
Tape Reductions Regular Languages Hierarchies NDTM End

Complexity and Cryptography

Thomas Zeugmann

Hokkaido University
Laboratory for Algorithmics

https://www-alg.ist.hokudai.ac.jp/∼thomas/COCRB/

Lecture 7: Complexity Hierachies

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes I

First, we ask how the number of tapes does influence the
complexity of Turing machine computations. As we shall see,
the answer depends on both the complexity measure
considered and the type of the TM (deterministic or
nondeterministic).

Theorem 1 (Hartmanis and Stearns (1965))

Let f : N→ R>0 be any bounding function. Then we have

TIME(f(n)) = Time2((f(n))2) .

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes I

First, we ask how the number of tapes does influence the
complexity of Turing machine computations. As we shall see,
the answer depends on both the complexity measure
considered and the type of the TM (deterministic or
nondeterministic).

Theorem 1 (Hartmanis and Stearns (1965))

Let f : N→ R>0 be any bounding function. Then we have

TIME(f(n)) = Time2((f(n))2) .

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes II

Proof. Let M be any deterministic k-tape TM, k > 1, such that
TM(n) 6 f(n) for all n ∈N. For showing the theorem, it
suffices to construct a deterministic 2-tape TM M ′ satisfying
L(M ′) = L(M) and TM ′(n) 6 c(TM(n))2 for some constant
c > 0. This is done as follows:

Let Y be the alphabet used by M on all its k − 1 work tapes and
assume without loss of generality that # < Y. Then M ′ will use
the alphabet (Y × {0, 1})k−1 ∪ {#} on its work tape. The ith
component of the form Y × {0, 1} at position z contains the
content of the ith work tape of M at position z, where “1” is
used to mark the actual position of the read-write head of M on
this tape. The symbol # is used to mark the left and right end of
what was written on the work tape of M ′.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes II

Proof. Let M be any deterministic k-tape TM, k > 1, such that
TM(n) 6 f(n) for all n ∈N. For showing the theorem, it
suffices to construct a deterministic 2-tape TM M ′ satisfying
L(M ′) = L(M) and TM ′(n) 6 c(TM(n))2 for some constant
c > 0. This is done as follows:
Let Y be the alphabet used by M on all its k − 1 work tapes and
assume without loss of generality that # < Y. Then M ′ will use
the alphabet (Y × {0, 1})k−1 ∪ {#} on its work tape. The ith
component of the form Y × {0, 1} at position z contains the
content of the ith work tape of M at position z, where “1” is
used to mark the actual position of the read-write head of M on
this tape. The symbol # is used to mark the left and right end of
what was written on the work tape of M ′.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes III

210−1 3

* *

.
210−1 3

. .

210−1 3

input tape

1st work tape

(k − 1)th work tape

a

b0 b1 b2 b3

c5c3c2c1c0 c4

Figure 1: Illustration for the use of the new letters

What is inside the red box is becoming the new letter
((b1, 0), . . . , (c1, 0)) which is then written in the cell between -1
and 0 of the single work tape of M ′.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes IV

The simulation of one step of computation performed by M is
done by M ′ as follows: Let w be the input to both M and M ′.
On the input tape, both machines behave identically. On its
work tape M ′ behaves as follows:

(1) The read-write head on the work tape of M ′ is reading the
whole inscription between the two end markers # from left
to right. While doing this, M ′ memorizes in states the k − 1
tape contents marked with 1, i.e., the actual head positions
on the k − 1 work tapes of M.

(2) By using the Turing table of M, the machine M ′ is
computing the changes to be made, and

(3) then actually performing these changes by moving its
read-write head on the work tape from right to left. By
doing this, it possibly has also to move its end markers #.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes IV

The simulation of one step of computation performed by M is
done by M ′ as follows: Let w be the input to both M and M ′.
On the input tape, both machines behave identically. On its
work tape M ′ behaves as follows:
(1) The read-write head on the work tape of M ′ is reading the

whole inscription between the two end markers # from left
to right. While doing this, M ′ memorizes in states the k − 1
tape contents marked with 1, i.e., the actual head positions
on the k − 1 work tapes of M.

(2) By using the Turing table of M, the machine M ′ is
computing the changes to be made, and

(3) then actually performing these changes by moving its
read-write head on the work tape from right to left. By
doing this, it possibly has also to move its end markers #.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes IV

The simulation of one step of computation performed by M is
done by M ′ as follows: Let w be the input to both M and M ′.
On the input tape, both machines behave identically. On its
work tape M ′ behaves as follows:
(1) The read-write head on the work tape of M ′ is reading the

whole inscription between the two end markers # from left
to right. While doing this, M ′ memorizes in states the k − 1
tape contents marked with 1, i.e., the actual head positions
on the k − 1 work tapes of M.

