Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
00000000	0000	000000000000000000000000000000000000000	00000	00000	000000000

Complexity and Cryptography

Thomas Zeugmann

Hokkaido University Laboratory for Algorithmics

https://www-alg.ist.hokudai.ac.jp/~thomas/COCR/

Lecture 3: Number Theoretic Problems

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
●00000000	0000	0000000000000000	00000	00000	000000000
Motiv	ation				

We want to have a closer look at the complexity of several problems arising in number theory.

Clearly, we cannot provide an exhaustive study of all interesting problems. Instead, we concentrate ourselves on problems that will be needed when dealing with *cryptography*.

Groups ⊙oooooooo	Definitions 0000	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
Motiv	ation				

We want to have a closer look at the complexity of several problems arising in number theory.

Clearly, we cannot provide an exhaustive study of all interesting problems. Instead, we concentrate ourselves on problems that will be needed when dealing with *cryptography*.

Before we start to study the complexity of several problems arising in number theory, it is helpful to recall a bit group theory.

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
00000000					
	_				

Groups I

Definition 1

Let $G \neq \emptyset$ be any set, and let \circ : $G \times G \rightarrow G$ be any binary operation. We call (G, \circ) a *group* if

- (1) $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a, b, c \in G$, (i.e., \circ is associative);
- (2) there exists a *neutral element* $e \in G$ such that $a \circ e = e \circ a = a$ for all $a \in G$;
- (3) for every $a \in G$ there exists an *inverse element* $b \in G$ such that $a \circ b = b \circ a = e$.
- (4) A group is called *Abelian group* if \circ is also commutative, i.e., $a \circ b = b \circ a$ for all $a, b \in G$.
- (5) A group is said to be *finite* if |G| is finite.
- (6) If (G, \circ) is a finite group then we call |G| the *order* of (G, \circ) .

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
00000000	0000	0000000000000000	00000	00000	000000000
Grou	ps II				

Note that the neutral element *e* and the inverse elements defined above are uniquely determined. In order to have an example, consider the Abelian group $(\mathbb{Z}, +)$. Clearly, addition over the integers is associative and commutative. The neutral element is 0, and for every $a \in \mathbb{Z}$, the number -a is the inverse element of a. Below we shall see more examples.

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
00000000	0000	0000000000000000	00000	00000	000000000
Grou	ps II				

Note that the neutral element *e* and the inverse elements defined above are uniquely determined. In order to have an example, consider the Abelian group $(\mathbb{Z}, +)$. Clearly, addition over the integers is associative and commutative. The neutral element is 0, and for every $a \in \mathbb{Z}$, the number -a is the inverse element of a. Below we shall see more examples.

It is advantageous to have the following definition:

Definition 2

Let (G, \circ) be a group and let $S \subseteq G$ be non-empty. Then (S, \circ) is said to be a *subgroup* of (G, \circ) if

(1) $a \circ b \in S$ for all $a, b \in S$;

(2) for every $a \in S$ also the inverse b of a is in S.

For having another example, we introduce the following notation: Let (G, \circ) be a group, let $a \in G$, and let b be the inverse of a. We set $a^0 =_{df} e$, $a^{n+1} =_{df} a^n \circ a$ for all $n \in \mathbb{N}$, and $a^{-(n+1)} =_{df} b^n \circ b$ for all $n \in \mathbb{N}$.

For having another example, we introduce the following notation: Let (G, \circ) be a group, let $a \in G$, and let b be the inverse of a. We set $a^0 =_{df} e$, $a^{n+1} =_{df} a^n \circ a$ for all $n \in \mathbb{N}$, and $a^{-(n+1)} =_{df} b^n \circ b$ for all $n \in \mathbb{N}$.

Let $S = \{a^n \mid n \in \mathbb{Z}\}$; then (S, \circ) is always a subgroup of (G, \circ) .

For having another example, we introduce the following notation: Let (G, \circ) be a group, let $a \in G$, and let b be the inverse of a. We set $a^0 =_{df} e$, $a^{n+1} =_{df} a^n \circ a$ for all $n \in \mathbb{N}$, and $a^{-(n+1)} =_{df} b^n \circ b$ for all $n \in \mathbb{N}$.

Let $S = \{a^n \mid n \in \mathbb{Z}\}$; then (S, \circ) is always a subgroup of (G, \circ) .

The importance of the latter example suggests the following definitions:

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
00000000					
Grou	ps IV				

Definition 3

A group (G, \circ) is said to be a *cyclic group* if there exists an element $a \in G$ such that $G = \{a^n \mid n \in \mathbb{Z}\}$. We refer to a as a *generator* of G.

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
00000000					
Grou	ps IV				

Definition 3

A group (G, \circ) is said to be a *cyclic group* if there exists an element $a \in G$ such that $G = \{a^n \mid n \in \mathbb{Z}\}$. We refer to a as a *generator* of G.

Definition 4

Let (G, \circ) be any group with neutral element e, and let $a \in G$. The least number $n \in \mathbb{N}^+$ such that $a^n = e$ is called *order of* a provided such an n exists. If $a^n \neq e$ for all $n \in \mathbb{N}^+$ then we define the order of a to be ∞ . We denote the order of a by ord(a).

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
00000000					
Grou	ps IV				

Definition 3

A group (G, \circ) is said to be a *cyclic group* if there exists an element $a \in G$ such that $G = \{a^n \mid n \in \mathbb{Z}\}$. We refer to a as a *generator* of G.

Definition 4

Let (G, \circ) be any group with neutral element e, and let $a \in G$. The least number $n \in \mathbb{N}^+$ such that $a^n = e$ is called *order of* a provided such an n exists. If $a^n \neq e$ for all $n \in \mathbb{N}^+$ then we define the order of a to be ∞ . We denote the order of a by ord(a).

Let $a, b \in \mathbb{Z}$ be given. We say that a *divides* b (or b is *divisible* by a) if there exists a $d \in \mathbb{Z}$ such that b = ad. If a divides b we write a|b, and a is called a *divisor* of b.

Next, we establish an important property of subgroups of finite groups.

Theorem 1 (Lagrange's theorem)

Let (G, \circ) be a finite group and let (H, \circ) be any subgroup of (G, \circ) . Then the order of (H, \circ) divides the order of (G, \circ) .

