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Motivation

We want to have a closer look at the complexity of several
problems arising in number theory.

Clearly, we cannot provide an exhaustive study of all
interesting problems. Instead, we concentrate ourselves on
problems that will be needed when dealing with cryptography.

Before we start to study the complexity of several problems
arising in number theory, it is helpful to recall a bit group
theory.
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Groups I

Definition 1

Let G , ∅ be any set, and let ◦ : G×G → G be any binary
operation. We call (G, ◦) a group if
(1) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G, (i.e., ◦ is

associative);
(2) there exists a neutral element e ∈ G such that

a ◦ e = e ◦ a = a for all a ∈ G;
(3) for every a ∈ G there exists an inverse element b ∈ G such

that a ◦ b = b ◦ a = e.
(4) A group is called Abelian group if ◦ is also commutative,

i.e., a ◦ b = b ◦ a for all a, b ∈ G.
(5) A group is said to be finite if |G| is finite.
(6) If (G, ◦) is a finite group then we call |G| the order of (G, ◦).
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Groups II

Note that the neutral element e and the inverse elements
defined above are uniquely determined. In order to have an
example, consider the Abelian group (Z, +). Clearly, addition
over the integers is associative and commutative. The neutral
element is 0, and for every a ∈ Z, the number −a is the inverse
element of a. Below we shall see more examples.

It is advantageous to have the following definition:

Definition 2

Let (G, ◦) be a group and let S ⊆ G be non-empty. Then (S, ◦) is
said to be a subgroup of (G, ◦) if
(1) a ◦ b ∈ S for all a, b ∈ S;
(2) for every a ∈ S also the inverse b of a is in S.
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Groups III

For example, let E be the set of all even integers, and let O be
the set of all odd integers. Then (E, +) is a subgroup of (Z, +),
while (O, +) is not. Also, for every group (G, ◦) the group
({e}, ◦) and the group (G, ◦) itself are subgroups of (G, ◦).

For having another example, we introduce the following
notation: Let (G, ◦) be a group, let a ∈ G, and let b be the
inverse of a. We set a0 =df e, an+1 =df an ◦ a for all n ∈N,
and a−(n+1) =df bn ◦ b for all n ∈N.

Let S = {an | n ∈ Z}; then (S, ◦) is always a subgroup of (G, ◦).

The importance of the latter example suggests the following
definitions:
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Groups IV
Definition 3

A group (G, ◦) is said to be a cyclic group if there exists an
element a ∈ G such that G = {an | n ∈ Z}. We refer to a as a
generator of G.

Definition 4

Let (G, ◦) be any group with neutral element e, and let a ∈ G.
The least number n ∈N+ such that an = e is called order of a

provided such an n exists. If an , e for all n ∈N+ then we
define the order of a to be ∞. We denote the order of a

by ord(a).

Let a, b ∈ Z be given. We say that a divides b (or b is divisible
by a) if there exists a d ∈ Z such that b = ad. If a divides b we
write a|b, and a is called a divisor of b.
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Groups V

Next, we establish an important property of subgroups of finite
groups.

Theorem 1 (Lagrange’s theorem)

Let (G, ◦) be a finite group and let (H, ◦) be any subgroup of (G, ◦).
Then the order of (H, ◦) divides the order of (G, ◦).

Proof. Let H = {h1, . . . , hm} ⊆ G be any subgroup of G. If G = H,
we are done.
Otherwise, we have H ⊂ G, and hence there exists an element
x ∈ G \ H. Consider the set Hx = {h1 ◦ x, . . . , hm ◦ x}. Then
hi ◦ x = hj ◦ x implies hi = hj. Furthermore, hi ◦ x = hj would
imply x = h−1

i ◦hj ∈ H, a contradiction to x < H (here h−1
i is the

inverse of hi).
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Groups VI

Thus, the elements of Hx are pairwise distinct and do not
belong to H. We conclude that

|Hx| = |H| = m and Hx ∩H = ∅ . (1)

