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In order to develop some more familiarity with calculations in
the ring Z,, we continue by studying the solvability of the
easiest form of congruences involving a variable, i.e., of linear
congruences

ax=c modb.
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Linear Congruences |

In order to develop some more familiarity with calculations in
the ring Z,, we continue by studying the solvability of the
easiest form of congruences involving a variable, i.e., of linear
congruences

ax=c modb.

This is an important practical problem. There may be zero, one,
or more than one solution satisfying ax = ¢ mod b. The
following theorem precisely characterizes the solvability of
linear congruences:
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Leta,c € Zandletb € IN, b > 2. Then the linear congruence
ax = ¢ mod b is solvable if and only if gcd(a, b) divides c.
Moreover, if d = gcd(a, b) and d|c then there are precisely d
solutions in Zy, for ax = c mod b.
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Linear Con

Leta,c € Zandletb € IN, b > 2. Then the linear congruence
ax = ¢ mod b is solvable if and only if gcd(a, b) divides c.
Moreover, if d = gcd(a, b) and d|c then there are precisely d
solutions in Zy, for ax = c mod b.

Proof. First, let d = gcd(a, b) and let us assume that d|c. Then
we consider @ = a/d, b =b/d, ¢ =c/d,and d@x = ¢ mod b.
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Now, gcd(d, b) = 1, thus there is a y such that

Gy=1 modb. 1)
Consequently, multiplying (1) with ¢ yields

dy¢ = ¢ mod b

dxg = € modb, (2)

where xg = y¢.

©Thomas Zeugmann
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Linear Congruences Il

Now, ged(d, b) = 1, thus there is a y such that

Gy=1 modb. 1)
Consequently, multiplying (1) with ¢ yields

dy¢ = ¢ mod b

dxg = € modb, (2)

where xg = yé. Hence, there is a k € Z such that
kb =dxo—¢.
Multiplying both sides by d directly yields
kbd = adxo — ¢&d
kb=axy—c

but this means nothing else than axy = ¢ mod b.
Consequently, x is also a solution of ax = ¢ mod b.
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The remaining (d — 1) solutions of ax = ¢ mod b are obtained
by setting x; = xq +ijbforj=1,...,d—1.

Clearly, xg < xo + b < --- < xg + (d — 1)b. Therefore,

Xo, ..., X0+ (d—1)b are pairwise incongruent modulo b.
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Linear Congruences IV

The remaining (d — 1) solutions of ax = ¢ mod b are obtained
by setting x; = xq +ijbforj=1,...,d—1.
Clearly, xg < xo + b < --- < xg + (d — 1)b. Therefore,
Xo, ..., X0+ (d—1)b are pairwise incongruent modulo b.
Since jb =0 mod b for all j € Z, we also have

d(xg+ib)=¢ mod b,
and thus there are k;,j =1,...,d — 1, such that

ijId(X0+j6)—é. 3)

©Thomas Zeugmann
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Linear Congruences IV

The remaining (d — 1) solutions of ax = ¢ mod b are obtained
by setting x; = xq +ijbforj=1,...,d—1.

Clearly, xg < xo + b < --- < xg + (d — 1)b. Therefore,

Xo, ..., X0+ (d—1)b are pairwise incongruent modulo b.
Since jb =0 mod b for all j € Z, we also have

d(xg+ib)=¢ mod b,
and thus there are k;,j =1,...,d — 1, such that
kb = d(xo +jb) —¢. 3)
Multiplying both sides of Equality (3) by d gives:
kib = a(xg +jb) — ¢,

which again directly implies a(xo + jb) = ¢ mod b. Thus,
X0, X0 +b, ..., xo+ (d—1)b are all solutions of ax = ¢ mod b.
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It remains to show that there are no other solutions.
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It remains to show that there are no other solutions.

Suppose the converse; i.e., there is a z such that

az = ¢ modb 4)
z # xp+jb modb forallj=0,...,d—1. (5)

©Thomas Zeugmann



Linear Congruences V

It remains to show that there are no other solutions.

Suppose the converse; i.e., there is a z such that

az = ¢ modb 4)
z # xp+jb modb forallj=0,...,d—1. (5)

Now, (4) implies dz = ¢ mod b and since ged(d, b) = 1, by
Equation (2), we have

z=% modb.