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
000000000					
Grou	ps V				

Next, we establish an important property of subgroups of finite groups.

Theorem 1 (Lagrange's theorem)

Let (G, \circ) be a finite group and let (H, \circ) be any subgroup of (G, \circ) . Then the order of (H, \circ) divides the order of (G, \circ) .

Proof. Let $H = \{h_1, \dots, h_m\} \subseteq G$ be any subgroup of G. If G = H, we are done.

Otherwise, we have $H \subset G$, and hence there exists an element $x \in G \setminus H$. Consider the set $Hx = \{h_1 \circ x, \dots, h_m \circ x\}$. Then $h_i \circ x = h_j \circ x$ implies $h_i = h_j$. Furthermore, $h_i \circ x = h_j$ would imply $x = h_i^{-1} \circ h_j \in H$, a contradiction to $x \notin H$ (here h_i^{-1} is the inverse of h_i).

Thus, the elements of Hx are pairwise distinct and do not belong to H. We conclude that

$$|Hx| = |H| = m$$
 and $Hx \cap H = \emptyset$. (1)

Now, if $Hx \cup H = G$, the theorem follows. Otherwise, there is an element $x_1 \in G \setminus (Hx \cup H)$ and we form the set $Hx_1 = \{h_1 \circ x_1, \dots, h_m \circ x_1\}$. Analogously to the above, we can show that the elements of Hx_1 are pairwise distinct and do not belong to $Hx \cup H$. Since G is finite, we thus obtain a finite partition $H, Hx, Hx_1, \dots, Hx_\ell$ of G, where each of the sets $H, Hx, Hx_1, \dots, Hx_\ell$ has precisely m elements. Hence, we have shown that $|G| = (\ell + 2)m$.

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
0000000					
Group	os VII				

Theorem 1 allows for a nice corollary which is needed later.

Corollary 1

Let (G, \circ) *be any group with neutral element* e*, and let* $a \in G$ *be any element such that* $ord(a) \neq \infty$ *. Then* ord(a) *divides* |G|*.*

Groups 00000000	Definitions 0000	Calculating, GCD	Chinese Remaindering	Appendix Fib 00000000
Defin	itions I			

We need the following notations and definitions: Consider $m \in \mathbb{N}^+$ and $a \in \mathbb{Z}$. Then there are uniquely determined numbers q, r such that a = qm + r, where $0 \leq r < m$. We call q the *integer quotient* and r the *remainder*.

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
00000000	•000	0000000000000000	00000	00000	000000000
Defin	itions I				

We need the following notations and definitions: Consider $m \in \mathbb{N}^+$ and $a \in \mathbb{Z}$. Then there are uniquely determined numbers q, r such that a = qm + r, where $0 \leq r < m$. We call q the *integer quotient* and r the *remainder*.

Quite often, one is not interested in a number a itself but in its remainder when divided by a number m. Let $m \in \mathbb{N}^+$, and let $a, b \in \mathbb{Z}$; we write $a \equiv b \mod m$ if and only if m divides a - b (abbr. m | (a - b)).

Groups 00000000	Definitions •••••	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
Defin	itions I				

We need the following notations and definitions: Consider $m \in \mathbb{N}^+$ and $a \in \mathbb{Z}$. Then there are uniquely determined numbers q, r such that a = qm + r, where $0 \leq r < m$. We call q the *integer quotient* and r the *remainder*.

Quite often, one is not interested in a number a itself but in its remainder when divided by a number m. Let $m \in \mathbb{N}^+$, and let $a, b \in \mathbb{Z}$; we write $a \equiv b \mod m$ if and only if m divides a - b (abbr. m | (a - b)).

Thus, $a \equiv b \mod m$ if and only if a and b have the *same* remainder when divided by m.

If $a \equiv b \mod m$ then we say that a is *congruent* b modulo m, and we refer to " \equiv " as the *congruence relation*.

	Definitions	Calculating, GCD	Chinese Remaindering	Appendix Fib 000000000
Defini	itions II			

It is easy to see that " \equiv " is an equivalence relation, i.e., it is *reflexive, symmetric* and *transitive*. Thus, we may consider the equivalence classes $[a] =_{df} \{x \in \mathbb{Z} \mid a \equiv x \mod m\}$. Consequently, [a] = [b] iff $a \equiv b \mod m$. Therefore, there are precisely the m equivalence classes $[0], [1], \ldots, [m-1]$. We set $\mathbb{Z}_m =_{df} \{[0], [1], \ldots, [m-1]\}$.

Groups 00000000	Definitions 0000	Calculating, GCD	Chinese Remaindering 00000	Appendix Fib 000000000
Defin	itions II			

It is easy to see that " \equiv " is an equivalence relation, i.e., it is *reflexive, symmetric* and *transitive*. Thus, we may consider the equivalence classes $[a] =_{df} \{x \in \mathbb{Z} \mid a \equiv x \mod m\}$. Consequently, [a] = [b] iff $a \equiv b \mod m$. Therefore, there are precisely the m equivalence classes $[0], [1], \ldots, [m-1]$. We set $\mathbb{Z}_m =_{df} \{[0], [1], \ldots, [m-1]\}$.

Definition 5

We define addition and multiplication of these equivalence classes by

$$[a] + [b] =_{df} [a + b] \quad \text{and} [a] \cdot [b] =_{df} [a \cdot b] .$$

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
	nitions II		00000	00000	000000000

Exercise 1. Show that the definition of + and \cdot over \mathbb{Z}_m are independent of the choice of the representation.

Now, it is easy to see that $(\mathbb{Z}_m, +, \cdot)$ constitutes a commutative ring.

Groups 00000000	Definitions 0000	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
Defin	itions II	I			

Exercise 1. Show that the definition of + and \cdot over \mathbb{Z}_m are independent of the choice of the representation.

Now, it is easy to see that $(\mathbb{Z}_m, +, \cdot)$ constitutes a commutative ring.

Clearly, the neutral element for addition is [0] and the identity element with respect to multiplication is [1].

Moreover, by the definition of a ring, it is immediate that $(\mathbb{Z}_m, +)$ is an Abelian group. We refer to this group also as to \mathbb{Z}_m for short.

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
00000000	0000	0000000000000000	00000	00000	000000000
Defin	itions II	l			

Exercise 1. Show that the definition of + and \cdot over \mathbb{Z}_m are independent of the choice of the representation.