Now, if Hx ∪H = G, the theorem follows. Otherwise, there is
an element x1 ∈ G \ (Hx ∪H) and we form the set
Hx1 = {h1 ◦ x1, . . . , hm ◦ x1}. Analogously to the above, we can
show that the elements of Hx1 are pairwise distinct and do not
belong to Hx ∪H. Since G is finite, we thus obtain a finite
partition H, Hx, Hx1, . . . , Hx` of G, where each of the sets
H, Hx, Hx1, . . . , Hx` has precisely m elements. Hence, we have
shown that |G| = (` + 2)m.
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Groups VII

Theorem 1 allows for a nice corollary which is needed later.

Corollary 1

Let (G, ◦) be any group with neutral element e, and let a ∈ G be any
element such that ord(a) ,∞. Then ord(a) divides |G|.
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Definitions I

We need the following notations and definitions:
Consider m ∈N+ and a ∈ Z. Then there are uniquely
determined numbers q, r such that a = qm + r, where
0 6 r < m. We call q the integer quotient and r the remainder.

Quite often, one is not interested in a number a itself but in its
remainder when divided by a number m.
Let m ∈N+, and let a, b ∈ Z; we write a ≡ b mod m if and
only if m divides a − b (abbr. m|(a − b)).

Thus, a ≡ b mod m if and only if a and b have the same
remainder when divided by m.
If a ≡ b mod m then we say that a is congruent b modulo m,
and we refer to “≡” as the congruence relation.
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Definitions II

It is easy to see that “≡” is an equivalence relation, i.e., it is
reflexive, symmetric and transitive. Thus, we may consider the
equivalence classes [a] =df {x ∈ Z | a ≡ x mod m}.
Consequently, [a] = [b] iff a ≡ b mod m. Therefore, there are
precisely the m equivalence classes [0], [1], . . . , [m − 1]. We
set Zm =df {[0], [1], . . . , [m − 1]}.

Definition 5
We define addition and multiplication of these equivalence
classes by

[a] + [b] =df [a + b] and
[a] · [b] =df [a · b] .
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Definitions III

Exercise 1. Show that the definition of + and · over Zm are
independent of the choice of the representation.

Now, it is easy to see that (Zm, +, ·) constitutes a commutative
ring.

Clearly, the neutral element for addition is [0] and the identity
element with respect to multiplication is [1].
Moreover, by the definition of a ring, it is immediate that
(Zm, +) is an Abelian group. We refer to this group also as
to Zm for short.

Note, however, that in general (Zm, +, ·) is not a field. For
example, let m = 6 and consider [2]. Then [2] does not have a
multiplicative inverse in (Z6, +, · ).
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Definitions IV

In order to see under what circumstances (Zm, +, ·) is a field,
we have to answer the question under which conditions the
multiplicative inverses do always exist. Note that these
multiplicative inverses are also called modular inverses. The
existence of modular inverses is completely characterized by
Theorem 6 below.
First we have to establish some useful rules for performing
calculations with congruences.

We shall also look at the complexity of some of the more
important algorithms provided. For doing this, we measure the
length of the inputs by the number of bits needed to write the
input down. Moreover, whenever dealing with elements
from Zm, we assume that they are represented by their
canonical representations, i.e., by 0, . . . , m − 1.
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Basics

Theorem 2

Let m ∈N+, let a, b, c, d ∈ Z be any integers such that
a ≡ b mod m and c ≡ d mod m, and let n ∈N. Then we have
the following:
(1) a + c ≡ b + d mod m;
(2) a − c ≡ b − d mod m;
(3) ac ≡ bd mod m;
(4) an ≡ bn mod m.

The proof is left as an exercise.
So, we can calculate with congruences almost as convenient as
with equations. The main difference is division. Division cannot
be used.
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GCD I

Before we can study modular inverses, we need the following:
Greatest Common Divisor (abbr. gcd)
Input: Numbers a, b ∈N.
Problem: Compute the greatest d ∈N dividing both a and b.

