On Moded Functional IP Syntheses

by Reusing Composition Structures

Atsushi HIRATA!, Makoto HARAGUCHI', Ken SADOHARA?
!Division of Electronics and Information Engineering, Hokkaido University
N13-W8, Kita-ku, Sapporo, 060-0813 Japan
E-mail:atsushi@db-ei.eng.hokudai.ac.jp
E-mail:makoto@db-ei.eng.hokudai.ac.jp
2Flectrotechnical Laboratory
1-1-4 Umezono, Tsukuba, 305-0045 Japan
E-mail:sadohara@etl.go.jp

Abstract

This paper presents an algorithm for synthesizing intelligent pad (IP), given a set
of positive examples of a target IP and a source IP. The source IP is intended
to be reused in building the target and is in fact embedded into the target IP.
More exactly speaking, the target IP has an extended composition structure of
the source IP, where the primitive IPs used in the source can be replaced with
another IPs under some type constraints on slots. To realize such a reuse of IP
in a framework of logic program syntheses, we introduce an input/output mode
declaration for each IP that specifies a flow of data passing between several IPs.
As a consequence, we can represent each composition structure of moded IP as a
linearly covering program clause. Using this class of clauses, we define a family of
hypothesis spaces and design a new refinement operator for this family based on
which our synthesis algorithm searches for a composition structure achieving the
intended behavior exemplified by data presentation.

1 Introduction

This paper examines a possibility of applying
theoretical results on inductive inference to
solve a synthesis problem of a componentware
system, called the IntelligentPad, and shows
an algorithm for synthesizing components in
that system.

The IntelligentPad system

The IntelligentPad system [1] has been
developed to realize and operate various
kinds of knowledge media on computers. For
the knowledge media such as texts, images,
sounds, movies, database objects and pro-
grams themselves have various data forms,
so it 1s indeed necessary to have a computer
architecture that can handle and distribute
them on a uniform platform. For this purpose,
the Intelligent Pad system provides an environ-
ment in which we can produce a collection of
software components, called intelligent pads
(IPs for short) together with functional link-
ages between them.

Each 1P repre-
sents each knowledge medium, where the ac-
tual content is wrapped within the IP so that
it is distributed to and reusable in other media
or in application programs without depend-
ing on each data representation form. More-
over, to achieve functional linkages between
IPs, every IP is designed to have several slots,
through which data should pass from and to
another TP, and a family of internal methods
reacting on the slot values.

When a slot in an IP is connected with a
slot of another TP, the data values of the for-
mer are allowed to be passed from and to the
latter. Once a slot value is updated by such
a data passing, an internal method associated
with the slot is then invoked and alters an-
other slot value. The process of sending, re-
ceiving and updating slot values is completely
determined by the slot connection structure.
So only thing user must do is to introduce the
slot connection, while the system performs the

data handling according to the connection. A
composite IP is thus obtained by connecting
several slots over several IPs. From the defi-
nition, synthesizing a composite IP is equiv-
alent to defining a connection structure be-
tween more primitive IPs so that it achieves
intended behavior.

Learnability

From a viewpoint of synthesizing complex
composite IPs; it is desirable to have a method
to guide the connection structure so that
the composite TP obtained by the connection
achieves the intended behavior. For this pur-
pose, this paper tries to present a first theo-
retical framework of reusing connection struc-
tures of existing IPs to synthesize a new target
IP, given an example specification of the tar-
get. The techniques for guiding the connec-
tion and for synthesizing composite IPs will
become very important, since the number of
IPs is expected to be increasing rapidly.

In the actual IntelligentPad system, every
IP has a corresponding GUI that can support
understanding what function it has and what
kind of functional linkage is possible with an-
other IPs. However in this paper we consider
only a logical structure of IP, the slot connec-
tion structure, and present an algorithm to
learn it from example specification. The us-
age of GUI in solving synthesis problem is left
as a future work.

As we have already pointed out, the prob-
lem of synthesizing composite IPs is solved by
giving a method for proposing slot connec-
tion structures between more primitive IPs.
So if we are able to represent the connections
by logical formula, namely by definite clauses,
then we can directly apply the results of stud-
ies on inductive learning of logic programs.
To this end, we make an assumption that ev-
ery slot has an input/output mode declara-
tion, and show that the slot connection struc-
ture under this assumption can define a lin-
ear data flow and is therefore represented by
a linearly covering program clause [3]. Tt is

therefore possible to apply the techniques de-
veloped in the research area of inductive learn-
ing and inductive logic programming.

