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Linear Congruences I

In order to develop some more familiarity with calculations in
the ring Zm we continue by studying the solvability of the
easiest form of congruences involving a variable, i.e., of linear
congruences

ax ≡ c mod b .

This is an important practical problem. There may be zero, one,
or more than one solution satisfying ax ≡ c mod b. The
following theorem precisely characterizes the solvability of
linear congruences:
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Linear Congruences II

Theorem 1
Let a, c ∈ Z and let b ∈N, b > 2. Then the linear congruence
ax ≡ c mod b is solvable if and only if gcd(a, b) divides c.
Moreover, if d = gcd(a, b) and d|c then there are precisely d

solutions in Zb for ax ≡ c mod b.

Proof. First, let d = gcd(a, b) and let us assume that d|c. Then
we consider ã = a/d, b̃ = b/d, c̃ = c/d, and ãx ≡ c̃ mod b̃.
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Linear Congruences III

Now, gcd(ã, b̃) = 1, thus there is a y such that

ãy ≡ 1 mod b̃ . (1)

Consequently, multiplying (1) with c̃ yields

ãyc̃ ≡ c̃ mod b̃

ãx0 ≡ c̃ mod b̃ , (2)

where x0 = yc̃.

Hence, there is a k ∈ Z such that

kb̃ = ãx0 − c̃ .

Multiplying both sides by d directly yields

kb̃d = ãdx0 − c̃d

kb = ax0 − c

but this means nothing else than ax0 ≡ c mod b.
Consequently, x0 is also a solution of ax ≡ c mod b.
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Linear Congruences IV

The remaining (d − 1) solutions of ax ≡ c mod b are obtained
by setting xj = x0 + jb̃ for j = 1, . . . , d − 1.
Clearly, x0 < x0 + b̃ < · · · < x0 + (d − 1)b̃. Therefore,
x0, . . . , x0 + (d − 1)b̃ are pairwise incongruent modulo b.

Since jb̃ ≡ 0 mod b̃ for all j ∈ Z, we also have

ã(x0 + jb̃) ≡ c̃ mod b̃ ,

and thus there are kj, j = 1, . . . , d − 1, such that

kjb̃ = ã(x0 + jb̃) − c̃ . (3)

Multiplying both sides of Equality (3) by d gives:

kjb = a(x0 + jb̃) − c ,

which again directly implies a(x0 + jb̃) ≡ c mod b. Thus,
x0, x0 + b̃, . . . , x0 +(d− 1)b̃ are all solutions of ax ≡ c mod b.
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Linear Congruences V

It remains to show that there are no other solutions.

Suppose the converse; i.e., there is a z such that

az ≡ c mod b (4)
z . x0 + jb̃ mod b for all j = 0, . . . , d − 1 . (5)

Now, (4) implies ãz ≡ c̃ mod b̃ and since gcd(ã, b̃) = 1, by
Equation (2), we have

z ≡ x0 mod b̃ .

Therefore, z = x0 + `b̃. Finally, since db̃ = b, we can conclude
that ` ∈ {0, . . . , d − 1}, a contradiction to (5). Consequently, there
are precisely d different solutions of ax ≡ c mod b.
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Linear Congruences VI

Second, let us assume that ax ≡ c mod b is solvable.

We have to show that gcd(a, b) divides c.

Let z be a solution of ax ≡ c mod b, i.e., we have

az ≡ c mod b .

Thus, there must be a k ∈ Z such that kb = az − c. But this
means kb − az = −c and consequently gcd(a, b) divides c.
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Linear Congruences VII

Corollary 1

Let b ∈N, b > 2, and let a, c ∈ Z. If gcd(a, b) = 1 then the linear
congruence ax ≡ c mod b has a unique solution modulo b.

Exercise 1. Determine the complexity of computing all solutions of
ax ≡ c mod b in dependence on the length of the input a, c ∈ Z
and b ∈N, b > 2.