Therefore, z = xo + £b. Finally, since db = b, we can conclude
that £ € {0,...,d — 1}, a contradiction to (5). Consequently, there
are precisely d different solutions of ax = ¢ mod b.

©Thomas Zeugmann
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Second, let us assume that ax = ¢ mod b is solvable.

We have to show that gcd(a, b) divides c.

©Thomas Zeugmann
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Second, let us assume that ax = ¢ mod b is solvable.

We have to show that gcd(a, b) divides c.
Let z be a solution of ax = ¢ mod b, i.e.,, we have
az=c¢c modb.

Thus, there must be a k € Z such that kb = az — c. But this
means kb — az = —c and consequently gcd(a, b) divides c. |
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Letb e IN,b>2 andlet a,c € Z. If gcd(a,b) =1 then the linear
congruence ax = ¢ mod b has a unique solution modulo b.

©Thomas Zeugmann



ponentiation

O00000e

Linear Congruences VI

Letb e IN,b>2 andlet a,c € Z. If gcd(a,b) =1 then the linear
congruence ax = ¢ mod b has a unique solution modulo b.

Exercise 1. Determine the complexity of computing all solutions of

ax = ¢ mod b in dependence on the length of the input a,c € Z
andb e N, b > 2.
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Linear Congruences VI

Letb e IN,b>2 andlet a,c € Z. If gcd(a,b) =1 then the linear
congruence ax = ¢ mod b has a unique solution modulo b.

Exercise 1. Determine the complexity of computing all solutions of
ax = ¢ mod b in dependence on the length of the input a,c € Z
andb e N, b > 2.

Next, we should apply our knowledge about linear
congruences to the problem of computing all integer solutions
of linear Diophantine equations, i.e., equations of the form

ax + by = cfor a,b,c € Z. This is left as an exercise.
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Modular exponentiation is formally defined as follows:
Modular Exponentiation

Input: Modulus m € N, m > 2, and a € Z;, as well as x € IN.

Problem: Compute they € {0,1,..., m — 1} such that
y = a* mod m.

Note that we cannot compute a* efficiently for n bit numbers a
and x, since the output would have a length exponential in the
length of the input.
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Modular exponentiation can be computed in time
O(max{log a,log m, log x}3).

©Thomas Zeugmann
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Modular exponentiation can be computed in time
O(max{log a,log m, log x}3).

k .
Proof. Letx = Y_ ;2% " where x; € {0,1}, i.e., x; are the digits
i=0
of x in binary notation. Then, the following procedure
computes a* mod m:

Procedure EXP: “Setyg =1
Fori=0tokdo
If x; =0thenyi,q:= y% mod m;
Ifx; =1thenyiy1:=a- y% mod m;
Output yy41.”

©Thomas Zeugmann
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Claim A. Procedure EXP computesy correctly.
It suffices to show that

Yk+1 = a* mod m for all numbers x having k + 1 bits.

We prove Claim A by induction on k.

For k = 0 we distinguish the cases x = 0 and x = 1.

If x =0,theny; =12 =1 = a” mod m, and thus correct.
Ifx=1,theny; = a 1> = a = a! mod m, and hence again
correct.

Thus, the induction basis is shown.

©Thomas Zeugmann
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Assume the induction hypothesis for k, i.e.,
Uk+1 = a© mod m for all numbers x having k + 1 bits.

The induction step is done from k + 1 to k + 2 bits.
Let x =xg...xxXx+1. We may write x = 2(xg - - - xi ) + X1, and
obtain

©Thomas Zeugmann



Modular Exponentiation IV

Assume the induction hypothesis for k, i.e.,
Uk+1 = a© mod m for all numbers x having k + 1 bits.

The induction step is done from k + 1 to k + 2 bits.
Let x =xg...xxXx+1. We may write x = 2(xg - - - xi ) + X1, and
obtain

X

& = 2o X

— 20 X)L X1 = (aXO"'Xk)Z R !

= y%,,a% mod m.

The latter congruence is due to the induction hypothesis.
Consequently, if xi 11 = 0 then yy,» = yi 41 mod m, and thus

correct.
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Assume the induction hypothesis for k, i.e.,
Uk+1 = a© mod m for all numbers x having k + 1 bits.

