
Division Division via Newton Comparison Matrix Multiplication End

Complexity and Cryptography

Thomas Zeugmann

Hokkaido University
Laboratory for Algorithmics

https://www-alg.ist.hokudai.ac.jp/∼thomas/COCRB/

Lecture 2: Division and Matrix Multiplication

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division I

First, we have to clarify what we shall mean by division.
Let numbers a, d ∈N be given, where d , 0. There are two
versions of division; i.e., computing the quotient a/d and
computing integers q, r such that a = qd + r and 0 6 r < d,
respectively.

The second version (division with remainder) fits into the class
of problems studied so far (n-bit numbers given as input are
transformed into output numbers having O(nc) bits for a
constant c > 0 independently of n).

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division I

First, we have to clarify what we shall mean by division.
Let numbers a, d ∈N be given, where d , 0. There are two
versions of division; i.e., computing the quotient a/d and
computing integers q, r such that a = qd + r and 0 6 r < d,
respectively.

The second version (division with remainder) fits into the class
of problems studied so far (n-bit numbers given as input are
transformed into output numbers having O(nc) bits for a
constant c > 0 independently of n).

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division II

The first version does not fit directly into the class of problems
studied so far, since the quotient may have infinitely many bits.
Thus, it is only meaningful to require the computation of a
sufficiently precise approximation. Therefore, we first define
what is meant by approximation.

Definition 1
Let x be any number. We say that x̃ is an approximation of x with
precision 2−c (precise for c bits) provided |x − x̃| 6 2−c.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division II

The first version does not fit directly into the class of problems
studied so far, since the quotient may have infinitely many bits.
Thus, it is only meaningful to require the computation of a
sufficiently precise approximation. Therefore, we first define
what is meant by approximation.

Definition 1
Let x be any number. We say that x̃ is an approximation of x with
precision 2−c (precise for c bits) provided |x − x̃| 6 2−c.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division III

Then, the division problem is defined as follows:

Division
Input: Numbers a ∈N, d ∈N+ each having at most n bits.
Problem: Compute the quotient a/d with precision 2−n.

Idea: We can split the problem into two subproblems; i.e.,
computing the inverse d−1 of d with precision 2−2n and then
multiplying this approximation of d−1 and a.
In the following, we use d̃−1 to denote the approximation
of d−1 with precision 2−2n.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division III

Then, the division problem is defined as follows:

Division
Input: Numbers a ∈N, d ∈N+ each having at most n bits.
Problem: Compute the quotient a/d with precision 2−n.

Idea: We can split the problem into two subproblems; i.e.,
computing the inverse d−1 of d with precision 2−2n and then
multiplying this approximation of d−1 and a.
In the following, we use d̃−1 to denote the approximation
of d−1 with precision 2−2n.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division IV

Lemma 1 (Precision)

Let a, d be n-bit numbers. Suppose we have computed the inverse
d−1 of d with precision 2−2n. Then ad̃−1 is an approximation of a/d

with precision 2−n.

Proof. Let d̃−1 be the approximation of d−1 with precision 2−2n.
By assumption, a < 2n, and thus∣∣∣∣ad − ad̃−1

∣∣∣∣ = |a||d−1 − d̃−1|

6 2n · 2−2n = 2−n .

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division IV

Lemma 1 (Precision)

Let a, d be n-bit numbers. Suppose we have computed the inverse
d−1 of d with precision 2−2n. Then ad̃−1 is an approximation of a/d

with precision 2−n.

Proof. Let d̃−1 be the approximation of d−1 with precision 2−2n.
By assumption, a < 2n, and thus∣∣∣∣ad − ad̃−1

∣∣∣∣ = |a||d−1 − d̃−1|

6 2n · 2−2n = 2−n .

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division V

First, we deal with the computation of d−1. One possible
approach would be to use the fact

1
1 − x

=

∞∑
i=0

xi provided |x| < 1 .

We can assume, without loss of generality, that 1/2 6 d < 1.