Analogical transformation of slot con-
nection structures

Although the learnability of slot connection
structure would come from the learning the-
ories, we investigate another approach orig-
inated from the research area of component-
ware. One possible approach is to use a notion
of ”patterns” [2]. A pattern in the case of IPs
means a common composition structure that
works as a prototype IP in synthesizing a more
complex IP. Although the usages of patterns is
a promising approach, it is not yet sufficient
to present a framework in which we can an-
swer who provides patterns and in what ways
they can be constructed. The latter would be
a kind of learning meta-knolwedge.

For these reasons, we investigate in this pa-
per the third approach based on Analogical
Logic Program Synthesis (ALPS for short)
[4,5]. In ALPS, given a source program and an
example specification of a target program in
inquiry, the task is to find some program such
that it is similar to the source and is consistent
with the examples. The source program is ex-
pected to provide a structure of target at least
partially. To this aim, ALPS is required to
search for a partial mapping, called a substi-
tution preserving mapping, so that the trans-
formed structure can be extended to some pro-
gram consistent with the examples. Moreover,
negative examples are used to reject inappro-
priate mapping, where a mapping is called in-
appropriate if the program space defined by
the mapping has no solution consistent with
both positive and negative examples.

The situation is exactly similar to the case
of IPs. That is, given a source IP, and an
example specification of a target composite
IP, the task is to transform the connection
structure so that the transformed connection
can be extended to some composite IP that
achieves the behavior exemplified by the spec-

ification. We can say that the source IPs are
themselves interpreted as patterns. We thus
need not prepare a knowledge base of pat-
terns.

Since a slot connection structure of IPs is
represented by a linearly covering program
clause, and since ALPS is originally devel-
oped for that class of linearly covering pro-
grams, it is possible to directly apply ALPS
for our purpose. However the task is to find
just one valid clause defining the composition
structure, while ALPS must search for a logic
program, a set of clauses. Furthermore, it is
needed to specify input/output behavior of
primitive IPs that is not generally described
in terms of linearly covering clauses. For these
reasons, we present in this paper a new ” ALPS
for TP”, that is specific to our problem of syn-
thesizing and learning composition structure
from example specifications.

This paper is organized as follows. In Sec-
tion 2, we informally describe composition
structures of IPs and define them in terms
of logic programs. In Section 3, we intro-
duce a notion of similarities between IPs, that
is a structure-embedding mapping between
clauses. For every notion concerning the syn-
thesis problem of IPs is thus defined in terms
of logic programs, we can design a synthesis
algorithm apart from the viewpoint of IPs. In
fact we present it in Section 4.

2 Moded IP and CIP-clauses

In this section, we show that the problem of
synthesizing IPs can be considered as one of
inferring logic programs. To realize it, we must
describe composite IPs in terms of logic pro-
grams. As we have already mentioned in the
introduction, a composite IP consists of sev-
eral primitive IPs with a slot connection struc-
ture. Each TP has internal methods reacting
on the slot values. Although they can real-
ize relations on slot values, we restrict them
to those defining functions, not relations. For
this purpose, we designate an input/output

mode to each slot in primitive IPs. Then we
can transform the slot connection structure of
composite IP into a linearly covering program
clause (LCP-clause for short). Moreover, we
describe in this section our hypothesis space
of the transformed LLCP-clauses. The inference
algorithm, presented in the next section, is de-
signed to search for a valid clause in it.

2.1 Moded functional TP

First we describe the notion of moded func-
tional TPs briefly, and give its definition in
terms of logic programs. A moded composite
IP is a collection of primitive IPs interlinked
each other by slot connection. Each primitive
IP has several slots to which we assign in-
put/output mode declaration. Once we desig-
nate an input/output mode to each slot, then
a data flow in the IP is determined uniquely.
The introduction of mode is natural because
we often assume such a specific flow when
we synthesize a composite IP. In the Intelli-
gentPad system, any connection structure in
a composite IP is required to be a tree (con-
nected and acyclic undirected graph of prim-
itive IPs). So the moded IP is also an acyclic
directed graph, whenever we represent it as a
graph.