It is convenient to set gcd(0, 0) = 0. Also, gcd(a, 0) = a and
gcd(a, a) = a for all a ∈N. Thus, we may assume a > b > 0.

Since we are also interested in the complexity of the number
theoretic problems we are dealing with, we have to say how we
do present numbers. In the following, we always assume
numbers to be represented in binary notation. Thus, we need
n = blog ac+ 1 many bits to represent number a, and we refer
to n as to the length of input a.

We say that a computation can be performed in time polynomial
in the length m of the input if there is a constant c > 0 such that
the running time is O(mc) for all m ∈N.

Complexity and Cryptography c©Thomas Zeugmann
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GCD II

Theorem 3

Algorithm ECL below computes the gcd of numbers a, b ∈N+ and
numbers x, y ∈ Z such that d = ax + by. It uses at most 1.5 log a

many divisions of numbers less than or equal to a.

Proof. Algorithm ECL is the so-called extended Euclidean
algorithm. We use the following formulation of it:

Algorithm ECL: “Set x0 = 1, x1 = 0, y0 = 0, y1 = 1, and
r0 = a, r1 = b.
Compute successively
ri+1 = ri−1 − qiri, where qi = bri−1

ri
c,

xi+1 = xi−1 − qixi, and
yi+1 = yi−1 − qiyi until ri+1 = 0.
Output ri, xi, yi.”

Complexity and Cryptography c©Thomas Zeugmann



Groups Definitions Calculating, GCD Detour Chinese Remaindering End Appendix Fib

GCD II

Theorem 3

Algorithm ECL below computes the gcd of numbers a, b ∈N+ and
numbers x, y ∈ Z such that d = ax + by. It uses at most 1.5 log a

many divisions of numbers less than or equal to a.

Proof. Algorithm ECL is the so-called extended Euclidean
algorithm. We use the following formulation of it:

Algorithm ECL: “Set x0 = 1, x1 = 0, y0 = 0, y1 = 1, and
r0 = a, r1 = b.
Compute successively
ri+1 = ri−1 − qiri, where qi = bri−1

ri
c,

xi+1 = xi−1 − qixi, and
yi+1 = yi−1 − qiyi until ri+1 = 0.
Output ri, xi, yi.”

Complexity and Cryptography c©Thomas Zeugmann



Groups Definitions Calculating, GCD Detour Chinese Remaindering End Appendix Fib

GCD III

Claim A. Algorithm ECL computes d, x, and y correctly.
Looking at the sequence of the ri’s computed by Algorithm
ECL, we see that ri−1 = qiri + ri+1. That is, qi is the integer
quotient and ri+1 is the remainder obtained when dividing ri−1
by ri. So we have 0 6 ri < ri−1 during the execution of
Algorithm ECL, and thus it must terminate.

Let i + 1 be the number such that ri+1 = 0. We prove
inductively that

r0x` + r1y` = r` for ` = 0, . . . , i . (2)

For i = 0 and i = 1 we directly obtain r0x0 + r1y0 = r0 and
r0x1 + r1y1 = r1, respectively. Thus, we may assume the
induction hypothesis for ` − 1 and `, where ` = 1, . . . , i − 1.
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GCD IV

By definition
x`+1 = x`−1 − q`x`, and y`+1 = y`−1 − q`y`; thus

r0x`+1 + r1y`+1 = r0x`−1 − r0q`x` + r1y`−1 − r1q`y`

= r0x`−1 + r1y`−1︸                ︷︷                ︸
=r`−1 by ind. hyp.

−q` (r0x` + r1y`)︸            ︷︷            ︸
=r` by ind. hyp.

= r`−1 − q`r` = r`+1 .

It remains to show that ri = gcd(a, b). Let d = gcd(a, b).
By (2), we have ri = r0xi + r1yi = axi + byi. So d divides ri.
On the other hand, every divisor of ri divides axi + byi. Since
ri+1 = 0, we know that ri−1 = qiri.
Therefore, ri divides ri−1, too. Consequently,
ri−2 = ri + qi−1ri−1 implies ri|ri−2. Iterating this argument
directly yields that ri divides a and b. Thus, ri = d.
This proves Claim A, i.e., the correctness.
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GCD IV
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GCD V

Claim B. Algorithm ECL uses at most 1.5 log a many divisions of
numbers less than or equal to a.

