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Turing Machines I

A one-tape Turing machine consists of an infinite tape which is
divided into cells. Each cell can contain exactly one of the
tape-symbols. Initially, we assume that all cells of the tape
contain the symbol ∗ except those in which the actual input has
been written. Moreover, we enumerate the tape cells as shown
in Figure 1.

0 2 3 4 5125 34 1

**** * * * b1 b2 b3

Figure 1: The tape of a Turing machine with input b1b2b3.
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Turing Machines II

Below we use TM as an abbreviation for Turing machine.
The TM possesses a read-write head. This head can observe
one cell at a time. Additionally, the TM has a finite number of
states it can be in and a set of instructions it can execute.
Initially, it is always in the start state zs.

Then, the TM works as follows: When in state z and reading
the tape symbol b it writes the tape symbol b ′ into the observed
cell, changes its state to z ′ and moves the head either one
position to the left (denoted by L) or one position to the right
(denoted by R) or does not move the head (denoted by N)
provided (z, b, b ′, H, z ′) is in the instruction set of the TM,
where H ∈ {L, N, R}. The execution of one instruction is called
step.

When the TM reaches a distinguished state zf (the final state), it
stops.
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Turing Machines III

Formally we define a TM as follows:

Definition 1
M = [B, Z, A] is called a deterministic one-tape TM if B, Z, A are
non-empty finite sets such that B ∩ Z = ∅ and
(1) |B| > 2 ( B = {∗, | , . . .} ) (tape-symbols);
(2) |Z| > 2 ( Z = {zs, zf, . . .}) (set of states );
(3) A ⊆ Z \ {zf}× B× B× {L, N, R}× Z (instruction set ),

where for every z ∈ Z \ {zf} and every b ∈ B there is
precisely one 5-tuple (z, b, ·, ·, ·).

Often, we represent the instruction set A in a table.
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Turing Machines IV

Let Σ denote any finite alphabet, or synonymously, a set of
symbols. Then we use Σ∗ to denote the free monoid over Σ. In
the following we shall use λ to denote the empty string. We set
Σ+ =df Σ∗ \ {λ}. Note that λ , ∗.

Any set L ⊆ Σ∗ is called a language.

Now, we define what does it mean that a TM accepts a
language L.
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Turing Machines V

Definition 2
A TM M accepts a language L ⊆ Σ∗ if for every string w ∈ Σ∗ the
following conditions are satisfied:
If w is written on the empty tape of M (beginning in cell 0) and
the TM M is started on the leftmost symbol of w in state zs then
M stops after having executed finitely many steps in state zf.
Moreover,
(1) if w ∈ L then the cell observed by M in state zf contains a | .

In this case we also write M(w) = | .
(2) If w < L then the cell observed by M in state zf contains a ∗ .

In this case we also write M(w) = ∗ .

Of course, in order to accept a language L ⊆ Σ∗ by a TM
M = [B, Z, A] we always have to assume that Σ ⊆ B.
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Turing Machines VI

Next, we formally define a time complexity for TMs. In order to
do so, we need the following notations: For any string w, we
use |w| to denote the length of w. Furthermore, for every
alphabet Σ and n ∈Nwe set

Σn =df {w | w ∈ Σ∗ ∧ |w| = n} .

Definition 3
Let M = [B, Z, A] be a any TM, and let w ∈ B∗. We set

TM(w) =df the number of steps performed by M on input w

when started on the leftmost symbol of w

in state zs until reaching state zf .

Furthermore, we define TM(n) =df max{TM(w) | w ∈ Σn}.
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Turing Machines VII

Next, let T : N→N be any function. Then we define the time
complexity class generated by T as follows:

Time(T(n)) =df {L | L ⊆ Σ∗ and there is a TM M accepting L

such that TM(n) 6 T(n)

for all but finitely many n} .