Moreover, we assume that every slot is not
connected to more than two slots. This means
that any output slot is connected to another
input slot at most once. So the slot value of
the former is never duplicated and passed to
more than two IPs. The assumption becomes
a key to represent IPs as LCP-clauses, as we
see later.

We first define primitive IPs. A primitive IP
has several slots which have their own prede-
fined data types.

Definition 1. A primitive IP p has input and
output slots {siy,...,si,n} and {so1,...,s0,},
respectively. For each si;(1 < j < m) and
sop(1 < k < n), 7i; and 7oy are their pre-
defined data types, respectively. A primitive
IP p is then encoded as an atomic formula

e } data passing

!
=]

J
()
-’/\
vy

® Input slot
© output slot
moded functional IP data flow

O slot

ordinary IP

ap(Viiys -y Vains Vsoyy -y Vio,), Where Vi, is
an input variable corresponding to the input
slot si; with 79;, and V;,, is an output vari-
able corresponding to the output slot sop with
TOL.

The input/output behavior of primitive
IP is assumed to be presented by a set of
ground instances. Moreover they are required
to be ”functional” in the sense that, for
any constant symbols vy, ,...,v5;, , there ex-
ists exactly one tuple (vg,,,...,05,,) such that
ap(Vsiyy-o\Vsin 5 Vsoy yeoyUso,) holds in the set of
instances.

We secondly define a composite IP C), con-
sisting of primitive IPs {P;} that are linked
together by slot connections. The connection
of two primitive IPs P; and FP; is realized by
associating slots of F; with slots P; under
some data type constraints. For we suppose
input/output mode for each slot, input slot of
P; is required to be connected to output slot of
P;. Similarly output slots are associated with
input slots.

Once such a slot connection is established,
we can classify every slot in the composite IP

1

» into the following two kinds:

External slot: Every slot in a P; , which is
not yet connected, is regarded external.
They are also used to achieve a connec-
tion with a new another TP.

Internal slot: Any slot already connected
in C, is understood as an internal one.

The basic strategy to represent the connec-
tions in terms of logic programs is very sim-

ple. Suppose we have two primitive IPs P;, P;,
input slot s; of F; and output slot s; of P;.
Suppose furthermore these two slots are not
yet connected. Once we put them together by
connection, then the slot value of the former is
passed to the latter. As a result, they share the
same data value. The mechanism is easily real-
ized by unifying the corresponding variables,
as we represent each slot in a P; by a log-
ical variable (Definition 1). Moreover, we al-
ready assume that any slot is connected to an-
other at most once, the unification for the vari-
able is preformed at most once. Consequently
just two occurrences of variables exactly ac-
cord with the slot connection. The other vari-
able with a single occurrence is concluded as
external. In the definition below, the internal
slots are encoded as local variables in a defi-
nite clause.

Definition 2. (CIP-clause) A composite TP
Cjp consisting of primitive IPs pi, ..., p; is rep-
resented as a definite clause

C'p(Il, ...,Im;Ol, ,On) L=
apl(Il(l);“'aI,(.nl()l);Ogl)a"-aO,(.Ll()l))a
ap, (I 18 00, 0%),

where

1. Variable Condition: The variables IJ@

and O](»i) occur either once or twice in the

body part.
2. External Variables: The variables
Ii,....In;01,...,0, are exactly those

that appear in the body just once.

3. Cycle-Freeness: There exists no cycle
Po,P1y----, Pn,Po Of primitive IPs, where
pr and p; are defined to be adjacent if the
corresponding atoms a,, (I(™); QM)
(m = k, j) share a variable.

4. Connectedness: Any primitive IP py
in the body has an adjacent IP p,,.

For instance, a CIP-clause C,(X;Y) :-
ap,(X;Z), ap,(Z;Y) represents a composite
IP consisting of atomic IPs p; and ps, where

the shared variable 7 denotes the connected
slot.

