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More about Tape Reductions I

We ask whether or not we can improve our results obtained so
far for NTMs.

Surprisingly, allowing two work tapes for NTMs is already
sufficient to simulate any NTM without increasing the time
complexity, i.e., we can show the following:

Theorem 1 (Book, Greibach, Wegbreit (1970))

Let f : N→N be any bounding function. Then we have

NTIME(f(n)) = NTime3(f(n)) .

Complexity and Cryptography c©Thomas Zeugmann



Tape Reductions Nonderterministic Time Immerman–Szelepcsényi LBA ICC End, Pics

More about Tape Reductions I

We ask whether or not we can improve our results obtained so
far for NTMs.

Surprisingly, allowing two work tapes for NTMs is already
sufficient to simulate any NTM without increasing the time
complexity, i.e., we can show the following:

Theorem 1 (Book, Greibach, Wegbreit (1970))

Let f : N→N be any bounding function. Then we have

NTIME(f(n)) = NTime3(f(n)) .

Complexity and Cryptography c©Thomas Zeugmann



Tape Reductions Nonderterministic Time Immerman–Szelepcsényi LBA ICC End, Pics

More about Tape Reductions II

Proof. Let any nondeterministic k-tape TM M = [B, Z, A] be
given such that k > 3. If k 6 3, the theorem is obvious. Now,
we construct a nondeterministic 3-tape TM M∗ with
L(M∗) = L(M) and TM∗(w) = O(TM(w)) for all w.

On its first work tape M∗ is using the tape alphabet B and on its
second work tape the tape alphabet Z× Bk.

On input w, the machine M∗ works as follows:
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More about Tape Reductions III

(1) M∗ writes nondeterministically an arbitrary finite number
of symbols on its second work tape. Note that these
symbols are from Z× Bk, i.e., (k + 1)-tuples.

(2) The ith symbol (zi, b1, . . . , bk) written on the second work
tape is interpreted as the actual situation machine M is in
its ith step, i.e., it is assumed to be in state zi and observing
b1, . . . , bk on its input tape and its k − 1 work tapes.

(3) Using the Turing table of M, the machine M∗ checks
deterministically whether or not the sequence of symbols
on its second work tape is an accepting computation of M

on input w. If it is, M∗ accepts the input w, otherwise the
input w is rejected.
The check is done in k − 1 stages. In stage i, 1 6 i 6 k − 1,
the ith work tape of M is completely documented on the
first work tape of M∗.
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More about Tape Reductions IV

Hence, M∗ can find an accepting computation path in time
k · TM(w) = O(TM(w)) if and only if w ∈ L(M).

Finally, the theorem follows by our constant factor speed-up
Theorem from Lecture 6 (see Theorem 6.3).
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More about Tape Reductions V

Dealing with nondeterministic space complexity does not
require any new idea. Looking at the proof of Theorem 7.1, we
immediately realize that the construction performed there can
also be applied in the nondeterministic case. Since this tape
reduction does not increase the amount of space needed, we get
the following corollary:

Corollary 1

Let f : N→N be any bounding function. Then we have

NSPACE(f(n)) = NSpace2(f(n)) .
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More about Tape Reductions VI

Theorem 2

Assuming an appropriate enumeration of all NTMs the following holds:
(1) There is a universal NTM V for all NTMs (Mi)i∈N such that

L(V) = {bin(i) ∗w | w ∈ L(Mi), i ∈N} ,

and for every i ∈N there is a constant ci such that for all w ∈ Σ∗ the
condition TV(|bin(i) ∗w|) < ci · TMi

(|w|) is fulfilled.

(2) There is a universal NTM V for all NTMs (Mi)i∈N such that

L(V) = {bin(i) ∗w | w ∈ L(Mi), i ∈N} ,

and for every i ∈N there is a constant ci such that for all w ∈ Σ∗ the
condition SV(|bin(i) ∗w|) < ci · SMi

(|w|) is fulfilled.
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Remarks I

The proof methods developed so far are not directly applicable
to the nondeterministic case. Looking at the proofs of
Theorems 7 and 8 in Lecture 7, we see that we have taken
advantage of the fact that deterministic complexity classes are
closed under complement.