Proof. Let d =
n−1∑
i=0

di2i and let dk be the highest non-zero bit,

i.e., dk , 0, k 6 n − 1 and dk+1 = · · · = dn−1 = 0 provided
k < n − 1. Then, d̂ =df d2−(k+1) satisfies 1/2 6 d̂ < 1. Thus, d̂

can be computed from d by applying a simple shift operation.
However, for determining k one needs O(n) bit operations in
the worst case.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division V

First, we deal with the computation of d−1. One possible
approach would be to use the fact

1
1 − x

=

∞∑
i=0

xi provided |x| < 1 .

We can assume, without loss of generality, that 1/2 6 d < 1.

Proof. Let d =
n−1∑
i=0

di2i and let dk be the highest non-zero bit,

i.e., dk , 0, k 6 n − 1 and dk+1 = · · · = dn−1 = 0 provided
k < n − 1. Then, d̂ =df d2−(k+1) satisfies 1/2 6 d̂ < 1. Thus, d̂

can be computed from d by applying a simple shift operation.
However, for determining k one needs O(n) bit operations in
the worst case.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division VI

Now, since the inverse of 2−(k+1) is 2k+1, knowing the inverse
of d̂ with precision 2−2n is all we need. So, we can set x = 1 − d.

It remains to ask how many summands we actually have to
compute to achieve the desired approximation. The answer is
provided by the following lemma:

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division VII

Lemma 2

Let d−1 be the exact inverse of d, where 1/2 6 d < 1. Furthermore,

let b2n =
2n∑
i=0

(1 − d)i. Then, we have |d−1 − b2n| 6 2−2n.

Proof. First, since 1/2 6 d < 1 we can conclude that

0 < 1 − d 6 1/2. Thus, the geometrical series
∞∑

i=0
(1 − d)i is

absolutely convergent and from calculus we know that

∞∑
i=0

(1 − d)i =
1

1 − (1 − d)
=

1
d

.

Therefore,
∞∑

i=0
(1 − d)i is the exact inverse of d.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division VII

Lemma 2

Let d−1 be the exact inverse of d, where 1/2 6 d < 1. Furthermore,

let b2n =
2n∑
i=0

(1 − d)i. Then, we have |d−1 − b2n| 6 2−2n.

Proof. First, since 1/2 6 d < 1 we can conclude that

0 < 1 − d 6 1/2. Thus, the geometrical series
∞∑

i=0
(1 − d)i is

absolutely convergent and from calculus we know that

∞∑
i=0

(1 − d)i =
1

1 − (1 − d)
=

1
d

.

Therefore,
∞∑

i=0
(1 − d)i is the exact inverse of d.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division VIII

Hence, we get

|d−1 − b2n| =

∣∣∣∣∣
∞∑

i=0

(1 − d)i −

2n∑
i=0

(1 − d)i

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

i=2n+1

(1 − d)i

∣∣∣∣∣
6

∞∑
i=2n+1

|(1 − d)i| 6
∞∑

i=2n+1

(
1
2

)i

=
1 − 1 +

(1
2

)2n+1

1 − 1
2

= 2−2n .

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division via Newton I

However, the resulting algorithm is quite slow compared to
multiplication.

Question
Can we do any better?

The affirmative answer is obtained as follows: We can avoid to
compute b2n+1 by evaluating the sum given above if we use
the well-known Newton procedure for computing zeros of
functions.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division via Newton I

However, the resulting algorithm is quite slow compared to
multiplication.

Question
Can we do any better?

The affirmative answer is obtained as follows: We can avoid to
compute b2n+1 by evaluating the sum given above if we use
the well-known Newton procedure for computing zeros of
functions.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division via Newton II

Recall that for a given differentiable function f and x∗ with
f(x∗) = 0, one can compute x∗ with any desired precision by
using

xk = xk−1 −
f(xk−1)

f ′(xk−1)
, (1)

provided x0 is appropriately chosen. That is, then we know
from calculus that

lim
k→∞ xk = x∗ .

What is the appropriate f in our case?

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division via Newton II

Recall that for a given differentiable function f and x∗ with
f(x∗) = 0, one can compute x∗ with any desired precision by
using

xk = xk−1 −
f(xk−1)

f ′(xk−1)
, (1)

provided x0 is appropriately chosen. That is, then we know
from calculus that

lim
k→∞ xk = x∗ .