Now we briefly explain that the CIP-clauses
is a LCP-clause. For this purpose, a sim-
pler form of LCP-clause is presented here.
The original definition [3] is more compli-
cated, for the class of programs considered
in that paper is wider than ours. First we
introduce a notion of blocks. A block is
triple (Body, Input, Output), where Body is
a sequence of moded atoms, and Input and
Qutput are sets of input and output variables,
respectively. Intuitively speaking, the Body is
an acyclic flowchart of procedure calls, where
the input and output resources are designated
by the Input and QOuput of variables, re-
spectively. Each procedure call is specified by
an atomic predicate p(X7y,...,X,;¥1,...,Y%)
with the local input and output resources
{X1,.., Xn} {N1,..., Y1}, respectively. These
local resources are added by a set union when
we compose two procedure calls into a body
in parallel. Serial construction of procedure
calls is also possible. In some cases we need
to pass variables without performing any op-
erations. The empty block meaning “no pro-
cedure call” serves for this purpose. The body
of procedure calls thus organized becomes a
block. Formally we have the following defini-
tion:

Definition 3. A block (G, s,t) is inductively
defined as follows:

atomic block: (p(Xi,..., Xn; Y1, ..., Y2),
{X1,..,Xn}, {Y1,..,Y%}) is a block,
where all the variables are distinct.

parallel block: ((G1,G2),s1Usa, t1Uty)is a
block, if (G}, s;,t;) is a block for j = 1,2,
where we assume without loss of general-
ity that the variable sets for two compo-
nent blocks are disjoint.

serial blcok: ((G1,G2),s1,t2) is a block, if
(Gj,s5,t;) is a block and ¢, = s.

empty block: (¢,s,t) is a block, if ¢ C s.

For instance suppose we execute two proce-
dure calls p1(X1;Z,Y1), p2(X2,Z;Y5) in this

order. The overall input is {X1, X2}. In the
first pro-
cedure call represented by the atomic block
(m(X1; 2, 71),{X1},{Z,Y1}), X2 is simply
passed to the second procedure call. So use
the empty block (¢, { X2}, {X2}). As a result,
we apply the parallel block construction to
obtain (p1(X1;72,Y1),{Xa, X1},{X2,Z,Y1}).
Repeating similar arguments, (p2(X2, Z;Y3),
{X2,Z,Y1}, {Y5,Y1}) is a block. Finally do
the serial construction for these two blocks to
get the overall block.

By the definition, we can easily verify that
any resource (variable) is used only once as
inputs of procedure calls. In this sense we use
the term ”linearly coveringness” in this paper.

Definition 4. (1) A moded clause p(Iy, ..., I;
O1,...,0m) : —Body is called a LCP-clause
if the (Body, {@,...,I,}, {O1,..,0n}) is a
block. (2) A moded functional composite IP
is a logic program consisting of a CIP-clause
in Definition 2 and unit clauses prescribed in
Definition 1

Theorem 5. (1) A CIP-clause is a LCP-
clause. (2) A moded functional IP defines a
function on the Herbrand universe of constant
symbols.

Proof and Remark: The proof is straight-
forward, since we can easily construct the cor-
responding block from a CIP-clause whose
body describes an acyclic flowchart of primi-
tive IPs defined as atomic blocks. On the other
hand, the unit clauses denoting atomic IPs are
not LCP-clauses in the sense of original defi-
nition in [3]. We apply the notion of linearly
covering clauses only to the slot connection
structure represented by a CIP-clause.

It should be noted here that the space
of possible composite IPs is represented
by the set LI of CIP-clauses: L7 =
{a CIP clause C':(H : —Bs)}, which will be
our hypothesis space. This is because we as-
sume that every ground instance of primitive

IPs is provided as a fact to the learner and be-
cause our moded functional IP consists of just
one CIP clause and a set of ground instances
of atomic IPs.

Finally we list the notation used in the fol-
lowing sections. First v : 7, L and Ls represent
a variable v of type 7, a literal and a set of lit-
erals, respectively.

Vin(L) = {v : 7| v is an input variable in L },
Vout(L) = {v : T|v is an output variable in L},
Vi(Ls) = {v : T|v is an input variable which
appears only once in a set Ls},
7|v is an output variable which
appears only once in a set Ls},
V(Ls) : the set of variables of a set Ls.

Vo(Ls) = {v:

3 Analogical reuse of composite
IPs

In the previous section, we have shown that
connection structures of moded composite IPs
are represented by CIP-clauses. It is there-
fore possible to apply the techniques of Induc-
tive Inference or of Inductive Logic Program-
ing to obtain a method for synthesizing the
CIP-clauses (or equivalently the slot connec-
tion structure). However in this paper, we ex-
amine a possibility to reuse an existing moded
functional IP to guide an appropriate connec-
tion structure of a target moded IP.