More precisely, if C is a complexity class, then we set

co-C =df {L | L ⊆ Σ∗, Σ∗ \ L ∈ C} .

We say that a complexity class is closed under complement
if co-C ⊆ C.
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Remarks II

While it was fairly easy to complement deterministic
complexity classes by just returning ‘no’ for all accepting
computations, and ‘yes’ to all rejecting computations, this
method does not work for nondeterministic complexity classes.
The fact that a particular computation did not succeed, is no
guarantee that others do not, so the strategy above could put
some strings both in the language and in its complement.

Thus, additional work is needed here. For space complexity
there is the famous Immerman–Szelepcsényi Theorem stating
that NSPACE(f(n)) = co-NSPACE(f(n)) for all S-constructible
bounding functions f satisfying f(n) > log n for all n ∈N
(cf. Theorem 4).
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Remarks III

But for nondeterministic time complexity classes no such
theorem is known. The best one has is the almost trivial result
given by the following exercise:

Exercise 1. Let f : N→N be any T -constructible bounding
function. Then we have

co-NTIME(f(n)) ⊆
⋃
c>0

TIME
(

2cf(n)
)
⊆

⋃
c>0

NTIME
(

2cf(n)
)

.

Nevertheless, we can show a hierarchy theorem for
nondeterministic time complexity classes.
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A Complexity Hierarchy for Nonderterministic Time I

We continue with the following lemma that will help us to
circumvent the problem whether or not nondeterministic time
complexity classes are closed under complement:

Lemma 1 (Seiferas, Fischer, Meyer (1978))

For every NTM Mi there is a constant ci and an NTM Mk such that

L(Mk) = {w | w ∈ Σ∗, bin(k) ∗w ∈ L(Mi)} and
TMk

(w) 6 ci · TMi
(bin(k) ∗w) for all w ∈ Σ∗ .

For a proof, the reader is referred to the book.

Note that the lemma above may be regarded as a variant of the
fixed point theorem.
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Complexity Hierarchy for Nonderterministic Time II

Using the latter lemma, we can prove the following hierarchy
theorem for nondeterministic time complexity classes. Before
presenting it, we also need to prove that there are arbitrarily
complex languages acceptable by NTMs. This is done via the
following exercise:

Exercise 2. Let g be any T -constructible bounding function and let
M = [B, Z, A] be any NTM such that TM(w) 6 g(|w|). Then there
is a deterministic TM M ′ such that L(M) = L(M ′) and
TM ′(w) 6 g(|w|) · kg(|w|), where k = 2 · |B|.
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Complexity Hierarchy for Nonderterministic Time III

Having the result of Exercise 2 on hand, the determinisitic
Hierarchy Theorem directly implies via Exercise 19 that there
are arbitrarily complex languages for nondeterministic time
and nondeterministic space.

Theorem 3 (Seiferas, Fischer, Meyer (1978))

Let g : N→N be any T -constructible bounding function and let
f : N→N be any bounding function such that f(n) = o(g(n)) and
f(n + 1) = O(g(n)). Then we have

NTIME(f(n)) ⊂ NTIME(g(n)) .

For a proof, the reader is referred to the book.
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The Immerman–Szelepcsényi Theorem I

We are going to prove a nondeterministic space hierarchy
theorem. Fortunately enough, after three decades of failure, in
1988 it could be proved that nondeterministic space is closed
under complement. Even more interestingly, in 1988 two proofs
have been published independently of one another by
Immerman and Szelepcsényi, respectively. So, we continue
with the Immerman–Szelepcsényi Theorem.

Theorem 4 (Immerman–Szelepcsényi)

co-NSPACE(f(n)) = NSPACE(f(n)) for every S-constructible
bounding function f satisfying f(n) > log n for all n ∈N.
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The Immerman–Szelepcsényi Theorem II

Proof. Let L ∈ NSPACE(f(n)) be witnessed, without loss of
generality, by a nondeterministic 2-tape TM M = [B, Z, A] with
SM(n) 6 f(n) for all n ∈N.
Let Cx denote the set of f(|x|)-space bounded configurations of
M on input x. Note that

|Cx| 6 |Z| ·
|B|

f(|x|)+1 − 1
|B| − 1

· f(|x|) .