What is the appropriate f in our case?

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division via Newton III

In order to apply this method to our setting of computing the
inverse, we cannot use f(x) = xd − 1. In this case, we would get
f ′(x) = d, and thus for computing the iteration in (1), we
already should know d−1.

So, we set f(x) = d − 1/x, and obtain thus from (1) that the
sequence (bk)k∈N defined by

bk = (2 − bk−1d)bk−1 (2)

converges to d−1 provided b0 is appropriately chosen.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division via Newton III

In order to apply this method to our setting of computing the
inverse, we cannot use f(x) = xd − 1. In this case, we would get
f ′(x) = d, and thus for computing the iteration in (1), we
already should know d−1.

So, we set f(x) = d − 1/x, and obtain thus from (1) that the
sequence (bk)k∈N defined by

bk = (2 − bk−1d)bk−1 (2)

converges to d−1 provided b0 is appropriately chosen.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division via Newton IV

Also, we should know that Newton’s procedure converges
quadratically. Thus, O(log n) iterations will suffice. For the
sake of completeness, and for justifying our choice of b0 we
include the following theorem here:

Theorem 1 (Number of Newton Iterations)

Let d be such that 1/2 6 d < 1, let b0 = 1 and let
bk = (2 − bk−1d)bk−1 for all k > 1. Then we have

bk =

2k−1∑
i=0

(1 − d)i .

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Proof I

Proof. We prove the theorem by induction. For the induction
base k = 1 we directly obtain

b1 = (2 − b0d)b0 = 1 + (1 − d) =

21−1∑
i=0

(1 − d)i .

The induction step from k to k + 1 is derived as follows: We
have the induction hypothesis (abbr. IH)

bk =

2k−1∑
i=0

(1 − d)i .

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Proof I

Proof. We prove the theorem by induction. For the induction
base k = 1 we directly obtain

b1 = (2 − b0d)b0 = 1 + (1 − d) =

21−1∑
i=0

(1 − d)i .

The induction step from k to k + 1 is derived as follows: We
have the induction hypothesis (abbr. IH)

bk =

2k−1∑
i=0

(1 − d)i .

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Proof II

bk+1 = (2 − bkd)bk = 2bk − bkdbk

= 2bk −

2k−1∑
i=0

(1 − d)i · d ·
2k−1∑
i=0

(1 − d)i (by the IH)

= 2bk +

2k−1∑
i=0

(1 − d)i(−1 + (1 − d))

2k−1∑
i=0

(1 − d)i

= 2bk −

2k−1∑
i=0

(1 − d)i
2k−1∑
i=0

(1 − d)i +

2k−1∑
i=0

(1 − d)i+1
2k−1∑
i=0

(1 − d)i

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Proof III

= 2bk − bk −

2k−1∑
i=1

(1 − d)i
2k−1∑
i=0

(1 − d)i +

2k−1∑
i=1

(1 − d)i
2k−1∑
i=0

(1 − d)i

+ (1 − d)2k
2k−1∑
i=0

(1 − d)i

= bk +

2k−1∑
i=0

(1 − d)2k+i

=

2k−1∑
i=0

(1 − d)i +

2k+1−1∑
i=2k

(1 − d)i by the IH

=

2k+1−1∑
i=0

(1 − d)i .

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division XIII

The latter theorem essentially shows that the number of correct
bits is doubled in each iteration.
Summarizing the results obtained so far, now we can prove the
following theorem: In the following M(n) denotes an upper
bound on the time needed to do a multiplication of two n-bit
numbers.

Theorem 2
There is an algorithm which, on input any two numbers a and d

having at most n bits, computes the quotient a/d with precision 2−n

using time O(M(n) log n).

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division XIII

The latter theorem essentially shows that the number of correct
bits is doubled in each iteration.
Summarizing the results obtained so far, now we can prove the
following theorem: In the following M(n) denotes an upper
bound on the time needed to do a multiplication of two n-bit
numbers.

