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Legendre Symbol

It advantageous to introduce the following notions: Let p be an
odd prime, and let a ∈ Z∗p. We say that a is a quadratic residue
modulo p if x2 ≡ a mod p is solvable in Z∗p. If a is not a
quadratic residue modulo p, then we call a a quadratic
nonresidue. The following symbol was introduced by
Adrien-Marie Legendre.

Definition 1 (Legendre Symbol)

We define the Legendre symbol
(

a
p

)
as follows:(

a

p

)
=df

{
1, if a is a quadratic residue modulo p ;

−1, otherwise.
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Quadratic Residues I

The following theorem is needed below:

Theorem 1

Let p be an odd prime and let g ∈ Z∗p be a generator for Z∗p. Then for
all a ∈ Z∗p we have: a is a quadratic residue modulo p if and only
if dlogga is even.

Proof. Sufficiency. Let a ≡ g2m mod p for some m > 0. Then,
b =df gm mod p is obviously a solution of x2 ≡ a mod p.
Thus a is a quadratic residue modulo p.
Necessity. Let b be a solution of x2 ≡ a mod p, and let
m = dloggb, i.e., b ≡ gm mod p. Thus, a ≡ g2m mod p. By
Fermat’s Little Theorem we have dlogga ≡ 2m mod (p − 1).

Since 2|(p − 1), we can conclude 2|dlogga, too.
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Quadratic Residues II

The latter theorem directly implies the following corollaries:

Corollary 1

Let p be an odd prime. Then there are precisely (p − 1)/2 many
quadratic residues and (p − 1)/2 many quadratic nonresidues in Z∗p.

Corollary 2

Let p be an odd prime. Then
(

ab
p

)
=

(
a
p

) (
b
p

)
for all a, b ∈ Z∗p.

Furthermore, we need the following theorem:

Theorem 2

Let p be an odd prime and let g be a generator of Z∗p. Then we have
g(p−1)/2 ≡ −1 mod p.
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Quadratic Residues III

Proof. Consider x2 ≡ 1 mod p. Obviously, 1 and −1 are
solutions of x2 ≡ 1 mod p. By Lemma 4.1, we know that there
are no other solutions.
By Fermat’s Little Theorem we have(

g(p−1)/2
)2
≡ gp−1 ≡ 1 mod p .

Thus, g(p−1)/2 is a solution of x2 ≡ 1 mod p.

Since g is a generator, we have g(p−1)/2 . 1 mod p. Therefore,
g(p−1)/2 ≡ −1 mod p must hold.
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Quadratic Residues IV

The following theorem provides one way to compute the
Legendre symbol. It was found by Leonhard Euler.

Theorem 3 (Euler’s Criterion)

Let p be an odd prime and let a ∈ Z∗p, then

a(p−1)/2 ≡
(

a

p

)
mod p .
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Quadratic Residues V
Proof. We distinguish the following cases:

Case 1.
(

a

p

)
= 1 .

So, there exists a b ∈ Z∗p such that b2 ≡ a mod p. Thus, by
Theorem 2 from Lecture 3 and Fermat’s Little Theorem we have

a(p−1)/2 ≡ bp−1 ≡ 1 mod p .

Case 2.
(

a

p

)
= −1 .

Let g be a generator of Z∗p. Then a ≡ g2m+1 mod p for some
m ∈N, since a is a quadratic residue modulo p if and only if
the discrete logarithm of a (wrt. g) is even (cf. Theorem 1).
Hence, using Theorem 2 we get

a(p−1)/2 ≡ g(2m+1)(p−1)/2 ≡ gm(p−1)g(p−1)/2

≡ 1 · (−1) ≡ −1 mod p .
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Jacobi Symbol

The following definition generalizes in some sense the
Legendre symbol, but not with respect to the existence of
discrete square roots. Still, it provides enough information to
design an efficient probabilistic test for primality. This
generalization was introduced by Carl Jacobi.

Definition 2 (Jacobi Symbol)
Let Q > 1 be an odd number, and let Q = p1 · p2 · · · · · pk, where
pi prime for all i = 1, . . . , k (but not necessarily pi , pj for

i , j). Let a ∈ Z∗Q. The Jacobi symbol
(

a
Q

)
is defined as follows:(

a

Q

)
=df

(
a

p1

)
·
(

a

p2

)
· · · · ·

(
a

pk

)
.