(2) By using the Turing table of M, the machine M ′ is
computing the changes to be made, and

(3) then actually performing these changes by moving its
read-write head on the work tape from right to left. By
doing this, it possibly has also to move its end markers #.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes IV

The simulation of one step of computation performed by M is
done by M ′ as follows: Let w be the input to both M and M ′.
On the input tape, both machines behave identically. On its
work tape M ′ behaves as follows:
(1) The read-write head on the work tape of M ′ is reading the

whole inscription between the two end markers # from left
to right. While doing this, M ′ memorizes in states the k − 1
tape contents marked with 1, i.e., the actual head positions
on the k − 1 work tapes of M.

(2) By using the Turing table of M, the machine M ′ is
computing the changes to be made, and

(3) then actually performing these changes by moving its
read-write head on the work tape from right to left. By
doing this, it possibly has also to move its end markers #.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes V

Consequently, the length of the tape inscription on the work
tape of M ′ cannot exceed 2 · TM(w) + 2. Hence, one step of M’s
computation can be simulated in O(TM(w)) steps by M ′. At all,
TM(w) many steps of M’s computation have to be simulated.
Thus, M ′ performs at most O

(
(TM(w))2

)
many steps. By

Theorem 6.3 the assertion of the theorem follows.

Note that the same construction also works if we wish to
simulate a deterministic k-tape TM by a deterministic one-tape
TM. Thus, we even have the following result.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes V

Consequently, the length of the tape inscription on the work
tape of M ′ cannot exceed 2 · TM(w) + 2. Hence, one step of M’s
computation can be simulated in O(TM(w)) steps by M ′. At all,
TM(w) many steps of M’s computation have to be simulated.
Thus, M ′ performs at most O

(
(TM(w))2

)
many steps. By

Theorem 6.3 the assertion of the theorem follows.

Note that the same construction also works if we wish to
simulate a deterministic k-tape TM by a deterministic one-tape
TM. Thus, we even have the following result.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes VI

Corollary 1

Let a f : N→ R>0 be any bounding function. Then we have
TIME(f(n)) = Time((f(n))2) .

Furthermore, the proof of the latter theorem directly allows for
the following corollary:

Corollary 2

Let a f : N→ R>0 be any bounding function. Then we have
SPACE(f(n)) = Space2(f(n)) .

Proof. The proof is identical to the proof of Theorem 1, since the
simulation given there is not increasing the amount of space
needed, i.e., SM ′(w) 6 SM(w).

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Reducing the Number of Tapes VI

Corollary 1

Let a f : N→ R>0 be any bounding function. Then we have
TIME(f(n)) = Time((f(n))2) .

Furthermore, the proof of the latter theorem directly allows for
the following corollary:

Corollary 2

Let a f : N→ R>0 be any bounding function. Then we have
SPACE(f(n)) = Space2(f(n)) .

Proof. The proof is identical to the proof of Theorem 1, since the
simulation given there is not increasing the amount of space
needed, i.e., SM ′(w) 6 SM(w).

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages I

Consequently, when studying the amount of space needed to
accept non-regular languages, it suffices to deal with 2-tape
Turing machines. Recalling a bit automata theory, we directly
get the following lemma:

Lemma 1
For every regular language L there is a deterministic 2-tape TM M

such that L = L(M) and SM(n) = 1 for all n ∈N.

Question
How much space is needed for accepting non-regular
languages?

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages I

Consequently, when studying the amount of space needed to
accept non-regular languages, it suffices to deal with 2-tape
Turing machines. Recalling a bit automata theory, we directly
get the following lemma:

Lemma 1
For every regular language L there is a deterministic 2-tape TM M

such that L = L(M) and SM(n) = 1 for all n ∈N.

Question
How much space is needed for accepting non-regular
languages?

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages I

Consequently, when studying the amount of space needed to
accept non-regular languages, it suffices to deal with 2-tape
Turing machines. Recalling a bit automata theory, we directly
get the following lemma:

Lemma 1
For every regular language L there is a deterministic 2-tape TM M

such that L = L(M) and SM(n) = 1 for all n ∈N.

Question
How much space is needed for accepting non-regular
languages?

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages II

Answering this question reveals a further surprise.
We also need the following definition:

Definition 1
Let M be a TM. A macro state of M is a tuple containing the
following:
(1) the head position on the input tape of M,
(2) the actual state of M,
(3) for every work tape of M the inscription of all cells visited

so far and the actual position of the read-write head.
If (1) is omitted, then we refer to the resulting tuple as
configuration of M.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages III

Note that the definition of configuration, when applied to
one-tape TMs means that we just record the actual state of
the TM.