The basic strategy is to use Analogical Logic
Program Synthesis from ezamples(ALPS for
short) [4, 5]. This is because ALPS involves a
notion of similarities between program clauses
based on which analogical transformation of
source program is carried out to construct
a target program. Since the slot connection
structure of composite moded IP is repre-
sented by a CIP-clause, we define in this sec-
tion a notion of similarities between CIP-
clauses, restricting the original notion pre-
sented in ALPS from the viewpoint of reusing
slot connection structures.

Although we can consider various kinds of
similarity concepts for composite IPs, we focus

our consideration on embedding a slot connec-
tion structure of a source IP into the target IP.
In other words, the source IP is required to
provide a connection structure only, which is
captured logically as we have seen in Section
2. The embedded structure will be extended
to have overall connection structure of target
IP that achieves an intended behavior.

Another aspect of source IP, such as seman-
tic combination of primitive IPs, is neglected
in this paper, and is left as a future work. In
the actual IntelligentPad system, each primi-
tive IP 1s an instance pf a class of IPs. Since
all the instances inherit every property and
method the class has, the semantic informa-
tion on classes becomes very important in
combining IPs from a viewpoint of object-
oriented programming.

Now we illustrate how a connection struc-
ture is embedded into another TP. Suppose we
have two moded composite IPs whose connec-
tion structure are represented by the following
blocks:

Source Bs: ((sp1(SX;SZ), sp2(SZ; SY)),
{SX},{57}))
Target Br:
(p1(X1; W), p2(W, X Z), p3(Z;Y, Y1),
{Xl,X},{Y,Yl})

Although Bg is simpler than Brp, data flow
in the source starting with the input SX,
sending the internal S7 from sp; to sp2 and
finally producing SY as a whole output is pre-
served in the target. In fact we can have the
following two possible corresponding flows in
BTZ

Flowl in Bp: ps receives X, sends internal Z
to ps. ps produces Y (or Y1) based on Z.

Flow2 in Bpr: p; receives X1, sends internal
W to pa. pa produces 7 via W.

In the case of Flowl, sp; should be paired with
Pj+1. Moreover, SX,SY and SZ correspond
to X,Y (or Y1) and Z, respectively. The em-
bedding of data flow illustrated in the above is
easily realized by #-subsumption between the
source block Bs and an ”abstracted” target

source data flow target data flow

block Bf, where the abstraction here means
both an act of forgetting some arguments in
primitive IPs in By and an injective corre-
spondence of primitive IPs over By and Bg. A
class of mappings called Substitution Preserv-
ing Mappings (SPM), originally introduced in
the study of ALPS, is enough to describe the
abstraction. In the above example, the embed-
ding of flow in Bg into Flowl, for instance,
is realized by the mapping ¢(p2(W,X;Z2)) =
spl(X; Z), o(ps(Z;Y,Y1)) = sp2(Z;Y) and a
f-subsumption given by a substitution § =
{8X/X,57/7Z,SY/Y}. The predicate p; in
Bt needs not be considered in the case of this
embedding. So the mapping for p; may not be
defined and is denoted by ¢(p1(X1;W)) = L.

Formally we have the following definitions.
First Atomg and Atomp denote a set of atoms
representing primitive IPs that can be used in
forming source IP and target IP, respectively.

Definition 6. A mapping ¢ : Atomp —

Atomg is called a SPM mapping if

SO(Q(XI:"'1Xm;Y11"')Yn))
=p(Xy, -y Xios Yiy,y o, Y1,) OF
o(g(X1, ..., Xm; Y1, ..Y5)) = L |
where {k1,...,k,} C{1,...,m},
{h,., L} C{1,..,n}, and
X1, Xm, Y1,...,Y,, are typed variables.
Moreover If
@(91()(1;~~))(g;ya,~~;}2))
= gO(qQ(Zl, ceey Zh; I/Vl,
then ¢ = q2, 9 =h, 1= 7.

Wi)),

¢(e) = L means that ¢ is not defined for e.
We extend ¢ for any set S of atoms as follows.

@(S) = {p(A)|A € S and p(A) # L}

For instance, suppose we have a mapping ¢:

olqi(s1;t1,t2)) = pi(s1;t1)
©(g2(s1;t1)) = pa(s1;t1)
e(gs(s15t1)) = L

Then
we have ©({q1(4;C, E),q2(C; B),q3(E, F)})
= {p1(4;C),p2(C; B)}.