Now, it is easy to see that $(\mathbb{Z}_m, +, \cdot)$ constitutes a commutative ring.

Clearly, the neutral element for addition is [0] and the identity element with respect to multiplication is [1].

Moreover, by the definition of a ring, it is immediate that $(\mathbb{Z}_m, +)$ is an Abelian group. We refer to this group also as to \mathbb{Z}_m for short.

Note, however, that in general $(\mathbb{Z}_m, +, \cdot)$ is *not* a field. For example, let m = 6 and consider [2]. Then [2] does not have a multiplicative inverse in $(\mathbb{Z}_6, +, \cdot)$.

In order to see under what circumstances $(\mathbb{Z}_m, +, \cdot)$ is a field, we have to answer the question under which conditions the multiplicative inverses do always exist. Note that these multiplicative inverses are also called *modular inverses*. The existence of modular inverses is completely characterized by Theorem 6 below.

First we have to establish some useful rules for performing calculations with congruences.

In order to see under what circumstances $(\mathbb{Z}_m, +, \cdot)$ is a field, we have to answer the question under which conditions the multiplicative inverses do always exist. Note that these multiplicative inverses are also called *modular inverses*. The existence of modular inverses is completely characterized by Theorem 6 below.

First we have to establish some useful rules for performing calculations with congruences.

We shall also look at the complexity of some of the more important algorithms provided. For doing this, we measure the length of the inputs by the number of bits needed to write the input down. Moreover, whenever dealing with elements from \mathbb{Z}_m , we assume that they are represented by their canonical representations, i.e., by $0, \ldots, m-1$.

	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
		•••••••			
D '					

Basics

Theorem 2

Let $m \in \mathbb{N}^+$, let a, b, c, $d \in \mathbb{Z}$ be any integers such that $a \equiv b \mod m$ and $c \equiv d \mod m$, and let $n \in \mathbb{N}$. Then we have the following:

- (1) $a + c \equiv b + d \mod m$;
- (2) $a c \equiv b d \mod m$;
- (3) $ac \equiv bd \mod m$;

(4) $a^n \equiv b^n \mod m$.

The proof is left as an *exercise*.

So, we can calculate with congruences almost as convenient as with equations. The main difference is division. *Division* cannot be used.

Before we can study modular inverses, we need the following: **Greatest Common Divisor (abbr. gcd)** *Input:* Numbers $a, b \in \mathbb{N}$. *Problem:* Compute the greatest $d \in \mathbb{N}$ dividing both a and b.

It is convenient to set gcd(0,0) = 0. Also, gcd(a,0) = a and

gcd(a, a) = a for all $a \in \mathbb{N}$. Thus, we may assume a > b > 0.

Since we are also interested in the complexity of the number theoretic problems we are dealing with, we have to say how we do present numbers. In the following, we always assume numbers to be represented in binary notation. Thus, we need $n = \lfloor \log a \rfloor + 1$ many bits to represent number a, and we refer to n as to the *length* of input a.

Before we can study modular inverses, we need the following: **Greatest Common Divisor (abbr. gcd)** *Input:* Numbers $a, b \in \mathbb{N}$.

Problem: Compute the greatest $d \in \mathbb{N}$ dividing both a and b.

It is convenient to set gcd(0,0) = 0. Also, gcd(a,0) = a and gcd(a, a) = a for all $a \in \mathbb{N}$. Thus, we may assume a > b > 0.

Since we are also interested in the complexity of the number theoretic problems we are dealing with, we have to say how we do present numbers. In the following, we always assume numbers to be represented in binary notation. Thus, we need $n = \lfloor \log a \rfloor + 1$ many bits to represent number a, and we refer to n as to the *length* of input a.

We say that a computation can be performed in time *polynomial in the length* m *of the input* if there is a constant c > 0 such that the running time is $O(m^c)$ for all $m \in \mathbb{N}$.

Groups 00000000	Definitions 0000	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
GCD	II				

Theorem 3

Algorithm ECL below computes the gcd of numbers $a, b \in \mathbb{N}^+$ and numbers $x, y \in \mathbb{Z}$ such that d = ax + by. It uses at most 1.5 log a many divisions of numbers less than or equal to a.

	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
		000000000000000000000000000000000000000			
000					

Theorem 3

GCD II

Algorithm ECL below computes the gcd of numbers $a, b \in \mathbb{N}^+$ and numbers $x, y \in \mathbb{Z}$ such that d = ax + by. It uses at most 1.5 log a many divisions of numbers less than or equal to a.

Proof. Algorithm ECL is the so-called extended Euclidean algorithm. We use the following formulation of it:

 $\begin{array}{l} \mbox{Algorithm ECL: "Set $x_0 = 1$, $x_1 = 0$, $y_0 = 0$, $y_1 = 1$, and $r_0 = a$, $r_1 = b$. \\ Compute successively $r_{i+1} = r_{i-1} - q_i r_i$, where $q_i = \lfloor \frac{r_{i-1}}{r_i} \rfloor$, $x_{i+1} = x_{i-1} - q_i x_i$, and $y_{i+1} = y_{i-1} - q_i y_i$ until $r_{i+1} = 0$. \\ Coutput r_i, x_i, y_i." \end{array}$

Groups 00000000	Definitions 0000	Calculating, GCD	Chinese Remaindering	Appendix Fib 000000000
GCD	III			

Claim A. Algorithm ECL computes d, x, and y correctly. Looking at the sequence of the r_i 's computed by Algorithm ECL, we see that $r_{i-1} = q_i r_i + r_{i+1}$. That is, q_i is the integer quotient and r_{i+1} is the remainder obtained when dividing r_{i-1} by r_i . So we have $0 \le r_i < r_{i-1}$ during the execution of Algorithm ECL, and thus it must terminate.

Groups 00000000	Definitions 0000	Calculating, GCD	Chinese Remaindering 00000	Appendix Fib 000000000
GCD	III			

Claim A. Algorithm ECL computes d, x, and y correctly. Looking at the sequence of the r_i 's computed by Algorithm ECL, we see that $r_{i-1} = q_i r_i + r_{i+1}$. That is, q_i is the integer quotient and r_{i+1} is the remainder obtained when dividing r_{i-1} by r_i . So we have $0 \le r_i < r_{i-1}$ during the execution of Algorithm ECL, and thus it must terminate.