First, we show that enlarging the space available to any
constant does not allow to accept non-regular languages.

Theorem 2

Let c > 0 be any constant and let M be a deterministic 2-tape TM
such that SM(n) 6 c for all n ∈N. Then L(M) ∈ REG.

Proof. We show that there is a constant ĉ such that M can work
at most ĉn many steps on inputs of length n without reaching a
cycle.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages III

Note that the definition of configuration, when applied to
one-tape TMs means that we just record the actual state of
the TM.
First, we show that enlarging the space available to any
constant does not allow to accept non-regular languages.

Theorem 2

Let c > 0 be any constant and let M be a deterministic 2-tape TM
such that SM(n) 6 c for all n ∈N. Then L(M) ∈ REG.

Proof. We show that there is a constant ĉ such that M can work
at most ĉn many steps on inputs of length n without reaching a
cycle.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages III

Note that the definition of configuration, when applied to
one-tape TMs means that we just record the actual state of
the TM.
First, we show that enlarging the space available to any
constant does not allow to accept non-regular languages.

Theorem 2

Let c > 0 be any constant and let M be a deterministic 2-tape TM
such that SM(n) 6 c for all n ∈N. Then L(M) ∈ REG.

Proof. We show that there is a constant ĉ such that M can work
at most ĉn many steps on inputs of length n without reaching a
cycle.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages IV

Obviously, there are at most
c∑

k=0

|B|
k =

|B|
c+1 − 1
|B| − 1

=: S

many pairwise different strings s with |s| 6 c which can be
written on M’s work tape. To write a string of length k on its
work tape, M needs k steps. So M needs at most c · S many
steps to write all these strings on its work tape. To estimate ĉ, it
suffices to assume that M can write all these strings in every of
its states on its work tape. Hence, there are at most c · |Z| · S
many pairwise different steps that can be performed by M on
every input symbol read on its inputs tape. Setting

ĉ = c · |Z| · S (1)

yields that M can work at most ĉn many steps without
reaching a cycle.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages V

Next, we argue that there is a deterministic one-tape TM M̂

such that T
M̂

(n) 6 ĉn for all n ∈N and L(M̂) = L(M).

The TM M̂ is obtained by encoding all possible inscriptions on
M’s work tape into states and the changes M can make on these
inscriptions into state transitions. Here it is crucial that there
are only S many possible inscriptions. Finally, by Theorem 6.2,
we directly get L(M) ∈ REG.

To make further progress, we extend the definition of traces
made for one-tape TMs by using configurations.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages V

Next, we argue that there is a deterministic one-tape TM M̂

such that T
M̂

(n) 6 ĉn for all n ∈N and L(M̂) = L(M).

The TM M̂ is obtained by encoding all possible inscriptions on
M’s work tape into states and the changes M can make on these
inscriptions into state transitions. Here it is crucial that there
are only S many possible inscriptions. Finally, by Theorem 6.2,
we directly get L(M) ∈ REG.

To make further progress, we extend the definition of traces
made for one-tape TMs by using configurations.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages V

Next, we argue that there is a deterministic one-tape TM M̂

such that T
M̂

(n) 6 ĉn for all n ∈N and L(M̂) = L(M).

The TM M̂ is obtained by encoding all possible inscriptions on
M’s work tape into states and the changes M can make on these
inscriptions into state transitions. Here it is crucial that there
are only S many possible inscriptions. Finally, by Theorem 6.2,
we directly get L(M) ∈ REG.

To make further progress, we extend the definition of traces
made for one-tape TMs by using configurations.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages VI

Definition 2

Let k ∈N, k > 1, let M be a k-tape TM and w ∈ Σ∗. We define
the trace of M on input w at position j to be TRM(w, j), where

TRM(w, j) =df the string formed of configurations of M

such that the ith position of TRM(w, j)
is M’s configuration when its head on the
input tape crosses the border j for the ith time .

Furthermore, TRM(w) and TRM(n) are defined as before; i.e.,
for every input string w ∈ Σ∗ and all n ∈Nwe set

TRM(w) =df max{|TRM(w, j)| | j ∈ Z}

TRM(n) =df max{TRM(w) | |w| = n} .

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages VII

Note that for k = 1 we just obtain the definition of traces
previously made for deterministic one-tape TMs.

Exercise 1. Prove the following generalization of Lemma 6.1:
Let M be a deterministic TM. If TRM(uvw, |uv|) = TRM(uvw, |u|)

then, for all i, j ∈N, TRM(uvivjw, |uvi|) = TRM(uw, |u|) and
uvivjw ∈ L(M) iff uw ∈ L(M).