Next, we should apply our knowledge about linear
congruences to the problem of computing all integer solutions
of linear Diophantine equations, i.e., equations of the form
ax + by = c for a, b, c ∈ Z. This is left as an exercise.
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Modular Exponentiation I

Modular exponentiation is formally defined as follows:

Modular Exponentiation

Input: Modulus m ∈N, m > 2, and a ∈ Z∗
m as well as x ∈N.

Problem: Compute the y ∈ {0, 1, . . . , m − 1} such that
y ≡ ax mod m.

Note that we cannot compute ax efficiently for n bit numbers a

and x, since the output would have a length exponential in the
length of the input.
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Modular Exponentiation II

Theorem 2
Modular exponentiation can be computed in time
O(max{log a, log m, log x}3).

Proof. Let x =
k∑

i=0
xi2k−i where xi ∈ {0, 1}, i.e., xi are the digits

of x in binary notation. Then, the following procedure
computes ax mod m:

Procedure EXP: “Set y0 = 1
For i = 0 to k do
If xi = 0 then yi+1 := y2

i mod m;
If xi = 1 then yi+1 := a · y2

i mod m;
Output yk+1.”
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Modular Exponentiation III

Claim A. Procedure EXP computes y correctly.
It suffices to show that

yk+1 ≡ ax mod m for all numbers x having k + 1 bits.

We prove Claim A by induction on k.
For k = 0 we distinguish the cases x = 0 and x = 1.
If x = 0, then y1 = 12 = 1 ≡ a0 mod m, and thus correct.
If x = 1, then y1 = a · 12 = a ≡ a1 mod m, and hence again
correct.
Thus, the induction basis is shown.
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Modular Exponentiation IV

Assume the induction hypothesis for k, i.e.,

yk+1 ≡ ax mod m for all numbers x having k + 1 bits.

The induction step is done from k + 1 to k + 2 bits.
Let x = x0 . . . xkxk+1. We may write x = 2(x0 · · · xk) + xk+1, and
obtain

ax = a2(x0···xk)+xk+1 = a2(x0···xk) · axk+1 ≡ (ax0···xk)2 · axk+1

≡ y2
k+1a

xk+1 mod m .

The latter congruence is due to the induction hypothesis.
Consequently, if xk+1 = 0 then yk+2 ≡ y2

k+1 mod m, and thus
correct. Finally, if xk+1 = 1 then axk+1 = a, and hence
yk+2 ≡ a · y2

k+1 mod m which is again correct.
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Modular Exponentiation V

Procedure EXP computes at most 2dlog xe many products
modulo m over numbers from Zm. Thus, the Procedure EXP
takes at most time cubic in the lengths of a, m, x.
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Modular Exponentiation VI

Example: Calculate 367 mod 23
67 = 1000011; Thus we obtain: y0 = 1, and

y1 ≡ 3 mod 23
y2 ≡ 32 ≡ 9 mod 23
y3 ≡ 92 ≡ 12 mod 23
y4 ≡ 122 ≡ 6 mod 23
y5 ≡ 62 ≡ 13 mod 23
y6 ≡ 3 · 132 ≡ 1 mod 23
y7 ≡ 3 · 12 ≡ 3 mod 23

This was much easier than computing
367 = 92709463147897837085761925410587
= 4030846223821645090685301104808 · 23 + 3
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Remark

The latter theorem shows that we can exponentiate efficiently
modulo m, but what about the inverse operations? Finding
discrete roots of numbers modulo m appears little less tractable,
if m is prime or if the prime factorization of m is known.

In the general case, the problem of taking discrete roots seems
sufficiently intractable that is has been proposed as the basis of
the RSA public key cryptosystem.

The other inverse operation of modular exponentiation is
finding discrete logarithms and defined below (cf. Definition 2).
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Discrete Roots

Formally, the problem of taking discrete roots is defined as
follows:

Discrete Roots
Input: Modulus m ∈N, a ∈ Z∗

m, and r ∈N.

Problem: Compute the solutions of xr ≡ a mod m provided
they exist or output “there are no solutions.”