Let i + 1 be the number such that $r_{i+1} = 0$. We prove inductively that

$$r_0 x_{\ell} + r_1 y_{\ell} = r_{\ell}$$
 for $\ell = 0, ..., i$. (2)

For i = 0 and i = 1 we directly obtain $r_0x_0 + r_1y_0 = r_0$ and $r_0x_1 + r_1y_1 = r_1$, respectively. Thus, we may assume the induction hypothesis for $\ell - 1$ and ℓ , where $\ell = 1, ..., i - 1$.

Groups 00000000	Definitions 0000	Calculating, GCD	Chinese Remaindering 00000	Appendix Fib 000000000
GCD	IV			

By definition

 $x_{\ell+1} = x_{\ell-1} - q_\ell x_\ell$, and $y_{\ell+1} = y_{\ell-1} - q_\ell y_\ell$; thus

$$r_{0}x_{\ell+1} + r_{1}y_{\ell+1} = r_{0}x_{\ell-1} - r_{0}q_{\ell}x_{\ell} + r_{1}y_{\ell-1} - r_{1}q_{\ell}y_{\ell}$$

$$= \underbrace{r_{0}x_{\ell-1} + r_{1}y_{\ell-1}}_{=r_{\ell-1} \text{ by ind. hyp.}} - q_{\ell}\underbrace{(r_{0}x_{\ell} + r_{1}y_{\ell})}_{=r_{\ell} \text{ by ind. hyp.}}$$

$$= r_{\ell-1} - q_{\ell}r_{\ell} = r_{\ell+1} .$$

Groups 00000000	Definitions 0000	Calculating, GCD	Chinese Remaindering	Appendix Fib 000000000
GCD	IV			

By definition

 $x_{\ell+1} = x_{\ell-1} - q_{\ell} x_{\ell}$, and $y_{\ell+1} = y_{\ell-1} - q_{\ell} y_{\ell}$; thus

$$r_{0}x_{\ell+1} + r_{1}y_{\ell+1} = r_{0}x_{\ell-1} - r_{0}q_{\ell}x_{\ell} + r_{1}y_{\ell-1} - r_{1}q_{\ell}y_{\ell}$$

$$= \underbrace{r_{0}x_{\ell-1} + r_{1}y_{\ell-1}}_{=r_{\ell-1} \text{ by ind. hyp.}} - q_{\ell}\underbrace{(r_{0}x_{\ell} + r_{1}y_{\ell})}_{=r_{\ell} \text{ by ind. hyp.}}$$

$$= r_{\ell-1} - q_{\ell}r_{\ell} = r_{\ell+1} .$$

It remains to show that $r_i = gcd(a, b)$. Let d = gcd(a, b). By (2), we have $r_i = r_0x_i + r_1y_i = ax_i + by_i$. So d divides r_i . On the other hand, every divisor of r_i divides $ax_i + by_i$. Since $r_{i+1} = 0$, we know that $r_{i-1} = q_ir_i$. Therefore, r_i divides r_{i-1} , too. Consequently, $r_{i-2} = r_i + q_{i-1}r_{i-1}$ implies $r_i|r_{i-2}$. Iterating this argument directly yields that r_i divides a and b. Thus, $r_i = d$. This proves Claim A, i.e., the correctness.

Claim **B**. *Algorithm* ECL uses at most 1.5 log a many divisions of numbers less than or equal to **a**.

We have already seen that Algorithm ECL must terminate. To obtain a better bound for the number of divisions necessary, we show that

$$\mathbf{r}_{\ell+1} + \mathbf{r}_{\ell} \leqslant \mathbf{r}_{\ell-1} \quad \text{for all} \quad \ell = 1, \dots, i. \tag{3}$$

This can be seen as follows: By construction, $r_{\ell+1} = r_{\ell-1} - q_\ell r_\ell$; hence $r_{\ell+1} + r_\ell = r_{\ell-1} + r_\ell (1 - q_\ell) \leq r_{\ell-1}$ provided $(1 - q_\ell) \leq 0$. The latter inequality obviously holds in accordance with q_ℓ 's definition.

Groups 00000000	Definitions 0000	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
GCD	V				

Claim **B**. *Algorithm* ECL uses at most 1.5 log a many divisions of numbers less than or equal to **a**.

We have already seen that Algorithm ECL must terminate. To obtain a better bound for the number of divisions necessary, we show that

$$\mathbf{r}_{\ell+1} + \mathbf{r}_{\ell} \leqslant \mathbf{r}_{\ell-1} \quad \text{for all} \quad \ell = 1, \dots, i. \tag{3}$$

This can be seen as follows: By construction, $r_{\ell+1} = r_{\ell-1} - q_\ell r_\ell$; hence $r_{\ell+1} + r_\ell = r_{\ell-1} + r_\ell (1 - q_\ell) \leq r_{\ell-1}$ provided $(1 - q_\ell) \leq 0$. The latter inequality obviously holds in accordance with q_ℓ 's definition.

By Inequality (3), we see that the number of divisions is maximal iff $r_{\ell+1} + r_{\ell} = r_{\ell-1}$ for all $\ell = 1, ..., i - 1$.

Groups 00000000	Definitions 0000	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
	V/I				

Hence, the worst-case occurs if $a_0 = a_1 = 1$ and $a_{\ell} = a_{\ell-1} + a_{\ell-2}$ for all $n \ge \ell \ge 2$, where $a = a_{n+1}$ and $b = a_n$; i.e., if a equals the (n + 2)th member and b equals the (n + 1)th member of the well-known Fibonacci sequence. Therefore, all we have to do is to estimate the size of the nth member of the Fibonacci sequence.

コレレ

Groups 00000000	Definitions 0000	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
GCD	VII				

Recall that

$$a_{n} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right) .$$
 (4)

Groups 00000000	Definitions 0000	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
GCD	VII				

Recall that

$$a_{n} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right) .$$
 (4)

Let $\phi =_{df} \left(\frac{1+\sqrt{5}}{2}\right)$; then one can show inductively that

$$\phi^{n-1} \leqslant a_n \leqslant \phi^n \quad \text{for all } n \geqslant 1 \,. \tag{5}$$

That is, if $a = a_{n+1}$ and $b = a_n$ then Algorithm ECL has to perform n division steps. By the left-hand side of (5), we know that $a = a_{n+1} \ge \phi^n$ and thus $\log_{\phi} a \ge n$ gives the desired upper bound for the number of divisions to be performed. Since $\log_{\phi} a = \frac{\ln 2}{\ln \phi} \log a$, Claim B follows.