Next, we show a complexity gap for the complexity measure
“space complexity” with respect to the acceptability of
non-regular languages.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages VII

Note that for k = 1 we just obtain the definition of traces
previously made for deterministic one-tape TMs.

Exercise 1. Prove the following generalization of Lemma 6.1:
Let M be a deterministic TM. If TRM(uvw, |uv|) = TRM(uvw, |u|)

then, for all i, j ∈N, TRM(uvivjw, |uvi|) = TRM(uw, |u|) and
uvivjw ∈ L(M) iff uw ∈ L(M).

Next, we show a complexity gap for the complexity measure
“space complexity” with respect to the acceptability of
non-regular languages.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages VIII

Theorem 3 (Stearns, Hartmanis, and Lewis II (1965))

Let M be any deterministic 2-tape TM such that
SM(n) = o(log log n). Then L(M) is regular.

By Theorem 2 it suffices to show that there is a constant c > 0
such that SM(n) < c. We continue indirectly.
Suppose there is an infinite sequence (vi)i∈N of strings such
that

SM(vi+1) > SM(vi) for all i ∈N . (2)

We can choose the strings vi in a way such that for all i ∈N

SM(u) < SM(vi) for all strings u with |u| < |vi| .

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages VIII

Theorem 3 (Stearns, Hartmanis, and Lewis II (1965))

Let M be any deterministic 2-tape TM such that
SM(n) = o(log log n). Then L(M) is regular.

By Theorem 2 it suffices to show that there is a constant c > 0
such that SM(n) < c. We continue indirectly.
Suppose there is an infinite sequence (vi)i∈N of strings such
that

SM(vi+1) > SM(vi) for all i ∈N . (2)

We can choose the strings vi in a way such that for all i ∈N

SM(u) < SM(vi) for all strings u with |u| < |vi| .

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages IX

Among all traces TRM(vi, j), where 0 < j < |vi|, there are no
two equal traces.
Suppose there are positions j1 and j2 with 0 < j1 < j2 < |vi| and
TRM(vi, j1) = TRM(vi, j2). Then all symbols between j1 and j2
in vi can be erased without reducing the space needed, a
contradiction to (2).
By Exercise 1, without loss of generality, we can assume that
each single trace does not contain two identical configurations,
since the part of M’s work done between such identical
configurations cannot influence the acceptance of the input
string given.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages X

Provided M = [B, Z, A] uses ` cells on its work tape, there are at
most

c` = |Z| ·
|B|

`+1 − 1
|B| − 1

· ` (3)

many possible configurations of length at most `. By Exercise 1,
we conclude that there are at most c

c`
` many different traces

that can be built from the possible configurations. Since there
are no two identical traces among all traces TRM(vi, j), where
0 < j < |vi|, we therefore have

|vi| 6 c
c`
` , where ` = SM(vi) . (4)

Using (3) and (4), we see that there is an r such that |vi| 6 rr`
.

Hence, log log |vi| 6 c · ` = c · SM(vi) for some constant c.
Therefore, 1 6 c · SM(vi)/ log log |vi|, a contradiction to
SM(n) = o(log log n).

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages XI

This contradiction is due to (2), and so (2) cannot hold. Hence,
SM(n) 6 c for a constant c > 0. By Theorem 2, we therefore
have L(M) ∈ REG.

The gap established in Theorem 3 cannot be improved. Let

Lbin = {1 ∗ 10 ∗ 11 ∗ · · · ∗ bin(k) | k ∈N+} ,

where bin(k) denotes the binary representation of the number k.
Clearly, Lbin < REG (Nerode’s theorem).
But we have the following lemma:

Lemma 2
There exists a deterministic TM M such that SM(n) = log log n

and L(M) = Lbin.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages XI

This contradiction is due to (2), and so (2) cannot hold. Hence,
SM(n) 6 c for a constant c > 0. By Theorem 2, we therefore
have L(M) ∈ REG.

The gap established in Theorem 3 cannot be improved. Let

Lbin = {1 ∗ 10 ∗ 11 ∗ · · · ∗ bin(k) | k ∈N+} ,

where bin(k) denotes the binary representation of the number k.
Clearly, Lbin < REG (Nerode’s theorem).

But we have the following lemma:

Lemma 2
There exists a deterministic TM M such that SM(n) = log log n

and L(M) = Lbin.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages XI

This contradiction is due to (2), and so (2) cannot hold. Hence,
SM(n) 6 c for a constant c > 0. By Theorem 2, we therefore
have L(M) ∈ REG.