The induction step is done from k + 1 to k + 2 bits.
Let x =xg...xxXx+1. We may write x = 2(xg - - - xi ) + X1, and
obtain

x 2(x Xk ) +Xx 41

& = a — 20 xi) | Xk

(aXO"'Xk)Z R !

= y%,,a% mod m.

The latter congruence is due to the induction hypothesis.
Consequently, if xi 11 = 0 then yy,» = yi 41 mod m, and thus
correct. Finally, if xx 41 = 1 then a*<+1 = a, and hence
Ykio=a- yi 1 mod m which is again correct.




Modular Exponentiation V

Procedure EXP computes at most 2[log x| many products
modulo m over numbers from Z.,,,. Thus, the Procedure EXP
takes at most time cubic in the lengths of a, m, x.
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Example: Calculate 3 mod 23
67 = 1000011; Thus we obtain: yo = 1, and

Y1
Y2
Y3
Yy
Ys
Yo
Y7

3 mod 23

32 =9 mod 23

92 =12 mod 23
122 =6 mod 23
6> =13 mod 23
3-132=1 mod 23
3-12 =3 mod 23

This was much easier than computing
37 = 92709463147897837085761925410587
= 4030846223821645090685301104808 - 23 + 3

©Thomas Zeugmann



©00000000000000

Remark

The latter theorem shows that we can exponentiate efficiently
modulo m, but what about the inverse operations? Finding
discrete roots of numbers modulo m appears little less tractable,
if m is prime or if the prime factorization of m is known.

In the general case, the problem of taking discrete roots seems
sufficiently intractable that is has been proposed as the basis of
the RSA public key cryptosystem.

©Thomas Zeugma
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Remark

The latter theorem shows that we can exponentiate efficiently
modulo m, but what about the inverse operations? Finding
discrete roots of numbers modulo m appears little less tractable,
if m is prime or if the prime factorization of m is known.

In the general case, the problem of taking discrete roots seems
sufficiently intractable that is has been proposed as the basis of
the RSA public key cryptosystem.

The other inverse operation of modular exponentiation is
finding discrete logarithms and defined below (cf. Definition 2).

©Thomas Zeug;



Discrete Roots

Formally, the problem of taking discrete roots is defined as
follows:

©Thomas Zeugmann



Discrete Roots

Formally, the problem of taking discrete roots is defined as
follows:

Discrete Roots
Input: Modulus m € N, a € Z7,,and r € N.

Problem: Compute the solutions of x"™ = a mod m provided
they exist or output “there are no solutions.”

©Thomas Zeugmann



Euler’s phi-Function |

We continue to recall basic number theory to the extend needed
for designing our main algorithms. Let m € IN*; by
@(m) =ar |Z},| we denote Euler’s totient function (phi-function).
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We continue to recall basic number theory to the extend needed
for designing our main algorithms. Let m € IN*; by
@(m) =ar |Z},| we denote Euler’s totient function (phi-function).

Definition 1

A function f: N — IN is said to be multiplicative if f(1) = 1 and
f(mn) = f(m)f(n) for all m,n € N whenever gcd(m,n) = 1.

©Thomas Zeugmann



ponentiation

00@000000000000

Euler’s phi-Frunctlon |

We continue to recall basic number theory to the extend needed
for designing our main algorithms. Let m € IN*; by
@(m) =ar |Z},| we denote Euler’s totient function (phi-function).

Definition 1

A function f: N — IN is said to be multiplicative if f(1) = 1 and
f(mn) = f(m)f(n) for all m,n € N whenever gcd(m,n) = 1.

The following theorem summarizes some well-known facts:

(1) ¢(mn) = ¢(m)e(n)ifged(m,n) =1,
) o(p*) =p*p—1)ifpisprimeand k € N7,
(3) @(p) =p —1ifand only if p is prime.

For the proof we refer to the book.

©Thomas Zeugmann
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Now we are in a position to show another important property
of Euler’s phi-function.

Theorem 4

Foralln € N we have Y ¢(d) =n.
dn

©Thomas Zeugmann
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Euler’s phi-Frunctlon |

Now we are in a position to show another important property
of Euler’s phi-function.