Putting Claim A and B together, directly yields Theorem 3.

It remains to estimate the time complexity of the Algorithm ECL. The only remaining issue that needs clarification is the size of the numbers x and y.

Theorem 4

During the execution of Algorithm ECL we always have $|x_{\ell}| \leq b/(2d)$ and $|y_{\ell}| \leq a/(2d)$ for $\ell = 0, \ldots i$, where i is the smallest number such that $r_{i+1} = 0$.

Proof. By construction, all x_{ℓ} , $y_{\ell} \in \mathbb{Z}$. Let D_{ℓ} be the determinant

$$\mathsf{D}_{\ell} =_{\mathrm{df}} \left| \begin{array}{cc} \mathsf{x}_{\ell} & \mathsf{y}_{\ell} \\ \mathsf{x}_{\ell+1} & \mathsf{y}_{\ell+1} \end{array} \right| \,.$$

Groups 000000		Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
GC	DIX				

Then we obtain

$$D_{\ell+1} = \begin{vmatrix} x_{\ell+1} & y_{\ell+1} \\ x_{\ell+2} & y_{\ell+2} \end{vmatrix} = \begin{vmatrix} x_{\ell+1} & y_{\ell+1} \\ x_{\ell} - q_{\ell+1} x_{\ell+1} & y_{\ell} - q_{\ell+1} y_{\ell+1} \\ = \begin{vmatrix} x_{\ell+1} & y_{\ell+1} \\ x_{\ell} & y_{\ell} \end{vmatrix} = -D_{\ell}.$$

Groups 00000000	Definitions 0000	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
GCD	IX				

Then we obtain

$$D_{\ell+1} = \begin{vmatrix} x_{\ell+1} & y_{\ell+1} \\ x_{\ell+2} & y_{\ell+2} \end{vmatrix} = \begin{vmatrix} x_{\ell+1} & y_{\ell+1} \\ x_{\ell} - q_{\ell+1} x_{\ell+1} & y_{\ell} - q_{\ell+1} y_{\ell+1} \\ = \begin{vmatrix} x_{\ell+1} & y_{\ell+1} \\ x_{\ell} & y_{\ell} \end{vmatrix} = -D_{\ell}.$$

We have $D_0 = 1$ and so $D_{\ell} = (-1)^{\ell}$ for all $\ell = 0, ..., i$. Since $D_{\ell} = x_{\ell} y_{\ell+1} - y_{\ell} x_{\ell+1} = (-1)^{\ell}$, we see that $gcd(x_{\ell}, y_{\ell}) = 1$. By Equality (2) we know that $ax_{i+1} + by_{i+1} = r_{i+1} = 0$. Thus, $ax_{i+1} = -by_{i+1}$, and dividing this equality by d = gcd(a, b) gives us $(a/d)x_{i+1} = -(b/d)y_{i+1}$. Since gcd(a/d, b/d) = 1 and $gcd(x_{i+1}, y_{i+1}) = 1$, we obtain $x_{i+1} = \pm b/d$ and $y_{i+1} = \pm a/d$. The appropriate signs are determined by observing that the signs of the sequences (x_{ℓ}) and (y_{ℓ}) alternate for $\ell \ge 2$.

From the recursive definition of the integers x_{ℓ} , we see that $x_2 = 1$, $x_3 = -q_2$, $x_4 = 1 + q_3q_2$, and in general $|x_{\ell}| < |x_{\ell+1}|$ for all $\ell \ge 3$. Analogously, we have $|y_{\ell}| < |y_{\ell+1}|$ for all $\ell \ge 3$. Finally, $x_{i+1} = x_{i-1} - q_i x_i$, and thus

$$|q_i x_i| = |x_{i-1} - x_{i+1}| \le |x_{i+1}| = |b/d|$$
.

Since $r_{i+1} = 0$ and $q_i = \lfloor r_{i-1}/r_i \rfloor$, we must have $q_i \ge 2$. Hence, $|x_i| \le b/(2d)$. Similarly, one obtains that $|y_i| \le a/(2d)$.

From the recursive definition of the integers x_{ℓ} , we see that $x_2 = 1$, $x_3 = -q_2$, $x_4 = 1 + q_3q_2$, and in general $|x_{\ell}| < |x_{\ell+1}|$ for all $\ell \ge 3$. Analogously, we have $|y_{\ell}| < |y_{\ell+1}|$ for all $\ell \ge 3$. Finally, $x_{i+1} = x_{i-1} - q_i x_i$, and thus

$$|q_i x_i| = |x_{i-1} - x_{i+1}| \le |x_{i+1}| = |b/d|$$
.

Since $r_{i+1} = 0$ and $q_i = \lfloor r_{i-1}/r_i \rfloor$, we must have $q_i \ge 2$. Hence, $|x_i| \le b/(2d)$. Similarly, one obtains that $|y_i| \le a/(2d)$.

Consequently, we arrive at the following theorem:

Theorem 5

The time complexity of Algorithm ECL is $O((\log a)^3)$ *.*

	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
		0000000000000000			
Modu	ılar Inv	erse I			

The following theorem completely characterizes the existence of modular inverses:

Theorem 6

The congruence $ax \equiv 1 \mod m$ is solvable iff gcd(a, m) = 1. Moreover, if $ax \equiv 1 \mod m$ is solvable, then the solution is uniquely determined. The following theorem completely characterizes the existence of modular inverses:

Theorem 6

The congruence $ax \equiv 1 \mod m$ is solvable iff gcd(a, m) = 1. Moreover, if $ax \equiv 1 \mod m$ is solvable, then the solution is uniquely determined.

Proof. First, assume gcd(a, m) = 1. We have to show that $ax \equiv 1 \mod m$ is solvable. Since gcd(a, m) = 1, there are integers x, y such that 1 = ax + my. Hence, m divides 1 - ax, i.e., $ax \equiv 1 \mod m$. Thus, x mod m is the wanted solution.