The gap established in Theorem 3 cannot be improved. Let

Lbin = {1 ∗ 10 ∗ 11 ∗ · · · ∗ bin(k) | k ∈N+} ,

where bin(k) denotes the binary representation of the number k.
Clearly, Lbin < REG (Nerode’s theorem).
But we have the following lemma:

Lemma 2
There exists a deterministic TM M such that SM(n) = log log n

and L(M) = Lbin.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages XII

Applying the techniques developed so far, we can prove the
following:

Theorem 4

Let M be any deterministic TM accepting the language
L(M) = {0n1n | n ∈ N}. Then we have SM(n) , o(log n).

Proof. The proof is left as an exercise.

Next, we turn our attention to complexity hierarchies for
deterministic Turing machines.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Regular Languages XII

Applying the techniques developed so far, we can prove the
following:

Theorem 4

Let M be any deterministic TM accepting the language
L(M) = {0n1n | n ∈ N}. Then we have SM(n) , o(log n).

Proof. The proof is left as an exercise.

Next, we turn our attention to complexity hierarchies for
deterministic Turing machines.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies I

Before dealing with complexity hierarchies, it is meaningful to
ask whether or not we can improve Theorem 1. This is indeed
the case as the following theorem shows:

Theorem 5 (Hennie and Stearns (1966))

Let f : N→N be any bounding function. Then we have

TIME(f(n)) = Time3 (f(n) · log f(n)) .

We omit the proof of Theorem 5 here, since there are several
more important theorems we want to deal with in this course.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies I

Before dealing with complexity hierarchies, it is meaningful to
ask whether or not we can improve Theorem 1. This is indeed
the case as the following theorem shows:

Theorem 5 (Hennie and Stearns (1966))

Let f : N→N be any bounding function. Then we have

TIME(f(n)) = Time3 (f(n) · log f(n)) .

We omit the proof of Theorem 5 here, since there are several
more important theorems we want to deal with in this course.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies I

Before dealing with complexity hierarchies, it is meaningful to
ask whether or not we can improve Theorem 1. This is indeed
the case as the following theorem shows:

Theorem 5 (Hennie and Stearns (1966))

Let f : N→N be any bounding function. Then we have

TIME(f(n)) = Time3 (f(n) · log f(n)) .

We omit the proof of Theorem 5 here, since there are several
more important theorems we want to deal with in this course.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies II
Theorem 6

Assuming an appropriate enumeration of all deterministic TMs the
following holds:
(1) There is a universal deterministic TM U for all deterministic

TMs (Mi)i∈N such that

L(U) = {bin(i) ∗w | w ∈ L(Mi), i ∈N} ,

and for every i ∈N there is a constant ci such that for all w ∈ Σ∗ the
condition TU(|bin(i) ∗w|) < ci · TMi

(|w|) · log TMi
(|w|) is fulfilled.

(2) There is a universal deterministic TM U for all deterministic TMs
(Mi)i∈N such that

L(U) = {bin(i) ∗w | w ∈ L(Mi), i ∈N} ,

and for every i ∈N there is a constant ci such that for all w ∈ Σ∗ the
condition SU(|bin(i) ∗w|) < ci · SMi

(|w|) is fulfilled.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies II
Theorem 6

Assuming an appropriate enumeration of all deterministic TMs the
following holds:
(1) There is a universal deterministic TM U for all deterministic

TMs (Mi)i∈N such that

L(U) = {bin(i) ∗w | w ∈ L(Mi), i ∈N} ,

and for every i ∈N there is a constant ci such that for all w ∈ Σ∗ the
condition TU(|bin(i) ∗w|) < ci · TMi

(|w|) · log TMi
(|w|) is fulfilled.

(2) There is a universal deterministic TM U for all deterministic TMs
(Mi)i∈N such that

L(U) = {bin(i) ∗w | w ∈ L(Mi), i ∈N} ,

and for every i ∈N there is a constant ci such that for all w ∈ Σ∗ the
condition SU(|bin(i) ∗w|) < ci · SMi

(|w|) is fulfilled.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies III

Proof. We showed the existence of universal TMs in our course
Theory of Computation. For showing the theorem, the
enumeration is chosen in a way such that the code of Mi at the
universal machine is just bin(i). Moreover, the universal
deterministic TM U possesses an input tape and at least two
work tapes. Any fixed number k > 2 of work tapes will do.