Theorem 2
There is an algorithm which, on input any two numbers a and d

having at most n bits, computes the quotient a/d with precision 2−n

using time O(M(n) log n).

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division XIV

Proof. First, using Theorem NNI we can compute the inverse
d−1 of d with precision 2−2n by using dlog 2ne+ 1 many
iterations. In each iteration we have to perform two
multiplications and one addition. The two multiplications
require time O(M(n)) and the addition needs time O(n). Of
course, we have to truncate the result of each iteration to the 2n

leading bits.

Furthermore, by Lemma (Precision), it then suffices to multiply
a and the approximate inverse. This requires another
multiplication of two numbers having at most 2n bits. Thus,
the overall time complexity is O(M(n) log n).

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Discussion I

Does this mean that division is more complex than
multiplication?

We may be tempted to answer this question affirmatively, but
some care has to be taken here. Of course, we can try to prove a
lower bound on the number of bit operations needed to
perform division. Provided we could show this lower bound to
be Ω(M(n) log n), we are done in the sense that we then know
no improvement is possible. But this is much easier said than
done. Proving non-trivial lower bounds is a very hard task
(and we still have almost no experience in doing so). Second,
we could try to find another method for division. But again,
this is easier said than done. Nevertheless, we could try it.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Discussion I

Does this mean that division is more complex than
multiplication?

We may be tempted to answer this question affirmatively, but
some care has to be taken here. Of course, we can try to prove a
lower bound on the number of bit operations needed to
perform division. Provided we could show this lower bound to
be Ω(M(n) log n), we are done in the sense that we then know
no improvement is possible. But this is much easier said than
done. Proving non-trivial lower bounds is a very hard task
(and we still have almost no experience in doing so). Second,
we could try to find another method for division. But again,
this is easier said than done. Nevertheless, we could try it.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Discussion II

Finally, it is well possible that we have already collected all
good ideas needed, but failed to put them together in the right
way. Maybe, we have been a bit too generous. The point here is
that we always perform multiplications and additions of 2n-bit
numbers.

Taking into account that the Newton procedure is self-correcting,
Cook (1966) observed that we can ignore the bits that are
anyhow not correct. That is, instead of performing
multiplications and additions of 2n-bit numbers we only use
the highest 2k bits in iteration k when executing (2).

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Discussion II

Finally, it is well possible that we have already collected all
good ideas needed, but failed to put them together in the right
way. Maybe, we have been a bit too generous. The point here is
that we always perform multiplications and additions of 2n-bit
numbers.

Taking into account that the Newton procedure is self-correcting,
Cook (1966) observed that we can ignore the bits that are
anyhow not correct. That is, instead of performing
multiplications and additions of 2n-bit numbers we only use
the highest 2k bits in iteration k when executing (2).

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Discussion III

We illustrate the idea below. In our example we set d = 0.66
and assume that we need the first 8 digits to be correct. Thus,
we have to compute 1.5151515 (we perform the calculation here
in decimal notion). The left column shows the results when
always 8 digits are used, while the right column displays the
result when using 2, 4, and 8 digits.

8 digits 2k digits
b1 1.34 1.4
b2 1.494904 1.506
b3 1.5148809 1.5150962
b4 1.5151514 1.5151515
b5 1.5151515 1.5151515

This looks pretty good.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division versus Multiplication I

Now we can establish the complexity of division relative to
multiplication.
We make the following assumptions about the function M(n):
First, we assume M(n) > n for all n ∈N+ and that
M(m) 6 M(n) for all m, n ∈N+ provided m 6 n. Second, we
assume that M(n) = ng(n), where g : N→N is a function
satisfying g(n) > 0 and g(m) 6 g(n) for all m, n ∈N+

whenever m 6 n. Note that the given upper bounds M(n)

satisfy these assumptions.
Consequently, assuming m 6 n, we obtain

mg(m) + ng(n) 6 mg(n) + ng(n) = (m + n)g(n)

6 (m + n)g(m + n) .