Theorem 4

Foralln € N we have Y ¢(d) =n.
dn

Proof. First, we define f(n) =4¢ ) ¢(d) and show f to be

din
multiplicative. Clearly, we have f(1) = 1. Now, let m,n € N+t
be such that gcd(m, n) = 1. Consider any divisor d of mn.
Since gcd(m, n) = 1, there are uniquely determined numbers
dq, d; such that d = d;d; and d;/m and d,n. Thus, we have
gcd(dy, dy) = 1. By Theorem 3, we obtain ¢(d) = ¢@(d;)@(dy).

©Thomas Zeugmann
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Taking into account that we get all divisors d of mn by taking
all pairs (d;, d2), where d;/m and d;/n, we conclude

flmn) = > Y o(di)e(d)

di|m dsIn
= (Z (P(dl)) (Z CP(dz))
di;lm drn
= f(m)f(n).

Hence, f is multiplicative.

©Thomas Zeugmann
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Second, since f is multiplicative, for showing the theorem it
suffices to determine the value of f for prime powers p*. The
divisors of p¥ are p’ for { =0, ..., k. Consequently, by
Theorem 3 we obtain

Finally, let n = p]fl -...-pkm be the prime factorization of n.
Then, by Equation (6), we have f(1n) = H)"Ll f(p}<j ) =n. i

©Thomas Zeugmann
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For dealing with discrete roots and with primality tests, we
need more insight into the structure of the group Z7, where p is
prime. That is, we aim to show that Z3 is always a cyclic
group. For preparing this result, we need the following lemma:

©Thomas Zeugmann



For dealing with discrete roots and with primality tests, we
need more insight into the structure of the group Z7, where p is
prime. That is, we aim to show that Z3 is always a cyclic
group. For preparing this result, we need the following lemma:

Ifp is prime and f(x) = agx™ + a;x™ ! + - -+ + ay, is such that
f(b) #0 mod p for some b, then f(x) =0 mod p has at most n
distinct solutions modulo p.

The proof is provided in the book.

©Thomas Zeugmann
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Back to Finite Groups

We continue with an important property of all finite groups.

If (G, o) is a finite group, then every element of G has finite order.
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Back to Finité Groups

We continue with an important property of all finite groups.

If (G, o) is a finite group, then every element of G has finite order.

Proof. Let a € G be arbitrarily fixed, and let e be the neutral
element of (G, o). Consider the elements a, a2, a,.... Since G
is finite, there must exist k, £ € Nt such that k > £ and a* = a®.
Since G is a group, the inverse b of a’ exists and since the
inverse is uniquely determined, it must be equal to a*.
Therefore, we obtain a0 a* = a' o a~* = e. This implies that
a*~t = e. Hence, there exists an m € IN* such that a™ = ¢, i.e.,

m = k — {. Consequently, the must be a least such number
n € Nt satisfying a™ = e, and so n = ord(a). |

©Thomas Zeugmann
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Towards Discrete Roots and Primality Testing |l

Theorem 6
If p is prime then Z.3 is a cyclic group of order p — 1.
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Towards Discrete Roots and Primality Testlng I

Theorem 6
If p is prime then Z.3 is a cyclic group of order p — 1.

Proof. Let p prime. By Theorem 3 we already know that

¢(p) =1Z;| =p — 1; thus Z] has order p — 1. In order to see
that Z3 is cyclic, we have to show that it has an element of
order p — 1. This is achieved by counting elements of different
order. Let d be any positive integer such that d|(p — 1). Define

Sa =af {a€Z;|ord(a)=d}. (7)

©Thomas Zeugmann
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Towards Discrete Roots and Primality Testlng I

Theorem 6
If p is prime then Z.3 is a cyclic group of order p — 1.