Next, assume $ax \equiv 1 \mod m$ to be solvable. Hence, there exists an x_0 such that $ax_0 \equiv 1 \mod m$.

Consequently, m divides $ax_0 - 1$, and therefore, there exists a y such that $my = ax_0 - 1$.

Next, assume $ax \equiv 1 \mod m$ to be solvable. Hence, there exists an x_0 such that $ax_0 \equiv 1 \mod m$.

Consequently, m divides $ax_0 - 1$, and therefore, there exists a y such that $my = ax_0 - 1$.

Let d be any natural number dividing both m and a. Dividing the left side of the latter equation by d leaves the remainder 0. Hence, dividing the right side must also yield the remainder 0. Since d|a, we may conclude d|1, and thus d = 1.

Finally, assume $ax \equiv 1 \mod m$ to be solvable. Suppose, there are solutions x_1 , x_2 . Thus, we have

ax_1	≡	1	mod m	()	6)
ax ₂	≡	1	mod m		7)

By our Theorem 2, we can subtract (7) from (6) and obtain $a(x_1 - x_2) \equiv 0 \mod m$, i.e., m divides $a(x_1 - x_2)$. Since gcd(a, m) = 1, we may conclude that m divides $x_1 - x_2$, i.e., $x_1 \equiv x_2 \mod m$. Thus, the solution is unique modulo m.

	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
		000000000000000000000000000000000000000			
Modu	ular Inve	erse IV			

Question

What can be said about the complexity of computing modular inverses?

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
		000000000000000000000000000000000000000			
Modu	ılar Inve	erse IV			

Question

What can be said about the complexity of computing modular inverses?

The answer is given by the following theorem:

Theorem 7

Modular inverse can be computed in time $O(\max{\log a, \log m}^3)$.

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
		000000000000000000000000000000000000000			
Modu	ılar Inve	erse IV			

Question

What can be said about the complexity of computing modular inverses?

The answer is given by the following theorem:

Theorem 7

Modular inverse can be computed in time $O(\max{\log a, \log m}^3)$.

Proof. As the proof of Theorem 6 shows, all we have to do is to apply Algorithm ECL presented above. Thus, the assertion follows.

Groups 0000000	Definitions	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
Rer	narks				

By Theorem 6 it is appropriate to consider

 $\mathbb{Z}_{\mathfrak{m}}^{*} = \left\{ [\mathfrak{a}] \in \mathbb{Z}_{\mathfrak{m}} \mid gcd(\mathfrak{a},\mathfrak{m}) = 1 \right\}.$

Note that Theorem 6 directly implies that $(\mathbb{Z}_{\mathfrak{m}'}^* \cdot)$ constitutes a *finite Abelian group* (cf. Definition 1).

Groups 00000000	Definitions 0000	Calculating, GCD	Detour 00000	Chinese Remaindering 00000	Appendix Fib 000000000
Rema	arks				

By Theorem 6 it is appropriate to consider

 $\mathbb{Z}_{\mathfrak{m}}^{*} = \left\{ [\mathfrak{a}] \in \mathbb{Z}_{\mathfrak{m}} \mid gcd(\mathfrak{a},\mathfrak{m}) = 1 \right\}.$

Note that Theorem 6 directly implies that $(\mathbb{Z}_{\mathfrak{m}'}^* \cdot)$ constitutes a *finite Abelian group* (cf. Definition 1).

Again, we simplify notation and refer to (\mathbb{Z}_m^*, \cdot) as to \mathbb{Z}_m^* for short. Furthermore, we usually omit the brackets when referring to members of \mathbb{Z}_m and \mathbb{Z}_m^* , respectively.

That is, we write $a \in \mathbb{Z}_m$ and $a \in \mathbb{Z}_m^*$ instead of $[a] \in \mathbb{Z}_m$ and of $[a] \in \mathbb{Z}_m^*$, respectively.

In order to get more familiarity with the congruence relation " \equiv ", let us derive a rule for deciding whether or not an integer given in decimal notation is divisible by 3.

In order to get more familiarity with the congruence relation " \equiv ", let us derive a rule for deciding whether or not an integer given in decimal notation is divisible by 3.

Since the divisibility by 3 is not affected by the sign, it suffices to consider

$$z = \sum_{i=0}^{n} z_i 10^i$$
 ,

where $z_i \in \{0, 1, ..., 9\}$ for all i = 0, ..., n.

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
			00000		
Divisi	ibility II				

Then, by the reflexivity of " \equiv " we have

$$z_i \equiv z_i \mod 3 \tag{8}$$

for all i = 0, ..., n. Moreover, $10 \equiv 1 \mod 3$ and thus by Property (4) of Theorem 2 we know that

 $10^{i} \equiv 1^{i} \equiv 1 \mod 3 \quad \text{for all } i = 0, \dots, n .$ (9)

Next, we apply Property (1) of Theorem 2 to (8) and (9) exactly n many times and obtain

$$\sum_{i=0}^n z_i 10^i \equiv \sum_{i=0}^n z_i \mod 3.$$

	Definitions 0000	Calculating, GCD	Chinese Remaindering 00000	Appendix Fib 000000000
Divisi	bility III			

Consequently, we directly get the following theorem:

Theorem 8

A number given in decimal notation is divisible by 3 if and only if the sum of its digits is divisible by 3.

Divisibility III

Consequently, we directly get the following theorem:

Theorem 8

A number given in decimal notation is divisible by 3 if and only if the sum of its digits is divisible by 3.

The proof given above directly allows for a corollary concerning the divisibility by 9. By reflexivity we also have

$$z_i \equiv z_i \mod 9 \tag{10}$$

and (9) also holds modulo 9, i.e.,

 $10^{i} \equiv 1^{i} \equiv 1 \mod 9 \quad \text{for all } i = 0, \dots, n . \tag{11}$

Thus, putting (10) and (11) together directly yields the following corollary:

Groups 00000000	Definitions 0000	Calculating, GCD	Chinese Remaindering	Appendix Fib 000000000
Divisi	bility IV			

Corollary 2

A number given in decimal notation is divisible by 9 if and only if the sum of its digits is divisible by 9.