On input bin(i) ∗w, the universal TM U simulates the
deterministic TM Mi on input w step by step. Assuming the
coding is appropriately chosen, for doing this, it suffices that U

reads in each simulation step the “programming code” bin(i),
memorizes the actions to be performed and performs the step
to be simulated.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies III

Proof. We showed the existence of universal TMs in our course
Theory of Computation. For showing the theorem, the
enumeration is chosen in a way such that the code of Mi at the
universal machine is just bin(i). Moreover, the universal
deterministic TM U possesses an input tape and at least two
work tapes. Any fixed number k > 2 of work tapes will do.

On input bin(i) ∗w, the universal TM U simulates the
deterministic TM Mi on input w step by step. Assuming the
coding is appropriately chosen, for doing this, it suffices that U

reads in each simulation step the “programming code” bin(i),
memorizes the actions to be performed and performs the step
to be simulated.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies IV

Hence, the constant ci is obtained by counting the number of
steps the universal machine needs for simulating one step
of Mi. Furthermore, the simulation has to incorporate the
reduction of work tapes to the previously fixed number k. By
Theorem 5, this reduction requires that in the deterministic case
TMi

(w) · log (TMi
(w)) steps have to be simulated. Thus, Part (1)

of the theorem follows.

For showing Part (2), the only difference is the application of
Corollary 2 for the tape reduction in the deterministic case.
Note that this corollary also causes the improvement in Part (2)
concerning the space complexity needed by the universal
deterministic TM U.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies IV

Hence, the constant ci is obtained by counting the number of
steps the universal machine needs for simulating one step
of Mi. Furthermore, the simulation has to incorporate the
reduction of work tapes to the previously fixed number k. By
Theorem 5, this reduction requires that in the deterministic case
TMi

(w) · log (TMi
(w)) steps have to be simulated. Thus, Part (1)

of the theorem follows.

For showing Part (2), the only difference is the application of
Corollary 2 for the tape reduction in the deterministic case.
Note that this corollary also causes the improvement in Part (2)
concerning the space complexity needed by the universal
deterministic TM U.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies V

Theorem 7 (Hennie and Stearns (1966))

Let f, g : N→N be any bounding functions such that g is
T -constructible and f(n) log f(n) = o(g(n)). Then we have

TIME(f(n)) ⊂ TIME(g(n)) .

Proof. Since the assumption implies f(n) < f(n) log f(n) < g(n)

for all but finitely many n, the inclusion
TIME(f(n)) ⊆ TIME(g(n)) is obvious.

We have to show that there is a language
Ld ∈ TIME(g(n)) \ TIME(f(n)). This is done by diagonalization.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies V

Theorem 7 (Hennie and Stearns (1966))

Let f, g : N→N be any bounding functions such that g is
T -constructible and f(n) log f(n) = o(g(n)). Then we have

TIME(f(n)) ⊂ TIME(g(n)) .

Proof. Since the assumption implies f(n) < f(n) log f(n) < g(n)

for all but finitely many n, the inclusion
TIME(f(n)) ⊆ TIME(g(n)) is obvious.

We have to show that there is a language
Ld ∈ TIME(g(n)) \ TIME(f(n)). This is done by diagonalization.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies V

Theorem 7 (Hennie and Stearns (1966))

Let f, g : N→N be any bounding functions such that g is
T -constructible and f(n) log f(n) = o(g(n)). Then we have

TIME(f(n)) ⊂ TIME(g(n)) .

Proof. Since the assumption implies f(n) < f(n) log f(n) < g(n)

for all but finitely many n, the inclusion
TIME(f(n)) ⊆ TIME(g(n)) is obvious.

We have to show that there is a language
Ld ∈ TIME(g(n)) \ TIME(f(n)). This is done by diagonalization.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies VI

We construct the wanted language Ld by using the universal
TM U from Theorem 6 and by defining a deterministic TM M

as follows: Then, Ld contains all strings w, w = 0kbin(i) that
are accepted by M and nothing else.

On input w, w = 0kbin(i), the machine M works as U on input
bin(i) ∗w. Moreover, M uses a clock for g(n) and rejects its
input if U does not stop within g(|w|) many steps. If U does
stop within g(|w|) many steps, then M rejects the input if U

accepts and accepts if U rejects.

Thus, by construction we already know Ld ∈ TIME(g(n)).

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies VI

We construct the wanted language Ld by using the universal
TM U from Theorem 6 and by defining a deterministic TM M

as follows: Then, Ld contains all strings w, w = 0kbin(i) that
are accepted by M and nothing else.

On input w, w = 0kbin(i), the machine M works as U on input
bin(i) ∗w. Moreover, M uses a clock for g(n) and rejects its
input if U does not stop within g(|w|) many steps. If U does
stop within g(|w|) many steps, then M rejects the input if U

accepts and accepts if U rejects.