Furthermore, we write Cx(τ) to denote the set of configurations
that can be reached by M on input x within precisely τ steps of
computation. For the ease of notation, we write cx(τ) to denote
the cardinality of Cx(τ), i.e., cx(τ) = |Cx(τ)|.

Complexity and Cryptography c©Thomas Zeugmann



Tape Reductions Nonderterministic Time Immerman–Szelepcsényi LBA ICC End, Pics

The Immerman–Szelepcsényi Theorem III

Without loss of generality, we can also assume that there is a
uniquely determined accepting configuration Ca and that M

works in each of its computations on input x exactly t steps,
where t 6 |Cx|. The proof of this statement is an exercise.
Then we have

M does not accept x iff Ca < Cx(t)

iff Cx(t) contains cx(t) many rejecting
final configurations.

The latter observation can be generalized to

Ca < Cx(τ) iff Cx(τ) contains
cx(τ) many configurations C ′ , Ca . (1)
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The Immerman–Szelepcsényi Theorem IV

Note that the time needed to check Condition (1) is at least
cx(τ) which is clearly exponential in τ.
We have to construct an NTM M ′ that accepts L (= Σ∗ \ L) in
space at most f(n).

The idea for the construction of M ′ is given by the
Equivalence (1) displayed above. Having the additional
information cx(τ) on hand, one can decide
nondeterministically in space f(|x|) whether or not Ca ∈ Cx(τ).

Let C0(x) denote the initial configuration of M on input x. If
x < L, the positive answer is easily obtained by guessing a
sequence of configurations C1, . . . , Cτ such that C1 = C0(x) and
Ci+1 is reachable by M in one step from Ci, and Cτ = Ca.
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The Immerman–Szelepcsényi Theorem V

Of course, we have to do this guessing iteratively. That is, we
always have at most two configurations on the work tape. This
can be easily achieved by deleting Ci−1 as soon as Ci is
generated and verified. Again, for the sake of notation, we
write Ci ` Ci+1 if Ci+1 can be reached by M in one step.

For the negative answer, we successively check for C ′ ∈ Cx

with C ′ , Ca whether C ′ ∈ Cx(τ). The number of positive
answers is counted (that is the reason, why we need
f(n) > log n). If we find cx(τ) many such configurations C ′, we
must conclude Ca < Cx(τ).

All what is left is to formalize this idea appropriately.
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The Immerman–Szelepcsényi Theorem VI

We define a procedure REACH. On input τ, c, C1, . . . , Cτ, REACH tries to
decide whether at least one of the configurations C1, . . . , Cτ is in
Cx(τ). If REACH does not succeed, it returns “?”. The parameter c is
used to estimate the cardinality of Cx(τ).
Procedure REACH(τ, c, C1, . . . , Cτ)
Input: τ, c ∈N, {C1, . . . , Cτ} ⊆ Cx

Output: true, false or ?
Method: number := 0;
for C ∈ Cx in lexicographical order do begin

guess nondeterministically a computation
C0(x) ` D1 ` · · · ` Dτ of length τ;

if Dτ = C then number := number + 1;
if Dτ ∈ {C1, . . . , Cτ} then return REACH(τ, c, C1, . . . , Cτ) = true;
end;
if number = c then return REACH(τ, c, C1, . . . , Cτ) = false;
if number < c then return REACH(τ, c, C1, . . . , Cτ) = ?;
end REACH
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The Immerman–Szelepcsényi Theorem VII

Now, we can show the following lemma:

Lemma 2

If procedure REACH is called with c = cx(τ) and REACH returns true
or false then this answer is correct.

Proof. First, assume true is returned. This can happen if and
only if REACH has found an initial segment
C0(x) ` D1 ` · · · ` Dτ of a computation such that
Dτ ∈ {C1, . . . , Cτ}. So, the answer is correct.
Next, assume false is returned. Then we have
number = c = cx(τ), i.e., REACH has found c many different
configurations none of which is equal to one of the Cis. By
definition of cx(τ) this implies that all configurations in Cx(τ)

have been tested, thus Cx(τ) ∩ {C1, . . . , Cτ} = ∅. Hence, the
answer is correct.
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The Immerman–Szelepcsényi Theorem IX

If REACH returns ? for c = cx(τ), then not all configurations
C ∈ Cx(τ) have been found in the for-loop. Therefore, one can
neither conclude Ci < Cx(τ) nor Ci ∈ Cx(τ).