We have already seen that Algorithm ECL must terminate. To
obtain a better bound for the number of divisions necessary, we
show that

r`+1 + r` 6 r`−1 for all ` = 1, . . . , i . (3)

This can be seen as follows: By construction, r`+1 = r`−1 − q`r`;
hence r`+1 + r` = r`−1 + r`(1 − q`) 6 r`−1 provided
(1 − q`) 6 0. The latter inequality obviously holds in
accordance with q`’s definition.

By Inequality (3), we see that the number of divisions is
maximal iff r`+1 + r` = r`−1 for all ` = 1, . . . , i − 1.
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GCD VI

Hence, the worst-case occurs if a0 = a1 = 1 and
a` = a`−1 + a`−2 for all n > ` > 2, where a = an+1 and b = an;
i.e., if a equals the (n + 2)th member and b equals the (n + 1)th
member of the well-known Fibonacci sequence. Therefore, all
we have to do is to estimate the size of the nth member of the
Fibonacci sequence.
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GCD VII

Recall that

an =
1√
5

(1 +
√

5
2

)n+1

−

(
1 −

√
5

2

)n+1
 . (4)

Let φ =df

(
1+

√
5

2

)
; then one can show inductively that

φn−1 6 an 6 φn for all n > 1 . (5)

That is, if a = an+1 and b = an then Algorithm ECL has to
perform n division steps. By the left-hand side of (5), we know
that a = an+1 > φn and thus logφ a > n gives the desired
upper bound for the number of divisions to be performed.
Since logφ a = ln 2

ln φ log a, Claim B follows.

Putting Claim A and B together, directly yields Theorem 3.
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GCD VIII

It remains to estimate the time complexity of the Algorithm
ECL. The only remaining issue that needs clarification is the
size of the numbers x and y.

Theorem 4

During the execution of Algorithm ECL we always have
|x`| 6 b/(2d) and |y`| 6 a/(2d) for ` = 0, . . . i, where i is the
smallest number such that ri+1 = 0.

Proof. By construction, all x`, y` ∈ Z. Let D` be the determinant

D` =df

∣∣∣∣ x` y`

x`+1 y`+1

∣∣∣∣ .
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GCD IX

Then we obtain

D`+1 =

∣∣∣∣ x`+1 y`+1
x`+2 y`+2

∣∣∣∣ = ∣∣∣∣ x`+1 y`+1
x` − q`+1x`+1 y` − q`+1y`+1

∣∣∣∣
=

∣∣∣∣ x`+1 y`+1
x` y`

∣∣∣∣ = −D` .

We have D0 = 1 and so D` = (−1)` for all ` = 0, . . . , i. Since
D` = x`y`+1 − y`x`+1 = (−1)`, we see that gcd(x`, y`) = 1. By
Equality (2) we know that axi+1 + byi+1 = ri+1 = 0. Thus,
axi+1 = −byi+1, and dividing this equality by d = gcd(a, b)

gives us (a/d)xi+1 = −(b/d)yi+1. Since gcd(a/d, b/d) = 1 and
gcd(xi+1, yi+1) = 1, we obtain xi+1 = ±b/d and yi+1 = ±a/d.
The appropriate signs are determined by observing that the
signs of the sequences (x`) and (y`) alternate for ` > 2.
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GCD X

From the recursive definition of the integers x`, we see that
x2 = 1, x3 = −q2, x4 = 1 + q3q2, and in general |x`| < |x`+1| for
all ` > 3. Analogously, we have |y`| < |y`+1| for all ` > 3.
Finally, xi+1 = xi−1 − qixi, and thus

|qixi| = |xi−1 − xi+1| 6 |xi+1| = |b/d| .