This is a good place to recall our deterministic TM accepting the
language of all palindromes over the two letter alphabet
Σ = {a, b} from our course Theory of Computation.
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Palindromes I

Let Lpal =df {w | w ∈ Σ∗, w = wT } and let M = [B, Z, A], where
B = {∗, | , a, b}, Z = {zs, z1, z2, z3, z4, z5, z6, zf} and A is given by
the following table:

a b ∗ |

zs ∗Rz1 ∗Rz2 | Nzf | Nzf

z1 aRz1 bRz1 ∗Lz3 | Nzf

z2 aRz2 bRz2 ∗Lz4 | Nzf

z3 ∗Lz5 ∗Nzf | Nzf | Nzf

z4 ∗Nzf ∗Lz5 | Nzf | Nzf

z5 aLz6 bLz6 | Nzf | Nzf

z6 aLz6 bLz6 ∗Rzs | Nzf

Figure 2: Instruction set of a TM accepting Lpal.
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Palindromes II

So, this TM remembers the actual leftmost and rightmost
symbol, respectively. Then it is checking whether or not it is
identical to the rightmost and leftmost symbol, respectively.
Thus, the time complexity of this TM is O(n2).

Of course, we can design a TM that works mutatis mutandis as
the TM above, but which memorizes two symbols each time, or
more generally, k symbols. Nevertheless, the resulting time
complexity is still O(n2). Thus, it is only natural to ask whether
or not we can do any better. Is there a TM accepting Lpal having
time complexity o(n2)? The negative answer is provided by
Theorem 1 below which was found by Jānis Bārzdiņs̆.
Before we can show it, we need a technique to prove lower
bounds.
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Traces of Turing Computations I

The key ingredient are traces of Turing computations (also
called crossing sequences or scheme). Consider the computation
process of a TM M on input the string w = x1 · · · xn, where
xi ∈ Σ, and started in the initial configuration. Let us fix a
border on the tape at position j (cf. Figure 3 for the case j = 2).

5321012345 4

border at position 2

x2∗∗∗∗ ∗ x3 ∗

z(1)

z(2)

∗x1

Figure 3: A fragment of the trace at border 2.
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Traces of Turing Computations II

The trace of M on input w at position j is a string z ∈ Z∗ defined
as follows:
(0) If the read-write head is never crossing the border j,

then z =df λ.
(1) Assume the read-write head crosses the border j exactly s

times. The first time the border is crossed, M is in state
z(1), the second time in state z(2), . . . , and the sth time in
state z(s). Then, we set z =df z(1)z(2) · · · z(s).

We denote the trace of M at position j on input w by TRM(w, j).
Of course, if j > 0, then the first time the head crosses the
border at position j is a move from left to right, the second time
from right to left, and so on.
If j 6 0, then the first time the head crosses the border at
position j is a move from right to left, the second time from left
to right, and so on.
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Traces of Turing Computations III
If M’s computation on input w does not stop, then the trace at a
position j may become infinite. But we consider terminating
computations only. So all traces have a finite length which is
denoted by |TRM(w, j)|.

The following observation explains the importance of traces:

Observation 1

TM(w) >
∑
j∈Z

|TRM(w, j)|.

Proof. The observation holds, since every time the head crosses
the border, a step has to be performed.

So, if we prove that for every TM accepting a language L there
must be infinitely many strings such that at sufficiently many
positions sufficiently long traces occur, then we obtain a lower
bound for the time needed to accept L. How can we prove this?
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Traces of Turing Computations IV

Assume the trace z(1) · · · z(s) of a TM M on input w at
position j to be known. For the sake of presentation, let j > 0.
We cut the tape at position j and remove the right part of the
tape cut. So we can still simulate the whole computation of M

on the left part of the tape. As long as M does not cross the
border j, the TM M works as before.

If M crosses the border for the first time (in state z(1)), we
stop M, put the head back on the rightmost position of the left
part of tape, and switch its state to z(2). Now, M works again
on the left part of the tape. Note that M behaves precisely the
same way as if we have not cut the tape. This holds, since we
restarted M in state z(2) and the only possibility for M to
memorize something it has done on the right part of the tape
that may be needed while working on the left part of it, is its
state. All what is left is to iterate this construction.
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Traces of Turing Computations V

Let M be any TM, let w = x1 · · · xm and w̃ = x̃1 · · · x̃n be any
strings, and let i, j ∈Nwith 0 < i < m, 0 < j < n be such that
TRM(w, i) = TRM(w̃, j).
Furthermore, let w̃

j
0 = x̃1 · · · x̃j and w̃n

j = x̃j+1 · · · x̃n as well as
wi

0 = x1 · · · xi and wm
i = xi+1 · · · xm. Then we have

TRM(w̃, j)=TRM(w, i)=TRM(w̃
j
0w

m
i , j)=TRM(wi

0w̃
n
j , i) .