Proof. Let p prime. By Theorem 3 we already know that

¢(p) =1Z;| =p — 1; thus Z] has order p — 1. In order to see
that Z3 is cyclic, we have to show that it has an element of
order p — 1. This is achieved by counting elements of different
order. Let d be any positive integer such that d|(p — 1). Define

Sa =ar {a€Zj|ord(a)=d}. (7)

These sets S4 partition Z7, so we have

D Isa=1Zyl=p-1. ®)

dl(p—1)

©Thomas Zeugmann
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Towards Discrete Roots and Primality Testing Il

Fix d such that d|(p — 1). We show that either |[Sq| = 0 or

ISal = @(d). Suppose Sq # 0, and choose some a € S4. Then
a,a?, ..., a4 are all distinct modulo p and each one is a solution
of x4 =1 mod p. By Lemma 1 above, this equation has at
most d solutions modulo p, so these are all of the solutions.
Consequently, S4 C {a¥ 1<k <dL

©Thomas Zeugmann
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Towards Discrete Roots and Primality Testmg i

Fix d such that d|(p — 1). We show that either |[Sq| = 0 or

ISal = @(d). Suppose Sq # 0, and choose some a € S4. Then
a,a?, ..., a4 are all distinct modulo p and each one is a solution
of x4 =1 mod p. By Lemma 1 above, this equation has at
most d solutions modulo p, so these are all of the solutions.
Consequently, S4 C {a¥ 1<k <dL

Now, fixk € {1,...,d}. If ged(k,d) =€ > 1, then

(a*)4/t = (a*/*)d =1 mod p, so a® has order less than d, and
therefore a* ¢ S.

©Thomas Zeugmann
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Towards Discrete Roots and Primality Testlng I

Fix d such that d|(p — 1). We show that either |[Sq| = 0 or
ISal = @(d). Suppose Sq # 0, and choose some a € S4. Then
a,a?, ..., a4 are all distinct modulo p and each one is a solution
of x4 =1 mod p. By Lemma 1 above, this equation has at
most d solutions modulo p, so these are all of the solutions.
Consequently, S4 C {a¥ 1<k <dL
Now, fixk € {1,...,d}. If ged(k,d) =€ > 1, then
(a*)4/t = (a*/*)d =1 mod p, so a® has order less than d, and
therefore a* ¢ S.
If gcd(k, d) =1, then there exists { such that k{ =1 mod d.
Hence, a** = a mod p. Furthermore, for any e € {1,. -1}
we have

(a®)®)*=a®%1 modp,

so akis of order d, i.e., a* € Sg.

©Thomas Zeugmann
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Thus, we have shown
Sa={a"|1<k<d ged(kd) =1},

and consequently |S4| = @(d).

©Thomas Zeugmann
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Towards Discrete Roots and Primality Testing IV

Thus, we have shown
Sa={a"|1<k<d ged(kd) =1},

and consequently |S4| = @(d).
Now suppose that for some d such that d|(p — 1), Sq = 0. Then

Y Bsad< Y old 9)

dl(p—1) df(p—-1)

©Thomas Zeugmann



Thus, we have shown

Sa={a"|1<k<d ged(kd) =1},

and consequently |S4| = @(d).
Now suppose that for some d such that d|(p — 1), Sq = 0. Then

Y Bsad< Y old 9)

dl(p—1) dl(p—1)

By Theorem 4, we know that
Z e(d —1.
dl(p—-1)

Thus, (9) would give a contradiction to Eq. (8). Hence, for each
d with d|(p — 1) we have |Sq| = @(d). This proves the theorem.

Moreover, the number of elements of orderp —1is @ (p — 1). i

©Thomas Zeugmann
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Towards Discrete Roots and Primality Testmg Vv

As we have seen, if p is prime then Z, is cyclic. Every element

g of order p — 1 is called a generator of Z7,. Hence, for every

a € Z;, there exists exactly one x € {1,2,... , P} such that a = ¢g*.
We refer to x as the discrete logarithm of a with respect to g, and

denote it by x = dlog a.

©Thomas Zeugmann
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wards Discrete Roots and Primality Test

As we have seen, if p is prime then Z, is cyclic. Every element

g of order p — 1 is called a generator of Z7,. Hence, for every

a € Z;, there exists exactly one x € {1,2,... , P} such that a = ¢g*.
We refer to x as the discrete logarithm of a with respect to g, and

denote it by x = dlog a.

Not that the condition p being prime is sufficient but not
necessary for the cyclicity of Z3,, since one can prove the
following:

7z, is cyclic if and only if nis 1, 2, 4, p¥, or 2p* for some odd prime
number p and k € N™.

©Thomas Zeugmann



nentiation

0000000000000

Towards Dlscrete Roots and Primality Testlng VI

So, it is appropriate to generalize the definition of discrete
logarithms.