Since number 6 |Cx|, one can represent number in space O(f(|x|).
Moreover, every configuration C ∈ Cx(τ) needs space at most
f(|x|), and thus REACH can be realized by an NTM that obeys the
space bound f(n).

Next, we have to deal with the question how the numbers cx(τ)

are determined. This is done iteratively by the following
procedure COUNT:
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The Immerman–Szelepcsényi Theorem X

Procedure COUNT(τ, c)
Input: τ, c ∈N
Output: d ∈N or ?
Method: d := 0;
for C ∈ Cx in lexicographical order do begin

compute the direct predecessors C1, . . . , Cτ of C;
z := REACH(τ − 1, c, C1, . . . , Cτ);
if z = true then d := d + 1;
if z = ? then return COUNT(τ, c) = ?;
end;
return COUNT(τ, c) := d;
end COUNT.
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The Immerman–Szelepcsényi Theorem XI

Lemma 3

If COUNT is called with c = cx(τ − 1) and returns a natural
number d, then d = cx(τ).

Proof. If COUNT is not stopping with output “?” received from
REACH, then, by Lemma 2, REACH correctly answers each
question whether one of the predecessors Ci of C belongs to
Cx(τ − 1). Thus, after completion of the for-loop, the value of d

coincides with |Cx(τ)|, since every C ∈ Cx(τ) must have a
predecessor in Cx(τ − 1).

Moreover, it is easy to verify that COUNT can be executed in
space O(f(|x|)).
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The Immerman–Szelepcsényi Theorem XII

Now, we can put this all together to decide
nondeterministically whether or not M, on input any x does not
possess an accepting computation.

On input x do the following:
cx(0) := 1;
for τ = 1, . . . , t do
if cx(τ − 1) , ? then cx(τ) := COUNT(τ, cx(τ − 1));
else cx(τ) := ? ;
if cx(τ) , ? then z := REACH(t, cx(t), Ca);
if z = false then accept x.
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The Immerman–Szelepcsényi Theorem XIII

This program part can be executed by an NTM M ′ in space
O(f(|x|)), too.

Furthermore, if M ′ is accepting an input x, then there must be a
computation path of M ′ such that neither REACH nor COUNT do
return “?”. Hence, COUNT correctly computes the values cx(τ)

for τ = 1, . . . , t and REACH verifies that Ca < Cx(t).
Consequently, x < L, thus x ∈ L and we are done.
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The Immerman–Szelepcsényi Theorem XIV
Finally, if x < L, then for every configuration C ∈ Cx(τ) there is partial
computation C0(x) ` D1 ` · · · ` Dτ = C that can be guessed while
processing

REACH(τ, cx(τ), C1, . . . , Cτ) .

Consequently, COUNT is correctly computing the values
cx(1), . . . , cx(t), too. But then REACH(t, cx(t), Ca) must return false.
Therefore, M ′ is accepting x.
Thus, we have shown that L ∈ co-NSPACE(f(n)) implies
L ∈ NSPACE(f(n)), i.e.,

co-NSPACE(f(n)) ⊆ NSPACE(f(n))

for all S-constructible bounding functions f satisfying f(n) > log n for
all n ∈N. Hence, we can conclude

co-NSPACE(f(n)) = NSPACE(f(n)) by Exercise 3 below .

Note that the S-constructibility of f ensures that s = f(|x|) can be
determined by M ′ and thus, also t is known.
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The Immerman–Szelepcsényi Theorem XV

A closer look at the proof of Theorem 4 shows that an easy
modification at the end of the proof even allows for proving the
following more general corollary1:

Corollary 2

co-NSPACEmax(f(n)) ⊆ NSPACEmax(f(n)) for all bounding
functions f satisfying f(n) > log n for all n ∈N.

We leave it as an exercise to show Corollary 2. Furthermore as
already mentioned in the proof of Theorem 4, the following
result always holds:
Exercise 3. For every complexity class C we have, if co-C ⊆ C then
co-C = C.