Consider M’s behavior when started on input w̃
j
0w

m
i .

Case 1. |TRM(w̃, j)| is even.
Then the read-write head is left from position j when M

terminates its computation. Moreover, the head observes in its
final position a | if w̃ ∈ L(M) and a ∗ provided w̃ < L(M).
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Traces of Turing Computations VI

Case 2. |TRM(w̃, j)| is odd.
Then M stops its computation right from position j. Moreover,
the head observes in its final position a | if w ∈ L(M) and a ∗
provided w < L(M).

Now, the scenario that w̃ and w are equivalent with respect to
acceptance by M is of particular importance. By equivalence with
respect to acceptance by M we mean that either both w̃, w ∈ L(M)

or both w̃, w < L(M).
Taking the observation just made into account, we directly get
the following Replacement Lemma, where we use the notations
introduced above:
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Traces of Turing Computations VII

Lemma 1 (Replacement lemma)

Let M be any TM, and assume w̃ = w̃
j
0w̃

n
j and w = wi

0w
m
i to be

strings such that w̃ and w are equivalent with respect to acceptance
by M and such that TRM(w̃, j) = TRM(w, i). Then, the four strings
w̃, w, w̃

j
0w

m
i and wi

0w̃
n
j are pairwise equivalent with respect to

acceptance by M.

Now, we are ready to prove the desired lower bound for Lpal.

Theorem 1 (Bārzdiņs̆ (1965), Hennie (1965))

For every deterministic one-tape Turing machine M accepting Lpal

there is a constant cM > 0 such that TM(n) > cM · n2 for all but
finitely many n ∈N.
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Lower Bound for Palindromes I

Proof. To avoid unnecessary technical details, assume that 4|n.

Claim 1. Let M be any deterministic one-tape TM accepting Lpal.
Then there is a constant DM > 0 such that for all sufficiently large n

there are strings w ∈ Lpal satisfying |w| = n and
|TRM(w, j)| > DM · n for all j = n

4 + 1, n
4 + 2, . . . , n

2 .

Before proving Claim 1, we show that it directly implies the
assertion of Theorem 1. Using Observation 1, we get

TM(w) >
n/2∑

j=n/4+1

|TRM(w, j)| >
n

4
·DM · n =

DM

4
· n2 ,

and hence Theorem 1 follows by setting cM = DM/4.
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Lower Bound for Palindromes II

To show Claim 1, let M = [B, Z, A] be a TM with L(M) = Lpal.
We prove that it suffices to set DM = 1/(8 log2 k), where
k = |Z|. For j = n/4 + 1, n/4 + 2, . . . , n/2, we let N(j, n) be the
number of palindromes w over {a, b} of length n for which
|TRM(w, j)| < n/(8 log2 k).

We claim that N(j, n) 6 23n/8. Since there are 2n/2 many
palindromes, this will prove Claim 1.

Let σ1, . . . , σp be all pairwise different traces of length less than
n/(8 log2 k). By A(α) we denote the number of all palindromes
of length n having trace σα in position j. Then, we have

N(j, n) = A(1) + A(2) + · · ·+ A(p) . (1)

First, we estimate p.
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Lower Bound for Palindromes III

Since |Z| = k and traces are strings over Z, we obtain

p 6 k + k2 + · · ·+ kn/(8 log2 k)−1

=
kn/(8 log2 k) − 1

k − 1
− 1 6 kn/(8 log2 k) = 2n/8 . (2)

Next, we estimate A(α). Let w̃ = w̃
j
0w̃

n
j and w = w

j
0w

m
j be

palindromes of length n and let j 6 n/2. If M generates in
position j the same traces on input w̃ and on input w, then
w̃

j
0 = w

j
0 by Lemma 1.

So all strings contributing to A(α) must have the same initial
part, say v. The number of palindromes with initial part v is
2(n/2)−j, i.e., A(α) 6 2(n/2)−j. By using (1) and (2), we have

N(j, n) 6 p · 2n/2−j 6 2n/8 · 2n/2−n/4 = 23n/8 .

Thus, Claim 1 is proved and the theorem follows.
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Regular Languages I

As we already know, every regular language can be accepted
by a finite automaton. Thus, for every L ∈ REG there is also a
TM M accepting it such that TM(n) = n for all n ∈N. Thus,
Theorem 1 directly implies that Lpal < REG.