Definition 2 (Discrete Logarithm)

Let n € N be such that Z? is cyclic. Furthermore, let g be a
generator of Z;, and let a € Z3,. Then there exists a unique
number z € {1,..., ¢(n)} such that g* = a mod n. This z is
called the discrete logarithm of a modulo n to the base g and
denoted by dlog; a.

©Thomas Zeugmann
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Towards Dlscrete Roots and Primality Testlng VI

So, it is appropriate to generalize the definition of discrete
logarithms.

Definition 2 (Discrete Logarithm)

Let n € N be such that Z? is cyclic. Furthermore, let g be a
generator of Z;, and let a € Z3,. Then there exists a unique
number z € {1,..., ¢(n)} such that g* = a mod n. This z is
called the discrete logarithm of a modulo n to the base g and
denoted by dlog; a.

Now, let p be a prime and let g be any generator for Z;. Then
we obviously have gP ! =1 mod p. The latter property is,
however, not restricted to generators as the following theorem
shows:

©Thomas Zeugmann
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Eulers Theorem

Theorem 8 (Euler’s Theorem)

Letn € N,n > 2; then a®™ =1 mod n forall a € Z,.

©Thomas Zeugmann
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Euler's Theorem

Theorem 8 (Euler’s Theorem)

Letn € N, n > 2; then a®™ =1 mod n forall a € Z%,.

Proof. Recall that ¢ (m) = |Z},|,i.e., ¢(m) is the order of the
group Z5,. Let a € Zj, be arbitrarily fixed. By Theorem 5, we
know that ord(a) is finite, say k. Furthermore,
S={a™|n=1,...,k}is a subgroup of Z,. By Corollary 3.1 we
conclude that k|@(m). Thus, there is an { € IN' such that

¢@(m) = kf. Consequently,

a®(m) = gkl = (a¥)* =1 mod m. i

©Thomas Zeugmann
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ermat’s Little Theorem

Theorem 8 covers the following important special case which
was first discovered by Pierre de Fermat:

Theorem 9 (Fermat’s Little Theorem)

Let p be a prime. Then a1 =1 mod p forall a € Zy;.

Proof. Since @ (p) = p — 1, the assertion directly follows from
Theorem 8. i

©Thomas Zeugmann
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ermat’s Little Theorem

Theorem 8 covers the following important special case which
was first discovered by Pierre de Fermat:

Theorem 9 (Fermat’s Little Theorem)

Let p be a prime. Then a1 =1 mod p forall a € Z,.

Proof. Since @ (p) = p — 1, the assertion directly follows from
Theorem 8. i

Next, we turn our attention to testing primality.
Testing Primality
Input: Any natural number n > 2.

Problem: Decide whether or not n is prime.

©Thomas Zeugmann
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Pseudo Primes |

Though testing primality is a very old problem, no deterministic
algorithm has been known that runs in time polynomial in the
length of the input until 2002. Then Agrawal, Kayal and Saxena
succeeded to provide an affirmative answer to this very long
standing open problem.

Clearly, one could get a deterministic polynomial time
algorithm for testing primality, if the converse of Theorem 9
were true. Unfortunately, it is not. We continue by figuring out
why the converse of Theorem 9 is not true.

©Thomas Zeugmann
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Definition 3 (Pseudo Primes)

Let n € IN be an odd composite number, and let b € IN such
that gcd(b,n) = 1. Then n is said to be pseudo-prime to the base b
ifb" 1 =1 mod n.

For example, n = 91 is a pseudo-prime to the base 3, since
91 = 7- 13 and, furthermore, 3°° =1 mod 91 (note that
36=729=8-91+1=1 mod 91).

But 91 is not a pseudo-prime to the base 2, since

2%0 = 64 mod 91.

©Thomas Zeugmann
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The following theorem summarizes important properties of
pseudo-primes:

Theorem 10

Let n € IN be an odd composite number. Then we have

(1) nis pseudo-prime to the base b with gcd (b, n) =1 if and only if
the order d of b in Z3, divides n — 1.

(2) If nis pseudo-prime to the bases by and by such that
gcd(by, n) = 1and ged(by, n) =1, then n is also pseudo-prime
to the bases b1 b,, blbgl, and bflbz.