This in turn implies that

M(m) + M(n) 6 M(m + n) for all m, n ∈N+ . (3)

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division versus Multiplication II

Let I(n) denote the time needed to compute the inverse of any
n-bit number with precision 2−2n. Using the ideas just
explained, we obtain the following theorem:

Theorem 3
There exists a constant c > 0 such that I(n) 6 c ·M(n) for
all n ∈N+.

Proof. We execute the iteration given in (2), but use only the
highest 2k bits of d and bk−1 for computing bk, where again
b0 = 1, and k = 1, . . . , dlog 2ne+ 1. The result is then truncated
to the highest 2k+1 bits.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division versus Multiplication II

Let I(n) denote the time needed to compute the inverse of any
n-bit number with precision 2−2n. Using the ideas just
explained, we obtain the following theorem:

Theorem 3
There exists a constant c > 0 such that I(n) 6 c ·M(n) for
all n ∈N+.

Proof. We execute the iteration given in (2), but use only the
highest 2k bits of d and bk−1 for computing bk, where again
b0 = 1, and k = 1, . . . , dlog 2ne+ 1. The result is then truncated
to the highest 2k+1 bits.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division versus Multiplication II

Let I(n) denote the time needed to compute the inverse of any
n-bit number with precision 2−2n. Using the ideas just
explained, we obtain the following theorem:

Theorem 3
There exists a constant c > 0 such that I(n) 6 c ·M(n) for
all n ∈N+.

Proof. We execute the iteration given in (2), but use only the
highest 2k bits of d and bk−1 for computing bk, where again
b0 = 1, and k = 1, . . . , dlog 2ne+ 1. The result is then truncated
to the highest 2k+1 bits.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Division versus Multiplication III

Each iteration needs two multiplications and one addition. So,
we can uper bound the complexity of iteration k by c̃ ·M(2k)

for a suitable constant c̃ > 0. Using (3) we thus obtain

I(n) 6 c̃ · (M(2) + · · ·+ M(2log 2n+1)) 6 c̃ ·M(ĉn) .

Since M(n) 6 n2, we have c̃ ·M(ĉn) 6 c̃ · ĉ2M(n), and thus, it
suffices to set c = c̃ · ĉ2.
Now one has to show that the sequence (bk)k∈N computed in
the way described above converges to the inverse of d and that
we have to compute only the first dlog 2ne+ 1 members of it.
This is left as an exercise.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication I

Next, we turn our attention to another fundamental problem,
i.e., matrix multiplication. Matrix multiplication is needed in
numerous applications involving linear algebra. Therefore,
studying the complexity of matrix multiplication is not only of
theoretical interest but also of fundamental practical
importance.

In order to achieve as much generality as possible, we shall
consider matrix multiplications for any matrices defined over a
ring.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication I

Next, we turn our attention to another fundamental problem,
i.e., matrix multiplication. Matrix multiplication is needed in
numerous applications involving linear algebra. Therefore,
studying the complexity of matrix multiplication is not only of
theoretical interest but also of fundamental practical
importance.

In order to achieve as much generality as possible, we shall
consider matrix multiplications for any matrices defined over a
ring.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication II

Definition 2
Let S be any non-empty set containing at least two distinguished
elements 0 and 1, and let + and · be binary operations over S (that is
+ : S× S → S and · : S× S → S). Then R = (S, +, ·, 0, 1) is a ring with
identity element provided that for all a, b, c ∈ S the following
properties hold:

(1) (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c);

(2) (a + b) = (b + a) (+ is commutative);

(3) (a + b) · c = a · c + b · c and a · (b + c) = a · b + a · c;

(4) a + 0 = 0 + a = a (0 is the neutral element with respect to +);

(5) a · 1 = 1 · a = a (1 is the identity element with respect to ·);

(6) For each a ∈ S there exist an element −a ∈ S such that
a + (−a) = (−a) + a = 0 (−a is the additive inverse of a).

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication III

Since we only consider rings with identity, we refer to a ring
with identity as to a ring for short.
Furthermore, if R is a ring and the operation · is commutative,
then we say that the ring R is commutative. Finally, if R is a
commutative ring and if for every a ∈ S \ {0} there exist an
element a−1 ∈ S such that a · a−1 = a−1 · a = 1, then R is said to
be a field.