So, we already know that time O(n2) is enough to accept
non-regular languages by using deterministic one-tape TMs.
But what happens if we add less resources?
To answer this question, we introduce the following notations,
where M = [B, Z, A] stands for any deterministic one-tape TM,
and w ∈ Σ∗ as well as n ∈N:

TRM(w) =df max{|TRM(w, j)| | j ∈ Z} (3)
TRM(n) =df max{TRM(w) | |w| = n} . (4)

First, we prove the following lemma:
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Regular Languages II

Lemma 2 (Hennie (1965))

Let M be any deterministic one-tape TM. If there is a constant c > 0
such that TRM(n) 6 c for all n ∈N then L(M) ∈ REG.

Without loss of generality, we assume that the input w is read at
least once. Consider the echo mapping of M = [B, Z, A] on
input w. Let z = z(2), · · · , z(2n) be any fixed finite sequence
from Z∗. The echo z(1), . . . , z(2n − 1) of z of M on w is defined
as follows:
We start M on w as usual. By assumption, M leaves the input
sometimes for the first time on the right hand side. Let z(1) be
the state of M when crossing position |w|. We put M into state
z(2) and the head back to the cell where the last symbol of the
input was or still is. After some time, M’s head crosses
again |w|. Let z(3) be M’s state when this event happens.
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Regular Languages III

We put M into state z(4) and the head again back to cell where
the last symbol of the input was or still is, and so on. If M is not
crossing often enough the position |w| to the right, then the
echo is not defined. For z ∈ Z∗ we use echo(w, z) to denote the
echo of z on input w of M.

Next, we define a relation ∼ over Σ∗ as follows: Let u, v ∈ Σ∗;
we define

u ∼ v iff u and v are equivalent w.r.t. acceptance by M ,
and ∀z[z ∈ Z∗ ∧ |z| 6 c ⇒ echo(u, z) = echo(v, z)] .

One easily verifies that ∼ is an equivalence relation. Thus, Σ∗ is
partitioned by ∼ into equivalence classes. Let Σ∗

/∼ denote this
set of equivalence classes.
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Regular Languages III
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Regular Languages IV

Claim 1.
∣∣∣Σ∗

/∼

∣∣∣ is finite.
Since Z is finite, we know that |{z | z ∈ Z∗ ∧ |z| 6 c}| < ∞. By
the definition of the echo mapping, the length of echo(w, z) is,
for all z ∈ Z∗ with |z| 6 c, also bounded by c. Hence, for every
w ∈ Σ∗ there are only finitely many echo mappings with length
less than or equal to c. But the set of all echo mappings on
input w of M completely determines the equivalence class
generated by w. Thus,

∣∣∣Σ∗
/∼

∣∣∣ is finite and Claim 1 follows.

By assumption, TRM(n) 6 c for all n ∈N. Hence, if u ∼ v then

TRM(uw, |u|) = TRM(vw, |v|) for all w ∈ Σ∗ . (5)

Therefore, we may conclude that

uw ∈ L(M) ⇐⇒ vw ∈ L(M) for all w ∈ Σ∗ . (6)

But this means that L(M) satisfies the Nerode relation ∼N.
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Regular Languages V

Since u ∼ v implies u ∼N v, we conclude that
∣∣∣Σ∗

/∼N

∣∣∣ is finite,

too. By Nerode’s theorem, it follows that L(M) ∈ REG.

Next, we sharpen Lemma 2 by proving a gap for TRM(n).

Lemma 3

Let M be any deterministic one-tape TM and assume
TRM(n) = o(log n). Then there is a constant c > 0 such that
TRM(n) < c for all n ∈N.

Proof. The proof is indirect. Suppose that there is an infinite
sequence of strings (vi)i∈N such that TRM(vi+1) > TRM(vi) for
all i ∈N. Moreover, without loss of generality, we can choose
the strings vi in a way such that for all i ∈Nwe have

TRM(u) < TRM(vi) for all strings u with |u| < |vi| . (7)
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Regular Languages VI
Claim 1. Then among all traces TRM(vi, j) with 0 6 j 6 |vi| there

are no three identical ones.
Suppose the converse, i.e., there are j1, j2, j3 with
0 6 j1 < j2 < j3 6 |vi| such that TRM(vi, j1) = TRM(vi, j2)

= TRM(vi, j3). Let j∗ ∈ Z, 0 6 j∗ 6 |vi|, be such that
TRM(vi, j∗) > TRM(vi, j) for all j ∈ {0, . . . , |vi|}. If there is more
than one j∗, we take the smallest one.