Example:
( 2

15

)
=

(2
3

)
·
(2

5

)
= 1 but x2 ≡ 2 mod 15 is not

solvable in Z∗15.
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Solovay and Strassen’s Primality Test I

Now, we turn our attention to a probabilistic algorithm for
testing primality. We shall arrive at a Monte Carlo algorithm;
i.e., a randomized procedure that may produce incorrect results
but with a bounded error probability. A formal definition of the
relevant complexity class will be provided later.
The following result is due to Solovay and Strassen (1977):

Theorem 4

Testing primality can be done in one-sided error probabilistic
polynomial time.
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Solovay and Strassen’s Primality Test II

Let n ∈N be any given number. Clearly, if n is even, this can
be trivially recognized. Thus, it suffices to show how to
recognize odd primes. Consider the following algorithm:
Algorithm PT

Input: An odd number n ∈N.
Method: (1) Choose at random a number a ∈ {1, . . . , n − 1}.

(2) Compute d = gcd(a, n). If d > 1 then output composite,
and stop. Otherwise, goto (3).

(3) Compute the following quantities:
δ = a(n−1)/2 mod n ;
ε =

(
a
n

)
(the Jacobi symbol).

Output: If δ . ε mod n then output composite, and stop.
If δ ≡ ε mod n then output possibly prime, and
stop.
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Solovay and Strassen’s Primality Test III

Next, we prove two lemmata which will yield the statement of
the theorem.

Lemma 1. If n is prime, then Algorithm PT must output possibly
prime.

If n is prime then gcd(a, n) = 1 for all a ∈ {1, . . . , n − 1}, and by
Theorem 3,

a(n−1)/2 ≡
(a

n

)
mod n .

Thus, the Algorithm PT necessarily outputs “possibly prime.”
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Solovay and Strassen’s Primality Test IV

Lemma 2. If n is composite, then Algorithm PT outputs composite
with probability at least 1/2.

The main ingredient for proving this lemma is the following
claim:

Claim 1. Let n ∈N be an odd composite number. Then we have for

S =df

{
a ∈ Z∗n | a(n−1)/2 ≡

(a

n

)
mod n

}
that |S| 6 |Z∗n|/2 .
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Proof of Claim 1

Note that S is a subgroup of Z∗n, since it is closed under
multiplication. This follows from the identity

(
ab
n

)
=

(
a
n

) (
b
n

)
for the Jacobi symbol. Thus, |S| must divide |Z∗n|, and hence
either

|S| = |Z∗n| or |S| 6 |Z∗n|/2 .

So it suffices to show that |S| , |Z∗n|.

Suppose that a(n−1)/2 ≡
(

a
n

)
mod n for all a ∈ Z∗n. Since(

a
n

)
= ±1, we conclude an−1 ≡ 1 mod n for all a ∈ Z∗n, thus n

must be a Carmichael number. By our results from Lecture 4, n

must be square-free and n must be the product of at least three
different primes.
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Proof of Claim 1

Therefore, (a

n

)
=

(
a

p1

)
·
(

a

p2

)
· · · · ·

(
a

pk

)
,

where p1, . . . , pk are prime numbers and k > 3. Let g be a
generator for Z∗p1

, and let ñ = n/p1. By the Chinese remainder
theorem there exists an a ∈ Z∗n such that

a ≡ g mod p1 , (1)
a ≡ 1 mod ñ . (2)

In particular, we therefore have a ≡ 1 mod pj for all j > 2, and
hence a is quadratic residue modulo pj for all j > 2.
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Proof of Claim 1

Thus,
(

a
pj

)
= 1 for all j > 2. Moreover, by Theorems 2 and 3,

we obtain from (1) that

a(p1−1)/2 ≡ g(p1−1)/2 ≡ −1 ≡
(

a

p1

)
mod p1 .

Consequently,
(

a
n

)
= −1, too, and therefore (cf. Definition of S)

a(n−1)/2 ≡ −1 mod n .