Complexity and Cryptography c©Thomas Zeugmann



Linear Congruences Modular Exponentiation Towards Discrete Roots Pseudo Primes End

Discrete Roots

Formally, the problem of taking discrete roots is defined as
follows:

Discrete Roots
Input: Modulus m ∈N, a ∈ Z∗

m, and r ∈N.

Problem: Compute the solutions of xr ≡ a mod m provided
they exist or output “there are no solutions.”

Complexity and Cryptography c©Thomas Zeugmann



Linear Congruences Modular Exponentiation Towards Discrete Roots Pseudo Primes End

Euler’s phi-Function I
We continue to recall basic number theory to the extend needed
for designing our main algorithms. Let m ∈N+; by
ϕ(m) =df |Z∗

m| we denote Euler’s totient function (phi-function).

Definition 1
A function f : N→N is said to be multiplicative if f(1) = 1 and
f(mn) = f(m)f(n) for all m, n ∈Nwhenever gcd(m, n) = 1.

The following theorem summarizes some well-known facts:

Theorem 3

(1) ϕ(mn) = ϕ(m)ϕ(n) if gcd(m, n) = 1,
(2) ϕ(pk) = pk−1(p − 1) if p is prime and k ∈N+,
(3) ϕ(p) = p − 1 if and only if p is prime.

For the proof we refer to the book.
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Euler’s phi-Function II

Now we are in a position to show another important property
of Euler’s phi-function.

Theorem 4

For all n ∈N+ we have
∑
d|n

ϕ(d) = n.

Proof. First, we define f(n) =df

∑
d|n

ϕ(d) and show f to be

multiplicative. Clearly, we have f(1) = 1. Now, let m, n ∈N+

be such that gcd(m, n) = 1. Consider any divisor d of mn.
Since gcd(m, n) = 1, there are uniquely determined numbers
d1, d2 such that d = d1d2 and d1|m and d2|n. Thus, we have
gcd(d1, d2) = 1. By Theorem 3, we obtain ϕ(d) = ϕ(d1)ϕ(d2).
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Euler’s phi-Function III

Taking into account that we get all divisors d of mn by taking
all pairs (d1, d2), where d1|m and d2|n, we conclude

f(mn) =
∑
d1|m

∑
d2|n

ϕ(d1)ϕ(d2)

=

 ∑
d1|m

ϕ(d1)

 ∑
d2|n

ϕ(d2)


= f(m)f(n) .

Hence, f is multiplicative.
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Euler’s phi-Function IV

Second, since f is multiplicative, for showing the theorem it
suffices to determine the value of f for prime powers pk. The
divisors of pk are p` for ` = 0, . . . , k. Consequently, by
Theorem 3 we obtain

f(pk) =

k∑
`=0

ϕ(p`) = 1 +

k∑
`=1

(
p` − p`−1

)
= pk . (6)

Finally, let n = p
k1
1 · . . . · pkm

m be the prime factorization of n.
Then, by Equation (6), we have f(n) =

∏m
j=1 f(p

kj

j ) = n.
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Towards Discrete Roots and Primality Testing I

For dealing with discrete roots and with primality tests, we
need more insight into the structure of the groupZ∗

p, where p is
prime. That is, we aim to show that Z∗

p is always a cyclic
group. For preparing this result, we need the following lemma:

Lemma 1

If p is prime and f(x) = a0x
n + a1x

n−1 + · · ·+ an is such that
f(b) . 0 mod p for some b, then f(x) ≡ 0 mod p has at most n

distinct solutions modulo p.

The proof is provided in the book.
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Back to Finite Groups

We continue with an important property of all finite groups.

Theorem 5

If (G, ◦) is a finite group, then every element of G has finite order.

Proof. Let a ∈ G be arbitrarily fixed, and let e be the neutral
element of (G, ◦). Consider the elements a, a2, a3, . . .. Since G

is finite, there must exist k, ` ∈N+ such that k > ` and ak = a`.
Since G is a group, the inverse b of a` exists and since the
inverse is uniquely determined, it must be equal to a−`.
Therefore, we obtain ak ◦ a−` = a` ◦ a−` = e. This implies that
ak−` = e. Hence, there exists an m ∈N+ such that am = e, i.e.,
m = k − `. Consequently, the must be a least such number
n ∈N+ satisfying an = e, and so n = ord(a).
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Towards Discrete Roots and Primality Testing II

Theorem 6
If p is prime then Z∗

p is a cyclic group of order p − 1.