Case 1. j∗ = j1.
We can delete all symbols in vi between j2 and j3 without
changing TRM(vi, j∗), thus obtaining a contradiction to (7).
Case 2. j∗ , j1.
Then either j∗ ∈ (j1, j2), j∗ ∈ (j2, j3) or it does not fall in any of
the two intervals (j1, j2) and (j2, j3). So there is one interval such
that j∗ < (ja, jb), a, b ∈ {1, 2, 3}, a , b. We can delete all symbols
between ja and jb without changing TRM(vi, j∗), a
contradiction to (7). Claim 1 follows.

Complexity and Cryptography c©Thomas Zeugmann



Turing Machines Traces Lower Bounds Det. k-Tape TMs End

Regular Languages VI
Claim 1. Then among all traces TRM(vi, j) with 0 6 j 6 |vi| there

are no three identical ones.
Suppose the converse, i.e., there are j1, j2, j3 with
0 6 j1 < j2 < j3 6 |vi| such that TRM(vi, j1) = TRM(vi, j2)

= TRM(vi, j3). Let j∗ ∈ Z, 0 6 j∗ 6 |vi|, be such that
TRM(vi, j∗) > TRM(vi, j) for all j ∈ {0, . . . , |vi|}. If there is more
than one j∗, we take the smallest one.
Case 1. j∗ = j1.
We can delete all symbols in vi between j2 and j3 without
changing TRM(vi, j∗), thus obtaining a contradiction to (7).

Case 2. j∗ , j1.
Then either j∗ ∈ (j1, j2), j∗ ∈ (j2, j3) or it does not fall in any of
the two intervals (j1, j2) and (j2, j3). So there is one interval such
that j∗ < (ja, jb), a, b ∈ {1, 2, 3}, a , b. We can delete all symbols
between ja and jb without changing TRM(vi, j∗), a
contradiction to (7). Claim 1 follows.

Complexity and Cryptography c©Thomas Zeugmann



Turing Machines Traces Lower Bounds Det. k-Tape TMs End

Regular Languages VI
Claim 1. Then among all traces TRM(vi, j) with 0 6 j 6 |vi| there

are no three identical ones.
Suppose the converse, i.e., there are j1, j2, j3 with
0 6 j1 < j2 < j3 6 |vi| such that TRM(vi, j1) = TRM(vi, j2)

= TRM(vi, j3). Let j∗ ∈ Z, 0 6 j∗ 6 |vi|, be such that
TRM(vi, j∗) > TRM(vi, j) for all j ∈ {0, . . . , |vi|}. If there is more
than one j∗, we take the smallest one.
Case 1. j∗ = j1.
We can delete all symbols in vi between j2 and j3 without
changing TRM(vi, j∗), thus obtaining a contradiction to (7).
Case 2. j∗ , j1.
Then either j∗ ∈ (j1, j2), j∗ ∈ (j2, j3) or it does not fall in any of
the two intervals (j1, j2) and (j2, j3). So there is one interval such
that j∗ < (ja, jb), a, b ∈ {1, 2, 3}, a , b. We can delete all symbols
between ja and jb without changing TRM(vi, j∗), a
contradiction to (7). Claim 1 follows.

Complexity and Cryptography c©Thomas Zeugmann



Turing Machines Traces Lower Bounds Det. k-Tape TMs End

Regular Languages VII

Hence, |vi| is bounded by twice the number of different traces of
length at most TRM(vi). Let M = [B, Z, A], and recall that
|Z| > 2. We obtain

|vi| 6 2 ·
TRM(vi)∑

j=0

|Z|
j = 2 ·

|Z|
TRM(vi)+1 − 1

|Z| − 1
.

Thus, taking logarithms to the base |Z| directly yields

log|Z| |vi| 6 log|Z|

(
2

|Z| − 1

)
+ TRM(vi) + 1 .