Thus, by construction we already know Ld ∈ TIME(g(n)).

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies VI

We construct the wanted language Ld by using the universal
TM U from Theorem 6 and by defining a deterministic TM M

as follows: Then, Ld contains all strings w, w = 0kbin(i) that
are accepted by M and nothing else.

On input w, w = 0kbin(i), the machine M works as U on input
bin(i) ∗w. Moreover, M uses a clock for g(n) and rejects its
input if U does not stop within g(|w|) many steps. If U does
stop within g(|w|) many steps, then M rejects the input if U

accepts and accepts if U rejects.

Thus, by construction we already know Ld ∈ TIME(g(n)).

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies VII

Suppose there is a deterministic TM Mi such that

Ld = L(Mi) and TMi
(n) 6 f(n) . (5)

By Theorem 6, we may conclude that for input 0kbin(i) the
following holds:

TU(|bin(i) ∗ 0kbin(i)|) 6 ci · TMi
(|0kbin(i)|) log

(
TMi

(|0kbin(i)|)
)

6 ci · f(|0kbin(i)|) log
(
f(|0kbin(i)|)

)
.

Moreover, if k is sufficiently large, we also have

TU(|bin(i) ∗ 0kbin(i)|) 6 g(|0kbin(i)|) .

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies VIII

Hence, Theorem 6 and the construction of M imply that

0kbin(i) ∈ L(Mi)

iff 0kbin(i) ∈ L(M) (∗ since L(Mi) = Ld = L(M) ∗)
iff bin(i) ∗ 0kbin(i) < L(U) (∗ by construction of M ∗)
iff 0kbin(i) < L(Mi) (∗ by definition of L(U) ∗) .

Thus, we have obtained the contradiction 0kbin(i) ∈ L(Mi) iff
0kbin(i) < L(Mi). This contradiction is caused by our
Supposition (5). Consequently, our supposition is false. Since
there is obviously a deterministic TM Mi with Ld = L(Mi), we
must conclude that every TM Mi with Ld = L(Mi) has to
satisfy TMi

(n) > f(n). So we arrive at Ld < TIME(f(n)).

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies VIII

Hence, Theorem 6 and the construction of M imply that

0kbin(i) ∈ L(Mi)

iff 0kbin(i) ∈ L(M) (∗ since L(Mi) = Ld = L(M) ∗)
iff bin(i) ∗ 0kbin(i) < L(U) (∗ by construction of M ∗)
iff 0kbin(i) < L(Mi) (∗ by definition of L(U) ∗) .

Thus, we have obtained the contradiction 0kbin(i) ∈ L(Mi) iff
0kbin(i) < L(Mi). This contradiction is caused by our
Supposition (5). Consequently, our supposition is false. Since
there is obviously a deterministic TM Mi with Ld = L(Mi), we
must conclude that every TM Mi with Ld = L(Mi) has to
satisfy TMi

(n) > f(n). So we arrive at Ld < TIME(f(n)).

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies IX

Applying the same ideas as in the proof of Theorem 7 we
directly get the following hierarchy theorem for deterministic
space complexity:

Theorem 8

Let g be any S-constructible function and let f(n) be any space bound
such that f(n) = o(g(n)). Then we have

SPACE(f(n)) ⊂ SPACE(g(n)) .

The hierarchy theorems already proved do yield only infinite
deterministic complexity time and space hierarchies provided
there are arbitrarily complex T -constructible and S-constructible
functions. Therefore, we should prove the following exercise:

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies IX

Applying the same ideas as in the proof of Theorem 7 we
directly get the following hierarchy theorem for deterministic
space complexity:

Theorem 8

Let g be any S-constructible function and let f(n) be any space bound
such that f(n) = o(g(n)). Then we have

SPACE(f(n)) ⊂ SPACE(g(n)) .

The hierarchy theorems already proved do yield only infinite
deterministic complexity time and space hierarchies provided
there are arbitrarily complex T -constructible and S-constructible
functions. Therefore, we should prove the following exercise:

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Deterministic Complexity Hierarchies X

Exercise 2. For every general recursive function f : N→N there
exist general recursive functions g, g ′ : N→N such that
(1) f(n) < g(n) and f(n) < g ′(n) for all n ∈N, and
(2) g is T -constructible, and g ′ is S-constructible.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Nondeterministic Turing Machines I

Definition 3

A TM M = [B, Z, A] is called nondeterministic k-tape TM, k > 1,
provided B ∪ Z = ∅, and
(1) B = {∗, | , . . .} is a finite set such that |B| > 2,
(2) Z = {zs, zf, . . .} is a finite set such that |Z| > 2,
(3) A : Z \ {zf}× Bk → ℘

(
(B× {L, N, R})k × Z

)
\ {∅}

and M has an input-tape with read-only head (read-write head
iff k = 1) and k − 1 work-tapes (none iff k = 1) each of which
possesses exactly one read-write head.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Nondeterministic Turing Machines II

Again, in every step M moves k heads and observes k cells
(one on each tape). Also, we make the restriction that M is not
allowed to write on its input-tape iff k > 1.