So, let R = (S, +, ·, 0, 1) be a commutative ring with 1.
Furthermore, let n ∈N+. We consider the set Mn of all n× n

matrices over R.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication IV

Moreover, let

In =



1 0 · · · 0
0 1 · · · 0
· ·
· ·
· ·
0 0 · · 0 1



Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication V

and

0n =


0 · · · 0
· ·
· ·
· ·
0 · · · 0



Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication VI

Addition and multiplication of matrices from Mn is defined as
usual by using the addition and multiplication from the
underlying ring R. We denote the resulting operations by +n

and ×n, respectively. That is, for A = (aij) and B = (bij),
i, j = 1, . . . , n, the sum A +n B is the n× n matrix C and the
product A×n B is the n× n matrix D defined by

A +n B =df C, where cij = aij + bij i, j = 1, . . . , n ;

A×n B =df D, where dij =

n∑
k=1

aik · bkj i, j = 1, . . . , n .

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication VII

The following important property is stated as an exercise:
Exercise 1. Let Mn = (Mn, +n,×n, 0n, In). Then we have: Mn is
a ring if and only if R is ring.

Note that we did not require the ring R to be a commutative
one in Exercise 1. It should be noted that the matrix
multiplication ×n as defined above, is not commutative for
n > 1, even if the multiplication · in the underlying ring R is
commutative. In the following, we often omit the subscript n in
+n and ×n, i.e., we just write + and ×, when there is no
possibility of confusion. Moreover, we often just write AB

instead of A× B to simplify notation.

Next, we continue with a very useful technical result. Let R be a
commutative ring with 1, and let Mn be the ring of all n× n

matrices over R.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication VII

The following important property is stated as an exercise:
Exercise 1. Let Mn = (Mn, +n,×n, 0n, In). Then we have: Mn is
a ring if and only if R is ring.

Note that we did not require the ring R to be a commutative
one in Exercise 1. It should be noted that the matrix
multiplication ×n as defined above, is not commutative for
n > 1, even if the multiplication · in the underlying ring R is
commutative. In the following, we often omit the subscript n in
+n and ×n, i.e., we just write + and ×, when there is no
possibility of confusion. Moreover, we often just write AB

instead of A× B to simplify notation.
Next, we continue with a very useful technical result. Let R be a
commutative ring with 1, and let Mn be the ring of all n× n

matrices over R.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication VIII

Assume n to be even. Then, we can divide any n× n matrix A into 4
matrices A11, A12, A21, A22 of size n/2 × n/2, i.e.,

A =



a11 · · · a1, n
2

a1, n
2 +1 · · · a1n

· ·
· ·
· ·

an
2 1 · · · an

2 , n
2

an
2 , n

2 +1 · · · an
2 n

an
2 +1,1 · · · an

2 +1, n
2

an
2 +1, n

2 +1 · · · an
2 +1,n

· ·
· ·
· ·

an1 · · · an, n
2

an, n
2 +1 · · · ann


=

(
A11 A12

A21 A22

)
.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication IX

Furthermore, let R2,n/2 be the ring of all 2 × 2 matrices with elements
from Mn/2. Then, the multiplication and addition of matrices from
Mn is equivalent to the multiplication and addition of the
corresponding 2 × 2 matrices from R2,n/2. That is, for A, B ∈ Mn and
A11, A12, A21, A22 B11, B12, B21, B22 ∈ R2,n/2 we have

A + B =

(
A11 + B11 A12 + B12
A21 + B21 A22 + B22

)
; (4)

A× B =

(
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
. (5)

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication X

Now, we are ready to deal with the complexity of matrix
multiplications. What we are going to count here is the number
of the arithmetic ring operations, i.e., additions and
multiplications in the underlying ring R. Our first theorem
establishes the starting point by analyzing the obvious matrix
multiplication algorithm that is based on the definition of
matrix multiplication.