Since ri+1 = 0 and qi = bri−1/ric, we must have qi > 2. Hence,
|xi| 6 b/(2d). Similarly, one obtains that |yi| 6 a/(2d).

Consequently, we arrive at the following theorem:

Theorem 5

The time complexity of Algorithm ECL is O((log a)3).
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Modular Inverse I

The following theorem completely characterizes the existence
of modular inverses:

Theorem 6

The congruence ax ≡ 1 mod m is solvable iff gcd(a, m) = 1.
Moreover, if ax ≡ 1 mod m is solvable, then the solution is
uniquely determined.

Proof. First, assume gcd(a, m) = 1. We have to show that
ax ≡ 1 mod m is solvable.
Since gcd(a, m) = 1, there are integers x, y such that
1 = ax + my. Hence, m divides 1 − ax, i.e., ax ≡ 1 mod m.
Thus, x mod m is the wanted solution.
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Modular Inverse II

Next, assume ax ≡ 1 mod m to be solvable.
Hence, there exists an x0 such that ax0 ≡ 1 mod m.

Consequently, m divides ax0 − 1, and therefore, there exists a y

such that my = ax0 − 1.

Let d be any natural number dividing both m and a. Dividing
the left side of the latter equation by d leaves the remainder 0.
Hence, dividing the right side must also yield the remainder 0.
Since d|a, we may conclude d|1, and thus d = 1.
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Modular Inverse II
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Modular Inverse III

Finally, assume ax ≡ 1 mod m to be solvable. Suppose, there
are solutions x1, x2. Thus, we have

ax1 ≡ 1 mod m (6)
ax2 ≡ 1 mod m (7)

By our Theorem 2, we can subtract (7) from (6) and obtain
a(x1 − x2) ≡ 0 mod m, i.e., m divides a(x1 − x2). Since
gcd(a, m) = 1, we may conclude that m divides x1 − x2, i.e.,
x1 ≡ x2 mod m. Thus, the solution is unique modulo m.
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Modular Inverse IV

Question
What can be said about the complexity of computing modular
inverses?

The answer is given by the following theorem:

Theorem 7

Modular inverse can be computed in time O(max{log a, log m}3).

Proof. As the proof of Theorem 6 shows, all we have to do is to
apply Algorithm ECL presented above. Thus, the assertion
follows.
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Remarks

By Theorem 6 it is appropriate to consider

Z∗m = {[a] ∈ Zm | gcd(a, m) = 1} .

Note that Theorem 6 directly implies that (Z∗m, ·) constitutes a
finite Abelian group (cf. Definition 1).

Again, we simplify notation and refer to (Z∗m, ·) as to Z∗m for
short. Furthermore, we usually omit the brackets when
referring to members of Zm and Z∗m, respectively.

That is, we write a ∈ Zm and a ∈ Z∗m instead of [a] ∈ Zm and
of [a] ∈ Z∗m, respectively.
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Divisibility I

In order to get more familiarity with the congruence relation
“≡”, let us derive a rule for deciding whether or not an integer
given in decimal notation is divisible by 3.

Since the divisibility by 3 is not affected by the sign, it suffices
to consider

z =

n∑
i=0

zi10i ,

where zi ∈ {0, 1, . . . , 9} for all i = 0, . . . , n.
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Divisibility II

Then, by the reflexivity of “≡” we have

zi ≡ zi mod 3 (8)

for all i = 0, . . . , n. Moreover, 10 ≡ 1 mod 3 and thus by
Property (4) of Theorem 2 we know that

10i ≡ 1i ≡ 1 mod 3 for all i = 0, . . . , n . (9)

Next, we apply Property (1) of Theorem 2 to (8) and (9)
exactly n many times and obtain

n∑
i=0

zi10i ≡
n∑

i=0

zi mod 3 .
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Divisibility III

Consequently, we directly get the following theorem:

Theorem 8
A number given in decimal notation is divisible by 3 if and only if the
sum of its digits is divisible by 3.