(3) Ifthereisab € Zz, satisfying b1 £ 1 mod n, then

@)

bez;|vm 21 modn}|>T.

©Thomas Zeugmann



ponentiation
000@000000000

eudo Prirﬁes IV

Proof. First, we show (1). The necessity can be seen as follows:
Let n be pseudo-prime to the base b with gcd(b,n) = 1. Then,
wehave b ! =1 mod n. Let d be the smallest positive
number for which b4 =1 mod n. Suppose, n —1=kd +r
with 0 < r < d. Then we would get

bl = bR = bR = (b9) b =b" 21 mod n,

a contradiction. Hence, d must divide n — 1.

©Thomas Zeugmann
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Proof. First, we show (1). The necessity can be seen as follows:
Let n be pseudo-prime to the base b with gcd(b,n) = 1. Then,
wehave b ! =1 mod n. Let d be the smallest positive
number for which b4 =1 mod n. Suppose, n —1=kd +r
with 0 < r < d. Then we would get

bl = bR = bR = (b9) b =b" 21 mod n,

a contradiction. Hence, d must divide n — 1.

For the sufficiency, assume d divides n — 1. Thus, n —1 = kd
for some k. Hence, b1 = (b4)k =1 =1 mod n.
Consequently, n is pseudo-prime to the base b.

©Thomas Zeugmann



Pseudo Primes V

Assertion (2) is left as an exercise. Finally, we prove (3). Let
b € Z;, be such that b™ 1 %1 mod n. Let{by, ..., bs}all the
bases for which n is pseudo-prime, i.e.,

b{‘_lzl mod nforalli=1,...,s. (10)

©Thomas Zeugmann
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Assertion (2) is left as an exercise. Finally, we prove (3). Let
b € Z* be such that b™~! £1 mod n. Let{by, ..., bs}all the
bases for which n is pseudo-prime, i.e.,

b{‘_lzl mod nforalli=1,...,s. (10)
Since
b l=c#1 modn (11)

for some c € Z;,, we obtain, by multiplying (10) with (11),
wherei=1,...,s that

c= b{‘*lb“*1 = (bib)"' modn.

©Thomas Zeugmann
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Assertion (2) is left as an exercise. Finally, we prove (3). Let
b € Z;, be such that b™ 1 %1 mod n. Let{by, ..., bs}all the
bases for which n is pseudo-prime, i.e.,

b{‘_lzl mod nforalli=1,...,s. (10)
Since

b l=c#1 modn (11)
for some c € Z},, we obtain, by multiplying (10) with (11),
wherei=1,...,s that
c= b{‘*lb“*1 = (bib)"' modn.

Hence, n is not a pseudo-prime to all the bases {bib, ..., bsb}.
Consequently, there are at least as many bases for which n is
not a pseudo-prime as there are bases for which n is

pseudo-prime. |
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Now, if we knew that for all odd composite numbers n there
should exist at least one number b € Z;, such that n is not a
pseudo-prime to the base b, we could easily design a
probabilistic polynomial time algorithm for testing primality.
But again, unfortunately, there are odd composite numbers n
such that b™ ! =1 mod n forall b € ZZ. These numbers are
called Carmichael numbers (named after Robert D. Carmichael).
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Now, if we knew that for all odd composite numbers n there
should exist at least one number b € Z;, such that n is not a
pseudo-prime to the base b, we could easily design a
probabilistic polynomial time algorithm for testing primality.
But again, unfortunately, there are odd composite numbers n
such that b™ ! =1 mod n forall b € ZZ. These numbers are
called Carmichael numbers (named after Robert D. Carmichael).

We need one more exercise.
Exercise 2. Let p be a prime number. Then Z:,is cyclic.

Furthermore, a number n is said to be square-free if there is no
square number dividing it.
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Theorem 11

Let n € IN be an odd composite number. Then we have

(1) If there is a square number q> > 1 dividing n then n is not a
Carmichael number.

(2) If nis square-free, then n is Carmichael number if and only if
(p — 1) divides n — 1 for every prime p dividing n.

©Thomas Zeugmann
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Proof. Assume any number g2 > 1 dividing n, and letp > 2 be a
prime factor of ¢. Since q*n, we also know that p? is
dividing n. Moreover, by Exercise 2 we know that VAR cyclic.