An embedding of flows is now formally de-
fined in terms of SPM and #-subsumption:

Definition 7. Let P (ps(Ig; Og)
—Bodys) and Q : (pr(Im; OT) : —Bodyr) be
CIP-clauses with the blocks (Bodys,Ig;Og)
and (Bodyr,Im;O), respectively. Suppose
further that ¢ be a SPM. Then we say that @
is similar to P w.r.t. ¢ if there exists a substi-
tution @ such that Bodys8 C ¢(Bodyr).

Note that for the input and output variables
of blocks must appear in their bodies in the
case of CIP-clauses, the definition also implies
that ¢ can be extended to a mapping 1 such
that P60 C 4(Q).

Using the notion of similarities as the em-
bedding, the our inference problem is de-
scribed as follows:

Given: (1) a CIP-clause P (2) a data presen-
tation of positive facts of target CIP-clause)
and primitive IPs in Atomy as well. (3) a class
@ of SPM mappings from Atomyp to Atomg.

Remark: For we suppose that CIP-clause de-
fines a function, all the negative examples are
automatically derived from the presentation
of positive facts.

Find: CIP-clause) € £Z and ¢ € & such
that () is correct w.r.t. the data presentation
and that () is similar to P w.r.t. ¢.

For a SPM ¢, LI[P,] denotes the set of
CIP-clauses that is similar to P w.r.t. ¢ and
is in LZ. Given a source CIP-clause P, the
system generates all the possible mappings ¢; .
Therefore, the hypothesis space £7 is divided
into subspaces LI[P, ¢1], LIZ[P, ps], ... -

Now we are ready to present our inference
algorithm in the next section.

4 Synthesis Algorithm

We describe in this section our synthesis al-
gorithm searching for a CIP clause in each
subspace LZ[P,;], based on an enumeration
of SPM mappings & = {¢;}. If the subspace
does not contain a solution clause, then the
space should be rejected and skipped. So we
firstly consider the problem of “refuting” such
an inappropriate subspace.

4.1 Refuting Inappropriate
Similarities

If a subspace LZ[P,¢] contains no clause
which is correct w.r.t. a given data presenta-
tion, ¢ is said to be an inappropriate similar-
1ty. It 1s useless to examine the corresponding
subspace LZ[P,¢]. A theoretical idea, known
as refutability [6], helps us to prune off such
meaningless hypothesis spaces.

Definition 8. A synthesis algorithm A for C
of programs is said to refutably infer C if A sat-
isfies the following condition: For any presen-
tation of any intended model M, (1) if there
exists a program in C correct w.r.t. M, A iden-
tifies a correct program in the limit, (2) oth-
erwise A outputs ‘refuted’ and terminates. C
1s said to be refutably inferable if there exists
a synthesis algorithm that refutably infers C.

We need an
algorithm that refutes LZ[P, ¢;], whenever no
solution is involved in that space. For this pur-
pose, we restrict the body length of a target
CIP-clause) to ¢, and present an algorithm
that refutably infers £Z,[P, ¢;] defined as

LI[P, ;] = {CIP-clause) = (H : —Body) |
@ is similar to P w.r.t. ¢;,
Body consists of at most £ literals. }

4.2 Searching and refuting in each
subspace

The refutation mechanism is deeply con-
cerned with a method by which we gen-
erate possible CIP-clauses in each sub-
space LZ,[P,¢]. Roughly speaking, given
a SPM mapping ¢ and a source CIP-
clause P = (p(Inp;Outp) —Bodyp),
we firstly compute a set of “minimal” block
(BodyQ,InQ,Outq) such that ¢(Bodyg) =
Bodypf. There may exist several such mini-
mal blocks, since ways of forgetting some slots
and of putting flows in correspondences are
non-deterministic. The process of finding such
blocks is realized by the function procedure
inv(e,Vy,) as shown below.