This implies a(n−1)/2 ≡ −1 mod ñ. By (2) we have
a ≡ 1 mod ñ, and hence a(n−1)/2 ≡ 1 mod ñ. This
contradiction shows that S = Z∗n is impossible. Thus Claim 1 is
shown.
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Solovay and Strassen’s Primality Test V

Now, if n is composite, then with probability 1/2 the Algorithm
PT chooses an a ∈ {1, . . . , n − 1} such that

δ . ε mod n ,

and therefore, with probability at least 1/2 the output is
composite.
This proves the correctness of the Algorithm PT.

It remains to evaluate the running time of Algorithm PT.
Everything is clear except the calculation of the Jacobi symbol.
If the Jacobi symbol can be computed in polynomial time (as
shown below), we are done.
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Law of Quadratic Reciprocity

So, it remains to provide an effective method for computing the
Jacobi symbol. We cannot reduce the computation of the Jacobi
symbol to its definition, since this would require that we know
the prime factorization of n. But there is a very nice method
which is based on the following theorem and its supplement.

Theorem 5 (Law of Quadratic Reciprocity)

For all odd numbers P, Q ∈N with gcd(Q, P) = 1 we have(
Q

P

)
= (−1)(P−1)(Q−1)/4

(
P

Q

)
.

Because of the lack of time, we do not prove this theorem here.
There are numerous proofs in print. The first rigorous proof has
been given by Gauß.
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Supplements

To apply Theorem 5, we need the following supplements:

Theorem 6

For all a, b ∈N and all odd Q ∈N we have

(1) if a ≡ b mod Q then
(

a

Q

)
=

(
b

Q

)
;

(2)
(

1
Q

)
= 1 ;

(3)
(

−1
Q

)
= (−1)(Q−1)/2 ;

(4)
(

ab

Q

)
=

(
a

Q

)
·
(

b

Q

)
;

(5)
(

2
Q

)
= (−1)(Q2−1)/8 .

Complexity and Cryptography c©Thomas Zeugmann



L. and J. Symbols Solovay and Strassen Jacobi symbol Discrete Roots Proof End + Pics

Solovay and Strassen’s Primality Test VI
So, the complexity of computing the Jacobi symbol is of the
same order as the complexity of the extended Euclidean
algorithm. Let us compute

( 117
739

)
.(

117
739

)
= +

(
739
117

)
(∗Theorem 5∗)

= +

(
37

117

)
(∗Theorem 6, (1)∗)

= +

(
117
37

)
=

(
6

37

)
= +

(
2 · 3
37

)
=

(
2

37

) (
3

37

)
= −

(
3

37

)
(∗Theorem 6, (5)∗)

= −

(
37
3

)
= −

(
1
3

)
= −1 .
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Solovay and Strassen’s Primality Test VII

We provide a method for improving the error probability of the
Solovay-Strassen algorithm exponentially.

Corollary 3

If we run the algorithm PT k-times then

Pr{k successive runs output “possibly prime”} 6
1

2k

provided n is composite.

Proof. As we have seen, a composite number may lead to the
wrong output possibly prime with probability 6 1/2. Thus, if we
run the algorithm PT k-times we have k independent Bernoulli
trials with failure probability 1/2. Hence,

Pr{k successive runs output “possibly prime”} 6
1

2k
,

since it equals the probability of k successive failures.
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Remark

This is a good place to return to the problem of computing
discrete roots. We study Berlekamp’s algorithm for computing
discrete square roots modulo a prime number. In general,
however, the problem of finding discrete square roots must be
considered to be difficult. As a matter of fact, one can prove
that finding the least solution of x2 ≡ a mod n in positive
integers, where n ∈N and a ∈ Z∗n, is an NP-hard problem.

Next, we explain what is meant by Las Vegas algorithm. A
randomized procedure is called Las Vegas algorithm, if the
procedure always correctly computes the desired result (that is,
independently from the random choices made). The run time
of the procedure, however, does depend on the random choices
made. Then, the time complexity of a Las Vegas algorithm on
input X is defined to be the expected value with respect to all
possible random choices.