Proof. Let p prime. By Theorem 3 we already know that
ϕ(p) = |Z∗

p| = p − 1; thus Z∗
p has order p − 1. In order to see

that Z∗
p is cyclic, we have to show that it has an element of

order p − 1. This is achieved by counting elements of different
order. Let d be any positive integer such that d|(p − 1). Define

Sd =df {a ∈ Z∗
p | ord(a) = d} . (7)

These sets Sd partition Z∗
p, so we have∑

d|(p−1)

|Sd| = |Z∗
p| = p − 1 . (8)
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Towards Discrete Roots and Primality Testing II
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Towards Discrete Roots and Primality Testing III

Fix d such that d|(p − 1). We show that either |Sd| = 0 or
|Sd| = ϕ(d). Suppose Sd , ∅, and choose some a ∈ Sd. Then
a, a2, . . . , ad are all distinct modulo p and each one is a solution
of xd ≡ 1 mod p. By Lemma 1 above, this equation has at
most d solutions modulo p, so these are all of the solutions.
Consequently, Sd ⊆ {ak | 1 6 k 6 d}.

Now, fix k ∈ {1, . . . , d}. If gcd(k, d) = ` > 1, then
(ak)d/` = (ak/`)d ≡ 1 mod p, so ak has order less than d, and
therefore ak < Sd.
If gcd(k, d) = 1, then there exists ` such that k` ≡ 1 mod d.
Hence, ak` ≡ a mod p. Furthermore, for any e ∈ {1, . . . , d − 1}

we have
((ak)e)` ≡ ae . 1 mod p,

so ak is of order d, i.e., ak ∈ Sd.
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Towards Discrete Roots and Primality Testing IV

Thus, we have shown

Sd = {ak | 1 6 k 6 d, gcd(k, d) = 1} ,

and consequently |Sd| = ϕ(d).

Now suppose that for some d such that d|(p − 1), Sd = ∅. Then∑
d|(p−1)

|Sd| <
∑

d|(p−1)

ϕ(d) . (9)

By Theorem 4, we know that∑
d|(p−1)

ϕ(d) = p − 1 .

Thus, (9) would give a contradiction to Eq. (8). Hence, for each
d with d|(p − 1) we have |Sd| = ϕ(d). This proves the theorem.
Moreover, the number of elements of order p − 1 is ϕ(p − 1).
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Towards Discrete Roots and Primality Testing IV
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Towards Discrete Roots and Primality Testing IV
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Towards Discrete Roots and Primality Testing V

As we have seen, if p is prime then Z∗
p is cyclic. Every element

g of order p − 1 is called a generator of Z∗
p. Hence, for every

a ∈ Z∗
p there exists exactly one x ∈ {1, 2, . . . , p} such that a = gx.

We refer to x as the discrete logarithm of a with respect to g, and
denote it by x = dlogga.

Not that the condition p being prime is sufficient but not
necessary for the cyclicity of Z∗

p, since one can prove the
following:

Theorem 7

Z∗
n is cyclic if and only if n is 1, 2, 4, pk, or 2pk for some odd prime

number p and k ∈N+.
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Towards Discrete Roots and Primality Testing VI

So, it is appropriate to generalize the definition of discrete
logarithms.

Definition 2 (Discrete Logarithm)

Let n ∈N+ be such that Z∗
n is cyclic. Furthermore, let g be a

generator of Z∗
n and let a ∈ Z∗

n. Then there exists a unique
number z ∈ {1, . . . , ϕ(n)} such that gz ≡ a mod n. This z is
called the discrete logarithm of a modulo n to the base g and
denoted by dlogga.