Divisibility V

In order to see that decimal notation is crucial here, let us consider numbers given in binary, i.e., $z = \sum_{i=0}^{n} z_i 2^i$, where $z_i \in \{0, 1\}$ for all i = 0, ..., n. Again, we have

$$z_i \equiv z_i \mod 3 \tag{12}$$

as before, but (9) translates into

$$2^{i} \equiv (-1)^{i} \mod 3 \quad \text{for all } i = 0, \dots, n .$$
 (13)

Thus, now we get

$$\sum_{i=0}^{n} z_i 2^i \equiv \sum_{i=0}^{n} (-1)^n z_i \mod 3.$$

Divisibility V

In order to see that decimal notation is crucial here, let us consider numbers given in binary, i.e., $z = \sum_{i=0}^{n} z_i 2^i$, where $z_i \in \{0, 1\}$ for all i = 0, ..., n. Again, we have

$$z_i \equiv z_i \mod 3 \tag{12}$$

End

as before, but (9) translates into

$$2^{i} \equiv (-1)^{i} \mod 3 \quad \text{for all } i = 0, \dots, n .$$
 (13)

Thus, now we get

$$\sum_{i=0}^n z_i 2^i \equiv \sum_{i=0}^n (-1)^n z_i \mod 3 \,.$$

Consequently, a number given in binary notation is divisible by 3 if and only if the alternating sum of its digits is divisible by 3.

Chinese Remaindering I

Finally, we prove an important theorem that will be needed later. Before we can present it, we need the following definition:

Definition 6

Integers a and b are said to be *relatively prime* if gcd(a, b) = 1.

Integers m_1, \ldots, m_r are said to be *pairwise relatively prime* if every pair $m_i, m_j, i \neq j$ is relatively prime.

Groups Definitions Calculating, GCD Detour Chinese Remain

nese Remaindering

Appendix Fil

End

Chinese Remaindering II

Theorem 9

Let m_1, \ldots, m_r be pairwise relatively prime numbers, and let $M = \prod_{i=1}^r m_i$. Furthermore, let a_1, \ldots, a_r be any integers. Then there is a unique $y \in \mathbb{Z}_M$ such that $y \equiv a_i \mod m_i$ for $i = 1, \ldots, r$. Moreover, y can be computed in time polynomial in the length of the input.

Groups Definitions Calculating, GCD Detour Chinese Remaindering End Appendix Fib Concocco cocco cocco

Proof. For each i = 1, ..., r, we set $n_i = M/m_i$. Then for all i = 1, ..., r, the number n_i satisfies $n_i \in \mathbb{N}$, and $gcd(m_i, n_i) = 1$.

Chinese Remaindering III

Proof. For each i = 1, ..., r, we set $n_i = M/m_i$. Then for all i = 1, ..., r, the number n_i satisfies $n_i \in \mathbb{N}$, and $gcd(m_i, n_i) = 1$. Consequently, the modular inverses n_i^{-1} modulo m_i do exist for all i = 1, ..., r.

00000

Chinese Remaindering III

Proof. For each i = 1, ..., r, we set $n_i = M/m_i$. Then for all i = 1, ..., r, the number n_i satisfies $n_i \in \mathbb{N}$, and $gcd(m_i, n_i) = 1$. Consequently, the modular inverses n_i^{-1} modulo m_i do exist for all i = 1, ..., r. Now, let

00000

$$\hat{y} = \sum_{i=1}^{r} n_i \cdot n_i^{-1} \cdot a_i$$

and let y be \hat{y} reduced modulo M. Taking into account that $m_i|n_j$ for all i = 1, ..., r, j = 1, ..., r, provided $j \neq i$, we conclude

$$y \equiv \hat{y} \equiv n_i n_i^{-1} a_i \equiv a_i \mod m_i$$
 .

Thus, we have found a number y simultaneously fulfilling all the wanted congruences.

End

	Definitions	Calculating, GCD	Detour	Chinese Remaindering		Appendix Fib	
				00000			
Chinese Remaindering IV							

It remains to show that y is uniquely determined modulo M.

Chinese Remaindering IV

It remains to show that y is uniquely determined modulo M.

Suppose the converse; i.e., there exists an x such that $x \equiv a_i \mod m_i$ for i = 1, ..., r and $x \not\equiv y \mod M$. Subtracting $y \equiv a_i \mod m_i$ from $x \equiv a_i \mod m_i$ for all i = 1, ..., r yields $x - y \equiv 0 \mod m_i$ for all i = 1, ..., r, and thus m_i divides x - y. It remains to show that y is uniquely determined modulo M.

00000

Suppose the converse; i.e., there exists an x such that $x \equiv a_i \mod m_i$ for i = 1, ..., r and $x \not\equiv y \mod M$. Subtracting $y \equiv a_i \mod m_i$ from $x \equiv a_i \mod m_i$ for all i = 1, ..., r yields $x - y \equiv 0 \mod m_i$ for all i = 1, ..., r, and thus m_i divides x - y.

However, all the m_i are pairwise relatively prime. Hence, $\prod_{i=1}^{r} m_i \text{ must divide } (x - y), \text{ too. But this means}$

 $x-y\equiv 0 \mod M,$

a contradiction. Thus, y is uniquely determined modulo M.

Groups	Definitions	Calculating, GCD 1	Detour	Chinese Remaindering	Appendix Fib
				00000	
Chin	ese Re	maindering \			

Finally, by Theorem 7 we know that the modular inverses can be each computed in time polynomial in the input. All other computations, i.e., multiplication, addition and reduction modulo M are known to be performable in polynomial time, too. Groups Definitions Calculating, GCD Detour Chinese Remaindering End Appendix Fib

Chinese Remaindering V

Finally, by Theorem 7 we know that the modular inverses can be each computed in time polynomial in the input. All other computations, i.e., multiplication, addition and reduction modulo M are known to be performable in polynomial time, too.

Please solve the exercises and the problem set given in the book.

	Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	End	Appendix Fib
	0000000	0000	000000000000000000000000000000000000000	00000	00000	•	000000000

Thank you!