The next thing to do is to extend the min-
imal block so that it ”grows” into a tar-
get block (Body, In, Out), where the data for
checking the validness of blocks are given as
ground instances of ¢(In; Out). ¢ is the pred-
icate denoting a target composite IP. The
growing process needs various operations such
as regarding a variable in Iny as an over-
all input variable in In, unifying a variable in
In with another output variable of another
new primitive IP to be added to the body, and
so on. All the growing operations are carried
out by performing a refinement, originally in-
troduced in the study of MIS [7]. It should
be noted here that the refinement starts with
the maximally general clause (¢(In;Out) :
—Bodyg) corresponding to the minimal block
(BodyQ,InQ,Oth). The variable sets InQ
and Out

the target predicate ¢ so that we can perform
the refinement. Our hypothesis space is thus
extended to cover non CIP-clauses and to ob-
tain a valid CIP-clause at the end of refine-
ment processes. The following definition and
the procedure will make the point stated as in
the above clear.

are renamed to In and Out of

Definition 9. Suppose ¢(In; Out) is the tar-
get predicate denoting a desired composite
IP. Then a moded clause p(Input; Output)

—Body is called a CDF-clause if the
(Body,X;Y) is a block. Moreover LD denotes
the set of all CDF-clauses.

The next definition prescribes the minimal

block denoted by ¢~ !(P).

Definition 10.
¢ Y(P) = (¢(I;0) : —Bodys), where Bodys
is given as inv(body(P),Vy, p).

Function inv(e, V¢, ¢)
Input:
a set of atoms e ; a set of variables V}
a SPM ¢
Output:
begin
if e = By, ..., By. then
forj=1 to m do B} = inv(B;,V},p)
return(B1, ..., B.,)
else
begin
let ¢ = p(ty,...,t,) be an atom
such that p(t) = e
let Y7, ...,Y, be distinct variables
in Vf,Vf = Vf \ {Yl, ...,Yn}
for i =1tondo
if t;, € V(e) then s; = t; else s; = Y
return(p(sy, ..., s,))
end

a set of atoms

end.

We now define a refinement operator from
LD to 2¢P as follows.

Definition 11. A mapping p : LD — 2¢P
is a refinement operator such that, for any
C,D € LD, D € p(C) iff one of the follow-

ing conditions hold:

- D ~ C(C{X/Y}, where X T €
Vi(body(C)), Y : 7 € Vi(head(C)) or X :
T € Vo(body(C)), Y : 7 € V,(head(C)).

— D =CU{-B}, where v : 7 € Vj(B) N
Vi (body(C)), (V(B)\ {0}V (body(C) =
0 or Fv : T € Vou(B) N Vi(body(C)),
(V(B) \ {v} nV(body(C)) = 0.

For any definite clauses C' and D, C' <, D
means that D is generated from C using the
refinement operator p repeatedly. p*[P,] de-
notes the set {C|¢p™*(P) <, C'}. We show our
refinement operator is sound and complete.

Theorem 12. LI[P,p] = p*[P,] N LT

Proof. Suppose that D € p*[P, o] N LZ. From
the definition of p, there exists C' = ¢~ !(P)
such that C' <, D. Therefore P = ¢(C') holds.
Moreover, from the definition of refinement
operator, there exists a substitution g such
that Cu C D and dom(u) N V(P) = 0, where
dom(y) is the domain of . Since Cy C C5 im-
plies ©(C1) C ¢(Cs), (Cp) = ¢(C) C (D)
holds. Therefore we have P C (D) and
D € LI[P,¢].

Suppose that D € LZI[P,y]. Since P C
@(D), = (P)u C D. From the definition of
p, D € p*[P,¢] N LT holds.

The refinement operator has a property
that we cannot refine any CIP-clause to ob-
tain more special clauses. This means that
CIP-clauses appear in the last point of spe-
cialization in the refinement processes.

Our algorithm searches each subspace re-
peatedly, and is presented by the following
procedure.

Synthesis Algorithm
Input: a source clause P
a recursively enumerable set {¢;} of SPMs
a data presentation of a target TP
Output: a clause C'
begin
T=0;F:=0
repeat
readfact(7, F')
until T £ (
for j =1 to N do begin
S:={p;'(P)}
repeat
choose C € S
if C' ¢ LI, then
if3AeT CH A then

S =S\ {C} else
S = S\ {C}Up(C)
else begin
while VA€ T, C+ A and
VAeF,CH Ado
begin
output(C') ; readfact(T, F)
end
S:=S5\{C} end
until S£0;5:=5j+1
end
end.

Procedure readfact(7,F)
begin

read the next fact (o, V)

if V =true then 7 := T U {a}

else F := FU{a}
end.