Now, let p be a prime and let g be any generator for Z∗
p. Then

we obviously have gp−1 ≡ 1 mod p. The latter property is,
however, not restricted to generators as the following theorem
shows:
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Euler’s Theorem

Theorem 8 (Euler’s Theorem)

Let n ∈N, n > 2; then aϕ(n) ≡ 1 mod n for all a ∈ Z∗
n.

Proof. Recall that ϕ(m) = |Z∗
m|, i.e., ϕ(m) is the order of the

group Z∗
m. Let a ∈ Z∗

m be arbitrarily fixed. By Theorem 5, we
know that ord(a) is finite, say k. Furthermore,
S = {an | n = 1, . . . , k} is a subgroup ofZ∗

m. By Corollary 3.1 we
conclude that k|ϕ(m). Thus, there is an ` ∈N+ such that
ϕ(m) = k`. Consequently,

aϕ(m) ≡ ak` ≡ (ak)` ≡ 1 mod m.
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Fermat’s Little Theorem

Theorem 8 covers the following important special case which
was first discovered by Pierre de Fermat:

Theorem 9 (Fermat’s Little Theorem)

Let p be a prime. Then ap−1 ≡ 1 mod p for all a ∈ Z∗
p.

Proof. Since ϕ(p) = p − 1, the assertion directly follows from
Theorem 8.

Next, we turn our attention to testing primality.

Testing Primality

Input: Any natural number n > 2.

Problem: Decide whether or not n is prime.
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Pseudo Primes I

Though testing primality is a very old problem, no deterministic
algorithm has been known that runs in time polynomial in the
length of the input until 2002. Then Agrawal, Kayal and Saxena
succeeded to provide an affirmative answer to this very long
standing open problem.

Clearly, one could get a deterministic polynomial time
algorithm for testing primality, if the converse of Theorem 9
were true. Unfortunately, it is not. We continue by figuring out
why the converse of Theorem 9 is not true.
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Pseudo Primes II

Definition 3 (Pseudo Primes)
Let n ∈N be an odd composite number, and let b ∈N such
that gcd(b, n) = 1. Then n is said to be pseudo-prime to the base b

if bn−1 ≡ 1 mod n.

For example, n = 91 is a pseudo-prime to the base 3, since
91 = 7 · 13 and, furthermore, 390 ≡ 1 mod 91 (note that
36 = 729 = 8 · 91 + 1 ≡ 1 mod 91).
But 91 is not a pseudo-prime to the base 2, since
290 ≡ 64 mod 91.
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Pseudo Primes III

The following theorem summarizes important properties of
pseudo-primes:

Theorem 10

Let n ∈N be an odd composite number. Then we have
(1) n is pseudo-prime to the base b with gcd(b, n) = 1 if and only if

the order d of b in Z∗
n divides n − 1.

(2) If n is pseudo-prime to the bases b1 and b2 such that
gcd(b1, n) = 1 and gcd(b2, n) = 1, then n is also pseudo-prime
to the bases b1b2, b1b

−1
2 , and b−1

1 b2.
(3) If there is a b ∈ Z∗

n satisfying bn−1 . 1 mod n, then

∣∣{b ∈ Z∗
n | bn−1 . 1 mod n}

∣∣ >
ϕ(n)

2
.
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Pseudo Primes IV

Proof. First, we show (1). The necessity can be seen as follows:
Let n be pseudo-prime to the base b with gcd(b, n) = 1. Then,
we have bn−1 ≡ 1 mod n. Let d be the smallest positive
number for which bd ≡ 1 mod n. Suppose, n − 1 = kd + r

with 0 < r < d. Then we would get

bn−1 ≡ bkd+r ≡ bkdbr ≡
(
bd

)k
br ≡ br . 1 mod n ,

a contradiction. Hence, d must divide n − 1.