Complexity and Cryptography c©Thomas Zeugmann
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Berlekamp’s Algorithm I

Theorem 7

Let p ∈N be an odd prime and let a ∈ Z∗p. Then there is a Las Vegas
algorithm to find all solutions of

x2 ≡ a mod p .
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Berlekamp’s Algorithm II

Proof. Consider the following Algorithm BA:
Input: An odd prime p and an a ∈ Z such that gcd(a, p) = 1.

Output: no solutions if a is a quadratic nonresidue modulo p;
all solutions of x2 ≡ a mod p, if a is a quadratic
residue modulo p.

Method:

(1) Compute
(

a

p

)
; if

(
a

p

)
= 1 then goto (2).

Otherwise, output no solutions, and stop.
(2) Choose randomly a γ ∈ Z∗p until a number γ

has been found such that
(

γ2 − a

p

)
= −1.

Compute
(
x

p−1
2 − 1

)
mod ((x−γ)2 −a), and

let δ(x − ρ) be the result of this computation.
Output (ρ − γ) and −(ρ − γ), and stop.
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Example

Let us consider the following example, where the input
is p = 17 and a = 8:
Since (

8
17

)
≡ 88 ≡ (−4)4 ≡ (−1)2 ≡ 1 mod 17 ,

we see that x2 ≡ 8 mod 17 is solvable.
Now, we choose γ = 6 and easily verify(

γ2 − a

p

)
=

(
36 − 8

17

)
=

(
28
17

)
=

(
11
17

)
≡ 118 ≡ 1214 ≡ 24 ≡ −1 mod 17 .
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Example continued

Next, we have to compute (x8 − 1) mod ((x − 6)2 − 8). As an
easy but somehow tedious computation shows, the result is

6521856x − 20674305 ≡ 10x − 10 ≡ 10(x − 1) mod 17 .

Therefore, δ = 10 and ρ = 1. Consequently, we output −5 and 5.
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Example continued

Note that, in general, one has to do a bit more for getting δ

and ρ. To see this, let us have a look at another computation
arising by choosing γ = 8 instead of 6.(

γ2 − a

p

)
=

(
64 − 8

17

)
=

(
56
17

)
=

(
5

17

)
≡ 58 ≡ 390625 ≡ −1 mod 17 , and get

(x8 − 1) mod ((x − 8)2 − 8) = 33325056x − 171831277
≡ 7x − 6 mod 17 .

So, we have to compute the modular inverse of 7 modulo 17,
which is 5 and get δ = 7 and ρ = 13, since

7x − 6 ≡ 7x − 6 · 7 · 5︸︷︷︸
≡1 mod 17

≡ 7(x − 6 · 5) ≡ 7(x − 13) mod 17.
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Berlekamp’s Algorithm III

First, we prove the correctness of the procedure given above.
Obviously, if a is a quadratic nonresidue modulo p than the
Legendre symbol evaluates to −1, and thus the Algorithm BA
is correct.
Next, we assume a to be a quadratic residue modulo p. Hence,
the Legendre symbol evaluates to 1, and Instruction (2) is
executed.

Suppose, we have found a number γ such that(
γ2−a

p

)
= −1. Taking into account that x2 ≡ a mod p is

solvable, we may conclude that

(x − γ)2 − a ≡ 0 mod p (3)

is solvable, too. This is obvious, if we look at x − γ as a new
variable. In particular, this statement does not depend on the
choice of γ. The choice of γ, however, is important for deriving
useful information as we shall see in Claim 1 below.
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Berlekamp’s Algorithm IV

Let ρ and σ be the solutions of (x − γ)2 ≡ a mod p, i.e., we
have

(ρ − γ)2 − a ≡ 0 mod p ,

(σ − γ)2 − a ≡ 0 mod p .

Next, we prove a very helpful claim.

Claim 1. ρ · σ ≡ γ2 − a mod p .
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ρ · σ ≡ γ2 − a mod p

We have the congruence z2 − a ≡ 0 mod p, where z = (x − γ).
By Eq. (3), we know that this congruence has precisely two
solutions, say z1, z2. Using z1 ≡ −z2 mod p we may conclude

z1 · z2 ≡ −z1 · z1 ≡ −z2
1 ≡ −a mod p .

Thus, z1 · z2 ≡ −a mod p. So, z1 = (ρ − γ) and z2 = (σ − γ).