So there is a constant c > 0 such that log2 |vi| 6 c · TRM(vi) and
we have log2 |vi| = O(TRM(vi)). Thus,
TRM(n)/ log n > TRM(vi)/ log |vi| > 1/c, a contradiction to
TRM(n) = o(log n).
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Regular Languages VIII

Now we are in a position to show the following gap-theorem:

Theorem 2 (Trakhtenbrot (1964), Hartmanis (1968))

Let M be a deterministic one-tape TM and assume
TM(n) = o(n log n). Then L(M) ∈ REG.

Proof. Let M = [B, Z, A] and suppose, L(M) < REG. By
Lemmata 2 and 3, we conclude that TRM(n) is unbounded. As
in the proof of Lemma 3 we choose an infinite sequence (vi)i∈N
of strings such that TRM(vi+1) > TRM(vi) for all i ∈N, and
such that (7) is fulfilled. Also, there is a constant c > 0 such that
log2 |vi| 6 c · TRM(vi).
By construction there are at least (1/2)|vi| many different traces
in positions j = 0, . . . , |vi|. The number of traces of length k is
|Z|

k. Assume that the traces of minimum possible length occur.
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Regular Languages IX

We lower bound the minimum a such that
a∑

k=0
|Z|

k > 1
2 |vi| .

This results in (|Z|
a+1 − 1)/(|Z| − 1) > (1/2)|vi|, and therefore,

we have the condition |Z|
a+1 > (1/2)|vi|(|Z| − 1). Taking

logarithms to the base |Z| yields
a + 1 > log|Z| ((1/2)|vi|(|Z| − 1)). Since |Z| > 2 and since log n

is monotonically increasing, we obtain

a > log|Z|

(
1
2
|vi|

)
− 1 . (8)

Thus, by lower bounding TM(|vi|) by the sum of the lengths of
all traces of minimum length that must occur, by (8), we obtain
the following:
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Regular Languages X

TM(|vi|) > 2 ·
a∑

k=0

k · |Z|
k > 2a · |Z|

a

> 2 ·
(

log|Z| ((1/2)|vi|) − 1
)(

|Z|
log|Z|((1/2)|vi|)−1

)
= 2 ·

(
log|Z|

(
1
2
|vi|

)
− 1
)(

|Z|
log|Z|((1/2)|vi|)

|Z|

)

=
1
|Z|

(
|vi| log|Z|

(
1
2
|vi|

)
− |vi|

)
=

1
|Z|

(
|vi| log|Z| |vi| − |vi|(1 + log|Z| 2)

)
.

We conclude TM(n) , o(n log n), a contradiction. Hence, we
have shown that L(M) ∈ REG.
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Regular Languages X
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Regular Languages XI

Note that the bound proved in Theorem 2 cannot be improved.
For seeing this, we recommend to solve the following exercise:

Exercise 1. Consider the language L = {0n1n | n ∈N} < REG.
Prove that there is a deterministic one-tape Turing machine M

accepting L in time n log n.
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Remarks

On the one hand, the Theorems 1 and 2 are very strong. On the
other hand, they also show that just having one tape is causing
a lot of work which could be avoided if the TM would have
more than one tape. The need for more than one tape is also
evident if we wish to study space complexity.

If we would consider again deterministic one-tape Turing
machines, then the problem is ill posed, since we need already n

cells to write the input on the tape and thus could not study
sublinear space complexity classes. The idea is to consider
Turing machines having at least an input-tape with a head that
is only allowed to read, and a work-tape with read-write head.
But our goal is a bit more far reaching, thus we are going to
consider the more general case of having k tapes, where k > 2.
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k-Tape Turing Machines I

Definition 4

A TM M = [B, Z, A] is called deterministic k-tape TM, k > 2,
provided M has an input-tape with read-only head and k − 1
many work-tapes each of which possesses exactly one
read-write head.
M works as the previously defined one-taped TM except that
now in every step k heads are moved and k cells (one on each
tape) are observed. Thus formally, now we have

A ⊆ Z \ {zf}× Bk × (B× {L, N, R})k × Z ,

with the restriction that M is not allowed to write on its
input-tape.
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k-Tape Turing Machines II

Initially, M is in state zs (the start state) and all heads are
observing the first cell located right to position 0. Thus, we also
have to modify the definition of accepting a language. This is
done as follows:
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k-Tape Turing Machines III

Definition 5

A language L ⊆ Σ∗ is accepted by a deterministic k-tape TM M if for
every string w ∈ Σ∗ the following conditions are satisfied:
If w is written on the empty input-tape of M beginning in cell 0 and
the TM M is started such that the read-only head on the input-tape is
put on the leftmost symbol of w and all other heads are put on the
first cell located right to position 0 in state zs then M stops after
having executed finitely many steps in state zf. Moreover,

(1) if w ∈ L, the cell observed by M on its first work-tape in state zf

contains a | .
In this case we also write M(w) = | .