For the sufficiency, assume d divides n − 1. Thus, n − 1 = kd

for some k. Hence, bn−1 ≡ (bd)k ≡ 1k ≡ 1 mod n.
Consequently, n is pseudo-prime to the base b.
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Pseudo Primes IV

Proof. First, we show (1). The necessity can be seen as follows:
Let n be pseudo-prime to the base b with gcd(b, n) = 1. Then,
we have bn−1 ≡ 1 mod n. Let d be the smallest positive
number for which bd ≡ 1 mod n. Suppose, n − 1 = kd + r

with 0 < r < d. Then we would get

bn−1 ≡ bkd+r ≡ bkdbr ≡
(
bd

)k
br ≡ br . 1 mod n ,

a contradiction. Hence, d must divide n − 1.
For the sufficiency, assume d divides n − 1. Thus, n − 1 = kd

for some k. Hence, bn−1 ≡ (bd)k ≡ 1k ≡ 1 mod n.
Consequently, n is pseudo-prime to the base b.

Complexity and Cryptography c©Thomas Zeugmann



Linear Congruences Modular Exponentiation Towards Discrete Roots Pseudo Primes End

Pseudo Primes V

Assertion (2) is left as an exercise. Finally, we prove (3). Let
b ∈ Z∗

n be such that bn−1 . 1 mod n. Let {b1, . . . , bs} all the
bases for which n is pseudo-prime, i.e.,

bn−1
i ≡ 1 mod n for all i = 1, . . . , s . (10)

Since

bn−1 ≡ c . 1 mod n (11)

for some c ∈ Z∗
n, we obtain, by multiplying (10) with (11),

where i = 1, . . . , s that

c ≡ bn−1
i bn−1 ≡ (bib)n−1 mod n .

Hence, n is not a pseudo-prime to all the bases {b1b, . . . , bsb}.
Consequently, there are at least as many bases for which n is
not a pseudo-prime as there are bases for which n is
pseudo-prime.
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Pseudo Primes VI

Now, if we knew that for all odd composite numbers n there
should exist at least one number b ∈ Z∗

n such that n is not a
pseudo-prime to the base b, we could easily design a
probabilistic polynomial time algorithm for testing primality.
But again, unfortunately, there are odd composite numbers n

such that bn−1 ≡ 1 mod n for all b ∈ Z∗
n. These numbers are

called Carmichael numbers (named after Robert D. Carmichael).

We need one more exercise.
Exercise 2. Let p be a prime number. Then Z∗

p2 is cyclic.

Furthermore, a number n is said to be square-free if there is no
square number dividing it.
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Carmichael Numbers I

Theorem 11

Let n ∈N be an odd composite number. Then we have
(1) If there is a square number q2 > 1 dividing n then n is not a

Carmichael number.
(2) If n is square-free, then n is Carmichael number if and only if

(p − 1) divides n − 1 for every prime p dividing n.
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Carmichael Numbers II

Proof. Assume any number q2 > 1 dividing n, and let p > 2 be a
prime factor of q. Since q2|n, we also know that p2 is
dividing n. Moreover, by Exercise 2 we know that Z∗

p2 is cyclic.

Let g be a generator of Z∗
p2 . Next, we construct a number

b ∈ Z∗
n such that bn−1 . 1 mod n. If we can do that, then n

cannot be a Carmichael number.
Let ñ be the product of all primes r , p that divide n.
Obviously, gcd(p2, ñ) = 1. By the Chinese remainder theorem
there is a number b such that

b ≡ g mod p2

b ≡ 1 mod ñ

So b is also a generator of Z∗
p2 .
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Carmichael Numbers II

Proof. Assume any number q2 > 1 dividing n, and let p > 2 be a
prime factor of q. Since q2|n, we also know that p2 is
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So b is also a generator of Z∗
p2 .
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Carmichael Numbers II

Proof. Assume any number q2 > 1 dividing n, and let p > 2 be a
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n such that bn−1 . 1 mod n. If we can do that, then n

cannot be a Carmichael number.
Let ñ be the product of all primes r , p that divide n.
Obviously, gcd(p2, ñ) = 1. By the Chinese remainder theorem
there is a number b such that

b ≡ g mod p2

b ≡ 1 mod ñ

So b is also a generator of Z∗
p2 .
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Carmichael Numbers III

Now we show b ∈ Z∗
n by proving gcd(n, b) = 1.