©Thomas Zeugmann
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Proof. Assume any number g2 > 1 dividing n, and letp > 2 be a
prime factor of ¢. Since q*n, we also know that p? is

dividing n. Moreover, by Exercise 2 we know that VAR cyclic.
Let g be a generator of Z;‘)z. Next, we construct a number

b € Z* such that b™ ! £ 1 mod n. If we can do that, then n
cannot be a Carmichael number.

©Thomas Zeugma
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Proof. Assume any number g2 > 1 dividing n, and letp > 2 be a
prime factor of ¢. Since q*n, we also know that p? is

dividing n. Moreover, by Exercise 2 we know that VAR cyclic.
Let g be a generator of Z;‘ﬂ. Next, we construct a number

b € Z* such that b™ ! £ 1 mod n. If we can do that, then n
cannot be a Carmichael number.

Let 1l be the product of all primes r # p that divide n.
Obviously, ged(p?, i) = 1. By the Chinese remainder theorem
there is a number b such that

b g mod p?
b = 1 modii

So b is also a generator of Z7,.
P

©Thomas Zeugmann
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Now we show b € Z; by proving ged(n,b) = 1.

Suppose the converse, i.e.,, 1 < d = ged(n, b).

Case 1. p divides d.

If p|d, we know that p|b and since p?|(b — g), we additionally
have p|(b — g). Consequently, p|g, too. But this implies g ¢ Z;Z,
a contradiction. Thus, Case 1 cannot happen.

©Thomas Zeugmann
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Now we show b € Z; by proving ged(n,b) = 1.

Suppose the converse, i.e.,, 1 < d = ged(n, b).

Case 1. p divides d.

If p|d, we know that p|b and since p?|(b — g), we additionally
have p|(b — g). Consequently, p|g, too. But this implies g ¢ Z;Z,
a contradiction. Thus, Case 1 cannot happen.

Case 2. p does not divide d.

Consider any prime r dividing n and d simultaneously. Then,
r # p by assumption. Hence, 1|b, too, and moreover, i|(b — 1)
because of b =1 mod fi. But r # p, so 1/fi, too, and thus

/(b —1). This implies r = 1, a contradiction.

This proves b € Z,.
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Finally, we have to show that b™~! # 1 mod n. Suppose the
converse, i.e, b* ! =1 mod n. Since p?n, we conclude
b 1=1 mod pz, too. But b is a generator of Z;z. Thus, by

the Theorem of Euler we get ¢ (p?)|(n — 1), i.e., p(p — 1)|(n —1).
This means in particular

n—1=0 modrp.

On the other hand, by construction we know that pn, and
hence
n—1=-1 modp,

a contradiction. Therefore, we have proved b"1%1 modn
and Assertion (1) is shown.

©Thomas Zeugmann
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Next, we prove Assertion (2).

Sufficiency. Let b € Z3,; we have to show b 1=1 modn.
Since n is square-free, it suffices to show pl(b™ 1 —1) provided
pIn. Assume pn and by assumption also k(p —1) =n —1 for
some k. By Theorem 9 we have b? ! =1 mod p, and
consequently

1=1*=®" " H*=bv""! modp.

This holds for all prime divisors p of n; thus the sufficiency
follows.

©Thomas Zeugmann
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Necessity. Assume b™~! =1 mod n forall b € Z%. Now, we
have to show that (p — 1)|(n — 1) for all primes p with pn.
Suppose there is a prime p with p|n such that (p — 1) does not
divide (n — 1). Hence, there are numbers k, r such that
(m—1)=k(p—1)+rand 0 < r < p — 1. Now, we again
constructa b € Z;, withb™ ! #1 mod n. Let g be a generator
of Z and let i = n/p. By the Chinese remainder theorem
there is a number b such that

b = gmodp and b=1 modn.
Consequently, b is also a generator of Z,. On the other hand,
b l=pP T =1%pT =" 21 mod p,

since b is generator. Thus, p does not divide (b™ ! — 1), and
therefore n does not divide (b™~! — 1), too. |
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In order to have an example, it is now easy to see that 561 is a
Carmichael number. We have just to verify that 2, 10, and 16
divide 560.

Exercise 3. Every Carmichael number is the product of at least 3
distinct primes.

©Thomas Zeugmann
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