The proof given above directly allows for a corollary
concerning the divisibility by 9. By reflexivity we also have

zi ≡ zi mod 9 (10)

and (9) also holds modulo 9, i.e.,

10i ≡ 1i ≡ 1 mod 9 for all i = 0, . . . , n . (11)

Thus, putting (10) and (11) together directly yields the
following corollary:
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Divisibility IV

Corollary 2
A number given in decimal notation is divisible by 9 if and only if the
sum of its digits is divisible by 9.
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Divisibility V

In order to see that decimal notation is crucial here, let us

consider numbers given in binary, i.e., z =
n∑

i=0
zi2i, where

zi ∈ {0, 1} for all i = 0, . . . , n. Again, we have

zi ≡ zi mod 3 (12)

as before, but (9) translates into

2i ≡ (−1)i mod 3 for all i = 0, . . . , n . (13)

Thus, now we get

n∑
i=0

zi2i ≡
n∑

i=0

(−1)nzi mod 3 .

Consequently, a number given in binary notation is divisible by
3 if and only if the alternating sum of its digits is divisible by 3.
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Chinese Remaindering I

Finally, we prove an important theorem that will be needed
later. Before we can present it, we need the following definition:

Definition 6
Integers a and b are said to be relatively prime if gcd(a, b) = 1.

Integers m1, . . . , mr are said to be pairwise relatively prime if
every pair mi, mj, i , j is relatively prime.
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Chinese Remaindering II

Theorem 9
Let m1, . . . , mr be pairwise relatively prime numbers, and let

M =
r∏

i=1
mi. Furthermore, let a1, . . . , ar be any integers. Then there

is a unique y ∈ ZM such that y ≡ ai mod mi for i = 1, . . . , r.
Moreover, y can be computed in time polynomial in the length of the
input.
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Chinese Remaindering III

Proof. For each i = 1, . . . , r, we set ni = M/mi. Then for all
i = 1, . . . , r, the number ni satisfies ni ∈N, and
gcd(mi, ni) = 1.

Consequently, the modular inverses n−1
i

modulo mi do exist for all i = 1, . . . , r. Now, let

ŷ =

r∑
i=1

ni · n−1
i · ai

and let y be ŷ reduced modulo M. Taking into account that
mi|nj for all i = 1, . . . , r, j = 1, . . . , r, provided j , i, we conclude

y ≡ ŷ ≡ nin
−1
i ai ≡ ai mod mi .

Thus, we have found a number y simultaneously fulfilling all
the wanted congruences.
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and let y be ŷ reduced modulo M. Taking into account that
mi|nj for all i = 1, . . . , r, j = 1, . . . , r, provided j , i, we conclude

y ≡ ŷ ≡ nin
−1
i ai ≡ ai mod mi .

Thus, we have found a number y simultaneously fulfilling all
the wanted congruences.

Complexity and Cryptography c©Thomas Zeugmann



Groups Definitions Calculating, GCD Detour Chinese Remaindering End Appendix Fib

Chinese Remaindering IV

It remains to show that y is uniquely determined modulo M.

Suppose the converse; i.e., there exists an x such that
x ≡ ai mod mi for i = 1, . . . , r and x . y mod M.
Subtracting y ≡ ai mod mi from x ≡ ai mod mi for all
i = 1, . . . , r yields x − y ≡ 0 mod mi for all i = 1, . . . , r, and
thus mi divides x − y.

However, all the mi are pairwise relatively prime. Hence,
r∏

i=1
mi must divide (x − y), too. But this means

x − y ≡ 0 mod M ,

a contradiction. Thus, y is uniquely determined modulo M.
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Chinese Remaindering IV
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Chinese Remaindering IV
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Chinese Remaindering V

Finally, by Theorem 7 we know that the modular inverses can
be each computed in time polynomial in the input. All other
computations, i.e., multiplication, addition and reduction
modulo M are known to be performable in polynomial time,
too.