Our algorithm for £Z,[P, ¢;] can refute in-
appropriate similarities before reaching every
CIP-clause. This is simply because £Z, is fi-
nite. A more important thing relating to the
refutability comes from the fact that check-
ing the validness of hypothetical clauses is
possible not only for CIP-clauses but also for
CDF-clauses. This means that, when we suc-
ceed in finding the incorrectness of a CDF-
clause w.r.t. a given data, we can prune off all
the CIP-clauses more specific than the CDF-
clause.

5 Concluding Remarks

In this paper, we showed a possibility of ap-
plying theoretical results on an inductive in-
ference research to a synthesis problem of In-
telligentPad.

In the IntelligentPad system, a new compos-
ite IP is obtained utilizing several IPs that are
provided beforehand or already constructed.
Their slots are adequately connected to ob-
tain a desirable behavior of the composite IP.
Thus, reusability of IPs is a remarkable prop-
erty in the IntelligentPad system.

Such a reusability of components helps to
synthesize alogic program as theoretically and
empirically investigated in the literature[4, 5].
An analogical logic program synthesis system,
ALPS, synthesizes a new logic program (tar-
get program) that is similar to a given source
program. That is, it is considered that ALPS
synthesizes the target program by reusing the
source program.

From these similar aspects, we expected
that a synthesis problem of IPs could be for-
malized as a problem with which ALPS deals.
For this purpose, we tried to transform the
slot connection structure of an IP into a CIP-
clause. Since the class of CIP-clauses is a re-
stricted class of ones that ALPS can poten-
tially manipulate, the hypothesis space for the
target TP is drastically limited. Although our
actual whole search space largely covers the
hypothesis space, we can expect a drastic re-
duction of the whole search caused by the
refutability of (sub)search spaces. As the re-
sult, the target IP would be found efficiently.

The study of this paper is the first step in
applying inductive inference methods to solve
a real synthesis problem in the IntelligentPad
system. Therefore several interesting works
still remain to be done. It is most important to
show empirical results. First we should show
an effectiveness of providing a source IP in or-
der to synthesize a target IP. It corresponds to
showing an importance of reusability of com-
ponents. In practice, we compare our system
reusing source [P with one without source TP
in that how long CPU time it takes to synthe-
size a target IP. Second, we verify an effective-
ness of our search reduction by the refutability
of the subsearch spaces. The numbers of the
pruned CIP-clauses and all CIP-clauses in the
whole search space will be compared.

It would also be worth observing the dif-
ference of search methods. Our system adopts
a MIS-like top-down search method. On the
other hand, some ILP systems with bottom-
up methods have been proposed. For exam-
ple, GOLEM is well known as one of such sys-

tems. We compare our system with GOLEM
for synthesis problems of IPs. As presented
in this paper, our system has been tailored
to synthesize IPs. To make a fair compari-
son, therefore, 1t would be desired to tailor the
original GOLEM to effectively synthesize IPs.
Such a system is currently under investigation
and implementation.

Moreover, although this paper dealt with a
slot connection structure that is linear, more
complicated slot connections are allowed in
the IntelligentPad system. It would be worth
extending the current framework to deal with
such complicated ones. It would also be inter-
esting to characterize a good/bad source TP
for synthesizing a target IP.

References

1. Y. Tanaka. A meme media architecture for
fine-gain component software. 2nd Interna-
tional Symposium on Object Technologies for
Advanced Software, Kanazawa, 1996.

2. R. Hirano. A method of supposing software
development for a synthetic media architec-
ture. Ms thesis, Hokkaido University, 1995 (In
Japanese).

3. H. Arimura and T. Shinohara. Inductive in-
ference of prolog programs with linear data
dependency from positive data, Proc. Infor-
mation Modelling and Knowledge Bases V,
pp- 365-375, 1OS press.

4. K. Sadohara and M. Haraguchi. Using ab-
straction schemata in inductive logic pro-
gramming. 7th International Workshop on In-
ductive Logic Programming, Lecture Notes in
Artificial Intelligence Vol. 1297, pages 256-
263. Springer-Verlag, 1997.

5. K. Sadohara. A sturdy on analogical logic
program synthesis from examples. PhD the-
sis, Tokyo Institute of Technology, 1996.

6. Y. Mukouchi and S. Arikawa. Towards a
mathematical theory of machine discovery
from facts. Theoretical Computer Science,
137:53-84, 1995.

7. E.Y. Shapiro. Inductive inference of theories
from fact. Technical Report 192, Yale Univer-
sity Computer Science Dept., 1981.