Generating Functions I

Let $(\mathfrak{a}_n)_{n\in\mathbb{N}}$ be a sequence of real (or complex) numbers. Then

$$g(z) = \sum_{n=0}^{\infty} a_n z^n$$

is called *generating function* of $(a_n)_{n \in \mathbb{N}}$. The following theorem is often applied to generating functions:

000000000

Generating Functions I

Let $(\mathfrak{a}_n)_{n\in\mathbb{N}}$ be a sequence of real (or complex) numbers. Then

$$g(z) = \sum_{n=0}^{\infty} a_n z^n$$

is called *generating function* of $(a_n)_{n \in \mathbb{N}}$. The following theorem is often applied to generating functions:

Theorem 10

Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be any sequences such that their generating functions have a radius r > 0 of convergence. Then

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} b_n z^n$$

if and only if $a_n = b_n$ *for all* $n \in \mathbb{N}$.

End

00000000

Groups Definitions Calculating, GCD Detour Chinese Remaindering Composition Constraints Fib Composition Constraints Fib Composition Constraints Functions II

Moreover, recall that power series can be differentiated by differentiating their summands. Thus, we also know that

$$g'(z) = \sum_{n=0}^{\infty} n \cdot a_n z^{n-1}$$
.

Moreover, recall that power series can be differentiated by differentiating their summands. Thus, we also know that

$$\mathfrak{g}'(z) = \sum_{n=0}^{\infty} n \cdot \mathfrak{a}_n z^{n-1}.$$

Now, let $(a_n)_{n \in \mathbb{N}}$ be the Fibonacci sequence. Thus, we have the generating function

$$g(z) = \sum_{n=0}^{\infty} a_n z^n$$

which we use as follows:

Groups Definitions Calculating, GCD Detour Chinese Remaindering End Appendix Fib

Generating Functions III

$$\begin{split} \mathfrak{g}(z) &= \sum_{n=0}^{\infty} a_n z^n = 1 + z + \sum_{n=2}^{\infty} a_n z^n \\ &= 1 + z + \sum_{n=2}^{\infty} (a_{n-1} + a_{n-2}) z^n \\ &= 1 + z + \sum_{n=2}^{\infty} a_{n-1} z^n + \sum_{n=2}^{\infty} a_{n-2} z^n \\ &= 1 + z + z \cdot \sum_{n=2}^{\infty} a_{n-1} z^{n-1} + z^2 \cdot \sum_{n=2}^{\infty} a_{n-2} z^{n-2} \\ &\quad (*\text{changing the summation indices yields*}) \\ &= 1 + z + z \cdot \left(\sum_{n=0}^{\infty} a_n z^n - 1\right) + z^2 \cdot \sum_{n=0}^{\infty} a_n z^n \,. \end{split}$$

000000000 Generating Functions IV

Next, we replace $\sum_{n=1}^{\infty} a_n z^n$ by g(z) and obtain

n = 0

 $q(z) = 1 + z - z + zq(z) + z^2q(z) = 1 + zq(z) + z^2q(z)$.

Hence, we arrive at

$$\mathfrak{g}(z) = \frac{1}{1-z-z^2} \,.$$

Thus, we have found a representation of g as a rational function.

Generating Functions V

All that is left for applying Theorem 10 is to develop this rational function in a power series. For that purpose, we have to calculate the zeros of the denominator. Solving

$$0 = z^2 + z - 1$$

directly yields

$$z_{0,1} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + 1}$$
.

Next, we set

$$\alpha = \frac{-1 + \sqrt{5}}{2}$$

 $\widehat{\alpha} = \frac{-1-\sqrt{5}}{2}$.

and

000000000

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
					000000000
			/ 1		

Generating Functions VI

Now, we write

$$\frac{1}{1-z-z^2} \;=\; \frac{1}{(z-\alpha)(\widehat{\alpha}-z)} \;=\; \frac{A}{z-\alpha} + \frac{B}{\widehat{\alpha}-z} \;.$$

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	End	Appendix Fib
						000000000

Generating Functions VI

Now, we write

$$\frac{1}{1-z-z^2} \;=\; \frac{1}{(z-\alpha)(\widehat{\alpha}-z)} \;=\; \frac{A}{z-\alpha} + \frac{B}{\widehat{\alpha}-z} \;.$$

An easy calculation yields $A = B = -\frac{1}{\sqrt{5}}$, and consequently we have

$$g(z) = -\frac{1}{\sqrt{5}} \frac{1}{(z-\alpha)} - \frac{1}{\sqrt{5}} \frac{1}{(\hat{\alpha}-z)}.$$

Groups	Definitions	Calculating, GCD	Detour	Chinese Remaindering	Appendix Fib
					0000000000
0					

Generating Functions VII

Recalling that

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$$

we can write

$$\frac{1}{z-\alpha} = -\frac{1}{\alpha} \cdot \frac{1}{1-\frac{1}{\alpha}z} = -\frac{1}{\alpha} \sum_{n=0}^{\infty} \frac{1}{\alpha^n} z^n$$

and

$$\frac{1}{\widehat{\alpha}-z} = \frac{1}{\widehat{\alpha}} \cdot \frac{1}{1-\frac{1}{\widehat{\alpha}}z} = \frac{1}{\widehat{\alpha}} \sum_{n=0}^{\infty} \frac{1}{\widehat{\alpha}^n} z^n \,.$$

Groups Definitions Calculating, GCD Detour Chinese Remaindering End Appendix Fib Cocococo coco cococo cococo cococo Generating Functions VIII

This yields the desired power series for g; i.e., we get

$$g(z) = \sum_{n=0}^{\infty} a_n z^n$$

$$= \frac{1}{\sqrt{5} \cdot \alpha} \sum_{n=0}^{\infty} \frac{1}{\alpha^n} z^n - \frac{1}{\sqrt{5} \cdot \widehat{\alpha}} \sum_{n=0}^{\infty} \frac{1}{\widehat{\alpha}^n} z^n$$

$$= \frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} \frac{1}{\alpha^{n+1}} z^n - \frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} \frac{1}{\widehat{\alpha}^{n+1}} z^n$$

$$= \sum_{n=0}^{\infty} \left[\frac{1}{\sqrt{5}} \left(\frac{1}{\alpha^{n+1}} - \frac{1}{\widehat{\alpha}^{n+1}} \right) \right] z^n .$$

Thus, by Theorem 10 we obtain

$$\mathfrak{a}_n = \frac{1}{\sqrt{5}} \left(\frac{1}{\alpha^{n+1}} - \frac{1}{\widehat{\alpha}^{n+1}} \right)$$

Finally, putting this all together, after a short calculation we arrive at

$$a_{n} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right) .$$
 (14)