Initially, M is in state zs (the start state) and all heads are
observing the first cell located right to position 0. What M is
writing into the cells it is observing and which move the heads
make is decided nondeterministically by choosing one
possibility from the set of allowed possibilities
(cf. Condition (3)).

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Nondeterministic Turing Machines III

Looking at Definition 6.4 and Definition 3, we see that the main
difference to a deterministic TM is Condition (3). For a
deterministic TM we had

A ⊆ Z \ {zf}× Bk × (B× {L, N, R})k × Z ,
while now we have

A : Z \ {zf}× Bk → ℘
(
(B× {L, N, R})k × Z

)
\ {∅} .

That is, a nondeterministic TM possesses in each step a set of
possible continuations. From this set, one possibility is chosen
nondeterministically.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Nondeterministic Turing Machines IV

Initially, M is in state zs (the start state) and all heads are
observing the first cell located right to position 0. But now, on
one and the same input there are many possible computations
that can be performed by M. Thus, we also have to modify the
definition of accepting a language. As before, we assume Σ ⊆ B

to be the input alphabet, where in particular ∗ < Σ.
This is done as follows:

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Nondeterministic Turing Machines V

Definition 4

A language L ⊆ Σ∗ is accepted by a nondeterministic k-tape
TM M if for every string w ∈ Σ∗ the following conditions are
satisfied:
If w is written on the empty input-tape of M (beginning in
cell 0) and M is started such that the read-only head on the
input-tape is put on the leftmost symbol of w and all other
heads are put on the first cell located right to position 0 in
state zs then, if w ∈ L, there is a possible computation path such
that M stops after having executed finitely many steps in
state zf and the cell observed by M on its first work-tape in
state zf contains a | . In this case we also write M(w) = | .

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Nondeterministic Turing Machines VI

In the following, we use NTM as an abbreviation for
nondeterministic TMs.

In contrast to a deterministic TM, if w < L then an NTM M is
not supposed to deliver any information. We do not even
require M to stop on inputs w < L. By L(M) we denote the
language accepted by M.

Next, we define time and space complexity for NTMs.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Nondeterministic Turing Machines VI

In the following, we use NTM as an abbreviation for
nondeterministic TMs.

In contrast to a deterministic TM, if w < L then an NTM M is
not supposed to deliver any information. We do not even
require M to stop on inputs w < L. By L(M) we denote the
language accepted by M.

Next, we define time and space complexity for NTMs.

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Nondeterministic Turing Machines VII

Definition 5

Let M be an NTM and w ∈ Σ∗. We define TM(w) to be the minimum
number of steps executed by M on input w among all its accepting
computations if w ∈ L(M), and the minimum number of steps executed
by M among all its computation executed on input w if w < L(M).
We define SM(w) to be the minimum number of all cells on M’s work
tapes visited by the read-write heads of M on input w among all its
accepting computations if w ∈ L(M) and minimum number of all cells
on M’s work tapes visited by the read-write heads of M on input w

among all its computations if w < L(M). Both functions T and S

remain undefined if there is no computation of M on input w that
stops. Furthermore, we set

TM(n) =df max{TM(w) | |w| = n} ,
SM(n) =df max{SM(w) | |w| = n} .

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Nondeterministic Turing Machines VIII

Finally, we define the resulting complexity classes as follows:

NTimek(f(n)) =df {L(M) | M is a nondeterministic k-tape TM
and TM(n) 6 f(n) for all n ∈N} ;

NSpacek(f(n)) =df {L(M) | M is a nondeterministic k-tape TM
and SM(n) 6 f(n) for all n ∈N} ;

NTIME(f(n)) =df {L(M) | M is an NTM and
TM(n) 6 f(n) for all n ∈N} ;

NSPACE(f(n)) =df{L(M) | M is an NTM and
SM(n) 6 f(n) for all n ∈N} .

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Thank you!

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Richard Edwin Stearns

Complexity and Cryptography c©Thomas Zeugmann

Tape Reductions Regular Languages Hierarchies NDTM End

Juris Hartmanis

Complexity and Cryptography c©Thomas Zeugmann

	Tape Reductions
	

	Regular Languages
	

	Hierarchies
	

	NDTM
	

	End
	