Suppose the converse, i.e., 1 < d = gcd(n, b).
Case 1. p divides d.
If p|d, we know that p|b and since p2|(b − g), we additionally
have p|(b − g). Consequently, p|g, too. But this implies g < Z∗

p2 ,
a contradiction. Thus, Case 1 cannot happen.

Case 2. p does not divide d.
Consider any prime r dividing n and d simultaneously. Then,
r , p by assumption. Hence, r|b, too, and moreover, ñ|(b − 1)

because of b ≡ 1 mod ñ. But r , p, so r|ñ, too, and thus
r|(b − 1). This implies r = 1, a contradiction.
This proves b ∈ Z∗

n.
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Carmichael Numbers III

Now we show b ∈ Z∗
n by proving gcd(n, b) = 1.

Suppose the converse, i.e., 1 < d = gcd(n, b).
Case 1. p divides d.
If p|d, we know that p|b and since p2|(b − g), we additionally
have p|(b − g). Consequently, p|g, too. But this implies g < Z∗

p2 ,
a contradiction. Thus, Case 1 cannot happen.
Case 2. p does not divide d.
Consider any prime r dividing n and d simultaneously. Then,
r , p by assumption. Hence, r|b, too, and moreover, ñ|(b − 1)

because of b ≡ 1 mod ñ. But r , p, so r|ñ, too, and thus
r|(b − 1). This implies r = 1, a contradiction.
This proves b ∈ Z∗

n.
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Carmichael Numbers IV

Finally, we have to show that bn−1 . 1 mod n. Suppose the
converse, i.e., bn−1 ≡ 1 mod n. Since p2|n, we conclude
bn−1 ≡ 1 mod p2, too. But b is a generator of Z∗

p2 . Thus, by
the Theorem of Euler we get ϕ(p2)|(n − 1), i.e., p(p − 1)|(n − 1).
This means in particular

n − 1 ≡ 0 mod p .

On the other hand, by construction we know that p|n, and
hence

n − 1 ≡ −1 mod p ,

a contradiction. Therefore, we have proved bn−1 . 1 mod n

and Assertion (1) is shown.
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Carmichael Numbers V

Next, we prove Assertion (2).
Sufficiency. Let b ∈ Z∗

n; we have to show bn−1 ≡ 1 mod n.
Since n is square-free, it suffices to show p|(bn−1 − 1) provided
p|n. Assume p|n and by assumption also k(p − 1) = n − 1 for
some k. By Theorem 9 we have bp−1 ≡ 1 mod p, and
consequently

1 ≡ 1k ≡ (bp−1)k ≡ bn−1 mod p .

This holds for all prime divisors p of n; thus the sufficiency
follows.
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Carmichael Numbers VI

Necessity. Assume bn−1 ≡ 1 mod n for all b ∈ Z∗
n. Now, we

have to show that (p − 1)|(n − 1) for all primes p with p|n.
Suppose there is a prime p with p|n such that (p − 1) does not
divide (n − 1). Hence, there are numbers k, r such that
(n − 1) = k(p − 1) + r and 0 < r < p − 1. Now, we again
construct a b ∈ Z∗

n with bn−1 . 1 mod n. Let g be a generator
of Z∗

p and let ñ = n/p. By the Chinese remainder theorem
there is a number b such that

b ≡ g mod p and b ≡ 1 mod ñ .

Consequently, b is also a generator of Z∗
p. On the other hand,

bn−1 ≡ bk(p−1)+r ≡ 1kbr ≡ br . 1 mod p ,

since b is generator. Thus, p does not divide (bn−1 − 1), and
therefore n does not divide (bn−1 − 1), too.
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Carmichael Numbers VII

In order to have an example, it is now easy to see that 561 is a
Carmichael number. We have just to verify that 2, 10, and 16
divide 560.

Exercise 3. Every Carmichael number is the product of at least 3
distinct primes.
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Thank you!
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Leonhard Euler
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Pierre de Fermat
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Robert Daniel Carmichael
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