Theorem 4
The usual algorithm for multiplying any two n× n matrices requires
2n3 − n2 arithmetic operations.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication X

Now, we are ready to deal with the complexity of matrix
multiplications. What we are going to count here is the number
of the arithmetic ring operations, i.e., additions and
multiplications in the underlying ring R. Our first theorem
establishes the starting point by analyzing the obvious matrix
multiplication algorithm that is based on the definition of
matrix multiplication.

Theorem 4
The usual algorithm for multiplying any two n× n matrices requires
2n3 − n2 arithmetic operations.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication XI

Proof. Let A = (aij) and let B = (bij), i, j = 1, . . . , n be any two
n×n matrices. Then the product C = (cij) = A×B is given by

cij =

n∑
k=1

aikbkj .

That is, the computation of every element cij requires n ring
multiplications and n − 1 ring additions. Since there are n2

many elements cij which have to be computed, the total
number of ring multiplications is n3 and the total number of
ring additions is n2(n − 1). Thus the overall number of ring
operations is 2n3 − n2.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication XII

Question
Can we do any better?

The affirmative answer was found by Volker Strassen.

Theorem 5 (Strassen (1969))
There is an algorithm for multiplying any two n× n matrices that
requires O(nlog 7) ring operations.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication XII

Question
Can we do any better?

The affirmative answer was found by Volker Strassen.

Theorem 5 (Strassen (1969))
There is an algorithm for multiplying any two n× n matrices that
requires O(nlog 7) ring operations.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication XIII

Proof. Let T(n) denote the number of ring operations needed for
multiplying any two n× n matrices. Furthermore, let
A, B ∈ Mn be any two n× n matrices. First, we assume n to be
a power of 2. Using Equation (5) we can write

C = A× B

=

(
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
=

(
C11 C12
C21 C22

)
This approach alone does not help, since we have reduced the
original problem of size n into eight subproblems of size n/2.
Thus, the resulting recursive equation has the solution
T(n) = O(nlog 8) = O(n3).

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication XIV

At this point Strassen (1969) discovered the following: Let

M1 = (A12 − A22)(B21 + B22)

M2 = (A11 + A22)(B11 + B22)

M3 = (A11 − A21)(B11 + B12)

M4 = (A11 + A12)B22

M5 = A11(B12 − B22

M6 = A22(B21 − B11)

M7 = (A21 + A22)B11 ,

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication XV

then an easy calculation shows that

C11 = M1 + M2 − M4 + M6

C12 = M4 + M5

C21 = M6 + M7

C22 = M2 − M3 + M5 − M7 .

Thus, we have reduced the original problem of size n to seven
multiplications of matrices having size n/2 × n/2 and 18
additions of n/2 × n/2 matrices.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication XV

then an easy calculation shows that

C11 = M1 + M2 − M4 + M6

C12 = M4 + M5

C21 = M6 + M7

C22 = M2 − M3 + M5 − M7 .

Thus, we have reduced the original problem of size n to seven
multiplications of matrices having size n/2 × n/2 and 18
additions of n/2 × n/2 matrices.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication XVI

Consequently, for n > 2 we directly get the recursive equation

T(n) = 7 · T
(n

2

)
+ 18

(n

2

)2
,

which has the solution T(n) = 7 · 7log n − 6n2, and hence
T(n) = O(7log n) = O(nlog 7).

If n is not a power of 2, then we embed each matrix in a matrix
whose dimension is the next-higher power of 2. This at most
doubles the dimension and thus increases the constant by at
most a factor of 7. Hence, T(n) = O(nlog 7) for all n ∈N+.

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Matrix Multiplication XVII

Strassen’s (1969) matrix multiplication algorithm is also not the
best possible. After his pioneering paper, many researchers
worked on even faster matrix multiplication algorithms. The
currently best known algorithm achieves

O(n2.376)

and is due to Coppersmith and Winograd (1990).

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Thank you!

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Sir Isaac Newton

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Stephen A. Cook

Complexity and Cryptography c©Thomas Zeugmann

Division Division via Newton Comparison Matrix Multiplication End

Volker Strassen

Complexity and Cryptography c©Thomas Zeugmann

	Division
	

	Division via Newton
	

	Comparison
	

	Matrix Multiplication
	

	End
	

