, Steffen Lange, and Yasubumi Sakakibara.
Email: jantke@dfki.de

Source: New Generation Computing Vol. 15, No. 1, 1997, 59-85.

Abstract. Case-based reasoning is deemed an important technology to alleviate the bottleneck of knowledge acquisition in artificial intelligence (AI). In case-based reasoning, knowledge is represented in the form of particular cases with an appropriate similarity measure rather than any form of rules. The case-based reasoning paradigm adopts the view that an AI system is dynamically changing during its life-cycle which immediately leads to learning considerations.
Within the present paper, we investigate the problem of case-based learning of indexable classes of formal languages. Prior to learning considerations, we study the problem of case-based representability and show that every indexable class is case-based representable with respect to a fixed similarity measure. Next, we investigate several models of case-based learning and systematically analyze their strength as well as their limitations. Finally, the general approach to case-based learnability of indexable classes of formal languages is prototypically applied to so-called containment decision lists, since they seem particularly tailored to case-based knowledge processing.

©Copyright 1998 Ohmsha,Ltd.