(ρ − γ)(σ − γ) ≡ −a mod p , therefore, we get

ρσ − γσ − γρ + γ2 ≡ −a mod p . (4)

Now, ρ − γ ≡ −σ + γ mod p, and thus −σ ≡ ρ − 2γ mod p.
Consequently, we obtain from (4):

ρσ + γ(ρ − 2γ) − γρ + γ2 ≡ −a mod p

ρσ + γρ − 2γ2 − γρ + γ2 ≡ −a mod p

ρσ ≡ γ2 − a mod p . (Claim 1)
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Berlekamp’s Algorithm V

Taking into account that
(

ρσ

p

)
=

(
ρ

p

) (
σ

p

)
, and(

γ2 − a

p

)
= −1, we conclude that

(
ρ

p

)
= −

(
σ

p

)
. Without

loss of generality, let
(

ρ

p

)
= 1. Then, (x − ρ) is a factor of

x(p−1)/2 − 1 modulo p while (x − σ) is not. This follows directly
from the Euler criterion, since ρ(p−1)/2 ≡ 1 mod p, and thus ρ

is a root of the polynomial x(p−1)/2 − 1 over Zp.
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Berlekamp’s Algorithm VI

Consequently,

gcd
(
(x − γ)2 − a, x(p−1)/2 − 1

)
= (x − ρ),

since ρ and σ are the only solutions of (x − γ)2 − a ≡ 0 mod p.
Hence, (

x(p−1)/2 − 1
)

mod (x − γ)2 − a

is a polynomial of degree 1 which can be written as δ(x − ρ).
Finally, as we have seen, (ρ − γ) is a discrete root of a

modulo p. Since there are precisely two roots, −(ρ − γ) is the
only other solution. This proves the correctness.
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Berlekamp’s Algorithm VII

Finally, we have to deal with the question of finding γ such that(
γ2−a

p

)
= −1. Note that if p ≡ 3 mod 4 then(

−a
p

)
= −

(
a
p

)
= −1. Thus, in this case the choice γ = 0 will

always succeed and no randomization is needed.
The remaining case is handled by the following lemma:

Lemma 1
Let p ∈N be prime satisfying p ≡ 1 mod 4 and let a ∈ Z∗p be such

that
(

a
p

)
= 1. Then at most half of the elements of γ ∈ Z∗p satisfy the

condition
(

γ2−a
p

)
= 1.
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Berlekamp’s Algorithm VIII

Thus, in case of p ≡ 1 mod 4 the expected number of random
choices required in (2) is bounded by 2.

Obviously, all computations in (1) can be done in time
polynomial in the lengths of p and a and so can the
computation of

(
γ2−a

p

)
in (2) until an appropriate γ is found.

Finally, the computation of(
x(p−1)/2 − 1

)
mod

(
(x − γ)2 − a

)
can be done by successively squaring x and reducing it modulo(
(x − γ)2 − a

)
as in the computation of am mod n outlined in

Algorithm EXP.
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Proof of the Lemma I

We need the following claim:

Claim 2. Let p be a prime number such that p ≡ 1 mod 4 and let g

be a generator for Z∗p. Furthermore, for i, j ∈ {0, 1} let

Sij =df {(x, y) | x, y ∈ Zp−1 and x ≡ i mod 2, y ≡ j mod 2
and gx + 1 ≡ gy mod p} .

Then, |S00| = p−1
4 − 1.
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Proof of the Lemma II

Proof. First, note that the sets S00, S01, S10, S11 are pairwise
disjoint. Moreover, for each x ∈ Zp−1 with x , (p − 1)/2 we
have gx + 1 . 0 mod p. Thus, there exists a unique y ∈ Zp−1
such that gx + 1 ≡ gy mod p. Consequently, we obtain

|S00| + |S01| + |S10| + |S11| = p − 2 . (5)

Furthermore, we have

|S11| = |S10| . (6)

Condition (6) is true, since the mapping

(x, y) 7→ (−x, y − x)

between S11 and S10 is a bijection.
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Proof of the Lemma III

For seeing this, note that g2m+1 + 1 ≡ g2n+1 mod p implies

g2m+1 · g−(2m+1) ≡ 1 mod p .