Please solve the exercises and the problem set given in the
book.
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modulo M are known to be performable in polynomial time,
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Please solve the exercises and the problem set given in the
book.
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Thank you!
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Generating Functions I

Let (an)n∈N be a sequence of real (or complex) numbers. Then

g(z) =

∞∑
n=0

anzn

is called generating function of (an)n∈N. The following theorem
is often applied to generating functions:

Theorem 10

Let (an)n∈N and (bn)n∈N be any sequences such that that their
generating functions have a radius r > 0 of convergence. Then

∞∑
n=0

anzn =

∞∑
n=0

bnzn

if and only if an = bn for all n ∈N.
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Generating Functions II

Moreover, recall that power series can be differentiated by
differentiating their summands. Thus, we also know that

g ′(z) =

∞∑
n=0

n · anzn−1 .

Now, let (an)n∈N be the Fibonacci sequence. Thus, we have the
generating function

g(z) =

∞∑
n=0

anzn

which we use as follows:
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Generating Functions III

g(z) =

∞∑
n=0

anzn = 1 + z +

∞∑
n=2

anzn

= 1 + z +

∞∑
n=2

(an−1 + an−2)z
n

= 1 + z +

∞∑
n=2

an−1z
n +

∞∑
n=2

an−2z
n

= 1 + z + z ·
∞∑

n=2

an−1z
n−1 + z2 ·

∞∑
n=2

an−2z
n−2

(∗changing the summation indices yields∗)

= 1 + z + z ·

( ∞∑
n=0

anzn − 1

)
+ z2 ·

∞∑
n=0

anzn .
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Generating Functions IV

Next, we replace
∞∑

n=0
anzn by g(z) and obtain

g(z) = 1 + z − z + zg(z) + z2g(z) = 1 + zg(z) + z2g(z) .

Hence, we arrive at

g(z) =
1

1 − z − z2 .

Thus, we have found a representation of g as a rational
function.
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Generating Functions V

All that is left for applying Theorem 10 is to develop this
rational function in a power series. For that purpose, we have
to calculate the zeros of the denominator. Solving

0 = z2 + z − 1

directly yields

z0,1 = −
1
2
±
√

1
4

+ 1 .

Next, we set

α =
−1 +

√
5

2
and

α̂ =
−1 −

√
5

2
.
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Generating Functions VI

Now, we write

1
1 − z − z2 =

1
(z − α)(α̂ − z)

=
A

z − α
+

B

α̂ − z
.

An easy calculation yields A = B = − 1√
5
, and consequently we

have
g(z) = −

1√
5

1
(z − α)

−
1√
5

1
(α̂ − z)

.
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Generating Functions VI

Now, we write

1
1 − z − z2 =

1
(z − α)(α̂ − z)

=
A

z − α
+

B

α̂ − z
.

An easy calculation yields A = B = − 1√
5
, and consequently we

have
g(z) = −

1√
5

1
(z − α)

−
1√
5

1
(α̂ − z)

.
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Generating Functions VII

Recalling that ∞∑
n=0

zn =
1

1 − z

we can write

1
z − α

= −
1
α
· 1

1 − 1
αz

= −
1
α

∞∑
n=0

1
αn

zn

and
1

α̂ − z
=

1
α̂
· 1

1 − 1
α̂z

=
1
α̂

∞∑
n=0

1
α̂n

zn .
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Generating Functions VIII

This yields the desired power series for g; i.e., we get

g(z) =

∞∑
n=0

anzn

=
1√
5 · α

∞∑
n=0

1
αn

zn −
1√
5 · α̂

∞∑
n=0

1
α̂n

zn

=
1√
5

∞∑
n=0

1
αn+1 zn −

1√
5

∞∑
n=0

1
α̂n+1 zn

=

∞∑
n=0

[
1√
5

(
1

αn+1 −
1

α̂n+1

)]
zn .
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Generating Functions IX

Thus, by Theorem 10 we obtain

an =
1√
5

(
1

αn+1 −
1

α̂n+1

)
Finally, putting this all together, after a short calculation we
arrive at

an =
1√
5

(1 +
√

5
2

)n+1

−

(
1 −

√
5

2

)n+1
 . (14)
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