(2) If w < L, the cell observed by M on its first work-tape in state zf

contains a ∗ .
In this case we also write M(w) = ∗ .
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Space Complexity I

Again, we use L(M) to denote the language accepted by TM M.
Next, we define what is meant by space complexity.

Definition 6

Let M be a deterministic k-tape TM, k > 2, let w ∈ Σ∗ be M’s
input. Then we define the space complexity of M on input w to be
the number of cells visited by M on its work-tapes when started
in its initial configuration as described above until it stops.

We denote the space complexity of M on input w by SM(w).
Furthermore, for every n ∈Nwe set

SM(n) =df max{SM(w) | w ∈ Σn} .
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Complexity Classes

The time complexity is defined as before. Finally, we define the
following complexity classes. Let f : N→N be a function. We
shall refer to f as a bounding function. Furthermore, we set

Timek(f(n)) =df {L(M) | M is a deterministic k-tape TM
and TM(n) 6 f(n) for all n ∈N} .

Spacek(f(n)) =df {L(M) | M is a deterministic k-tape TM
and SM(n) 6 f(n) for all n ∈N} .

TIME(f(n)) =df {L(M) | M is a deterministic TM
and TM(n) 6 f(n) for all n ∈N} .

SPACE(f(n)) =df {L(M) | M is a deterministic TM
and SM(n) 6 f(n) for all n ∈N} .
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Constant Factor Speed-up

Next, we prove a constant factor speed-up theorem.

Theorem 3

For every constant c > 0, c ∈N, and every function f : N→N,
such that c · f(n) > n for all n we have
TIME(f(n)) = TIME(c · f(n)).

Proof. We only sketch the proof here. The remaining details are
left as an exercise. Given a Turing machine M = [B, Z, A], one
can construct a Turing machine M ′ working c-times faster
than M. Turing machine M ′ simulates in each step c steps of M

by using the tape alphabet Bc and the appropriately defined
state set.
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Constructibility

Thus, in the following it is always sufficient to show that
TM(n) = O(f(n)) instead of proving TM(n) 6 f(n).

Next, we define the important notions of (weak) space (abbr. S)
and time (abbr. T ) constructibility for functions.
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Constructibility I

Definition 7

Let a function f : N→N be given.
(1) The function f is said to be weakly S-constructible if there is a

deterministic Turing machine M such that SM(n) 6 f(n)

and for every n ∈N there exists a string w ∈ Σ∗ with
|w| = n and SM(w) = f(n).

(2) The function f is said to be S-constructible if there is a
deterministic Turing machine M such that for all w ∈ Σ∗

the equality SM(w) = f(|w|) is fulfilled. M is then called a
marker for space f(n).
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Constructibility II

Definition 8

Let a function f : N→N be given.
(1) The function f is said to be weakly T -constructible if there is a

deterministic Turing machine M such that TM(n) 6 f(n)

and for every n ∈N there exists a string w ∈ Σ∗ with
|w| = n and TM(w) = f(n).

(2) The function f is said to be T -constructible if there is a
deterministic Turing machine M such that for all w ∈ Σ∗

the equality TM(w) = f(|w|) is fulfilled. M is then called a
clock for time f(n).
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Examples

We continue with some examples. The proof of the assertions
made is left as exercise.

The functions f(n) = n and f(n) = 2n are both S-constructible
and T -constructible.

The sum and product of S-constructible and T -constructible
functions are again S-constructible and T -constructible,
respectively.
Consequently, all polynomials are both S-constructible and
T -constructible.

However, the function f(n) = n log log n is not T -constructible.
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Remark

A technical remark is mandatory here. We defined bounding
functions as functions that mapN toN. Therefore, when
looking at functions such as n log n, then we implicitly assume
the logarithmic function log2 n to the base 2 to be replaced by
its integer valued counterpart, i.e., log n =df 1 if n 6 1 and
log n =df dlog2 ne if n > 1.
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Thank you!
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