Because of g2m+1 ≡ g2n+1 − 1 mod p, we get

(g2n+1 − 1) · g−(2m+1) ≡ 1 mod p

g2n+1 · g−(2m+1) − g−(2m+1) ≡ 1 mod p

g2(n−m) ≡ g−(2m+1) + 1 mod p .

Hence, the mapping defined above is bijective.
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Proof of the Lemma IV

Next, we show that |S10| = |S01| . (7)

For seeing this, note that g2m+1 + 1 ≡ g2n mod p implies
−g2n + 1 ≡ −g2m+1 mod p. The latter congruence and
Theorem 2 in turn imply that

g2n+ p−1
2 + 1 ≡ g2m+1+ p−1

2 mod p .

Therefore, by taking into account that (p − 1)/2 is even, we see
that the mapping

(x, y) 7→
(

y +
p − 1

2
, x +

p − 1
2

)
is a bijection between S10 and S01.
Moreover, we can also calculate the following:

|S11| + |S10| = (p − 1)/2 . (8)
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Proof of the Lemma V

Since S11 ∩ S10 = ∅, we know that |S11| + |S10| = |S11 ∪ S10|. But

S11 ∪ S10 = {(x, y) | x, y ∈ Zp−1 and x ≡ 1 mod 2
and gx + 1 ≡ gy mod p} ,

and therefore,

|S11 ∪ S10| =
p − 1

2
.

Finally, putting (6), (7) and (8) together yields

|S11| = |S10| = |S01| =
p − 1

4
.

Thus, by (5) we can conclude |S00| =
p − 1

4
− 1. This proves

Claim 2.
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Proof of the Lemma V
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.
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.
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Proof of the Lemma VI

Now, we are ready to show the lemma. Let g be any generator
for Z∗p and let S00 be defined with respect to g as in Claim 2.
Furthermore, we define

R =df

{
γ ∈ Z∗p |

(
γ2 − a

p

)
= 1

}
and

S =df

{
b ∈ Z∗p |

(
b − a

p

)
= 1 and

(
b

p

)
= 1

}
.

Claim 3. |R| = 2|S|.
Let b ∈ S, then

(
b
p

)
= 1. Hence, b is a quadratic residue

modulo p. Consequently, x2 ≡ b mod p is solvable and there
are two different solutions γ1 and γ2, i.e.,

γ2
1 ≡ b mod p and γ2

2 ≡ b mod p .
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Proof of the Lemma VII

Therefore, from
(

b−a
p

)
= 1 we can immediately conclude that(

γ2
i−a
p

)
= 1 for i = 1, 2. But this means that every element from

S gives rise to two elements of R. Hence, Claim 3 is shown.

Moreover, since
(

a
p

)
= 1 and p ≡ 1 mod 4 by assumption, we

know (p − 1)/2 is even, and we get
(

−a
p

)
= 1, too (cf. the case

p ≡ 3 mod 4).
By Theorem 1 we have dlogg(−a) is even, say
2m = dlogg(−a). Hence, we arrive at

−a ≡ g2m mod p .
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Proof of the Lemma VIII

Now, for every b ∈ S we obtain mutatis mutandis that there is
an n such that 2n = dloggb and an r with 2r = dlogg(b − a).
Therefore, it holds

b − a ≡ g2n + g2m ≡ g2r mod p ; and thus

g2(n−m) + 1 ≡ g2(r−m) mod p .

Let ν = 2(n − m) mod (p − 1) and ω = 2(r − m) mod (p − 1).
Then we obviously have ν ≡ 0 mod 2, ω ≡ 0 mod 2 and
gν + 1 ≡ gω mod p, thus (ν, ω) ∈ S00.
Clearly, b 7→ (ν, ω) is an injection from S into S00. Hence,
|S| 6 |S00| and therefore, by Claim 2, |S| 6 (p − 1)/4 − 1.
Finally, applying Claim 3 yields |R| = 2|S| 6 (p − 1)/2 − 2. This
proves the lemma.
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Thank you!
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Adrien-Marie Legendre
(caricature by Julien-Leopold Boilly)
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Leonhard Euler
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Carl Gustav Jacob Jacobi
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Robert M. Solovay
Volker Strassen
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