1The complexity class NSPACEmax(f(n)) is obtained when “minimum” is
everywhere replaced by “maximum” in the Definition of S(w).
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Hierarchy for Nondeterministic Space

Now, it is easy to prove the following hierarchy result for
nondeterministic space:

Theorem 5

Let f, g : N→N be any two bounding functions such that
f(n) = o(g(n)), g(n) > log n for all n ∈N and g is
S-constructible. Then

NSPACE(f(n)) ⊂ NSPACE(g(n)) .

The proof is left as an exercise.
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Remark

One final remark is in order here. In all our hierarchy theorems,
we have always required the bounding function of the larger
complexity class to be constructible. This condition cannot be
dropped. For non-constructible functions one can prove nice
gap theorems. For giving us a flavor, we finally include the
following exercise here:

Exercise 4. There are recursive functions f, g : N→N such that
(1) TIME(f(n)) = TIME(2f(n));

(2) SPACE(g(n)) = SPACE(22g(n)
).
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LBA I

After having seen that nondeterministic space is closed under
complement provided that the bounding function f satisfies
f(n) > log n for all n ∈N, we can answer the question whether
or not the context-sensitive languages are closed under
complement. This is done by characterizing CS in terms of
complexity theory.

Definition 1

A linear bounded automaton is a nondeterministic one-tape TM
such that
(1) its input alphabet contains two special symbols ¶ and $

which are used to mark the leftmost and rightmost position
of the tape, respectively, that can be reached by the head.

(2) The head can neither replace ¶ nor $.
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LBA II

So, a linear bounded automaton can only use the space between
the two markers ¶ and $. The input is written between these
markers. Please note that the end-markers are written on the
tape together with the input but are themselves not considered
to belong to the input. Now, taking Theorem 10.11 from Theory
of Computation into account, we can easily show the following:

Theorem 6

For every context-sensitive language L there is a linear bounded
automaton M such that L = L(M).
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LBA III

Proof. First, we divide the tape into two traces. The upper trace
contains the input w which will not be changed during the
computation. The lower trace is actually used to simulate a
possible derivation of w provided it exists. Both traces are
uniformly marked by ¶ and $.

Let L = L(G), where G = [T , N, σ, P] is without loss of generality
length increasing. (cf. ToC, Theorem 10.11). If the input is λ, M

just stops in its accepting state. If the input is not λ, M starts its
computation by writing σ on the leftmost place in the lower
trace. Then M guesses nondeterministically a derivation. If the
derivation yields the input w, the input string w is accepted.
Otherwise, M stops without accepting the input.
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LBA IV

To formalize this idea, we have to think about a way how this
nondeterministic guessing is performed. This is done by
guessing a production and a position on the tape. From the
production it can be derived how many cells are needed to
replace the nonterminal at the guessed position. If the guessed
position does not contain a nonterminal in the lower trace,
nothing is done and a new guess is made. If there is a
nonterminal at the guessed position, the substring to the right
of the position is moved by the number of cells needed to
replace the nonterminal. If there is enough space to perform
this shift, then the replacement is done. If there is not enough
space, then M stops without accepting.
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LBA V

Finally, if a string has been derived that is precisely as long as
the input, it is compared with the input in the upper trace. If
both strings are identical, M accepts. Otherwise, it stops
without accepting. Since G is length increasing, there cannot be
a derivation for w that exceeds the space between the markers ¶
and $. Therefore, M accepts a string w if and only if w ∈ L(G).

Interestingly enough, the converse direction is also true. That
is, every language accepted by a linear bounded automaton is
context-sensitive. Thus, we have the following result:
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LBA VI

Theorem 7

If L = L(M) for a linear bounded automaton M, then L ∈ CS.

The proof is not too hard and left as an exercise.

Thus we could characterize the context-sensitive languages as
the set of all those languages that are accepted by a linear
bounded automaton. Since a linear bounded automaton uses
space |w| + 2 on its tape, we can apply the
Immerman–Szelepcsényi Theorem and obtain the affirmative
answer to the problem whether or not CS is closed under
complement.

Corollary 3

CS is closed under complement.

Complexity and Cryptography c©Thomas Zeugmann



Tape Reductions Nonderterministic Time Immerman–Szelepcsényi LBA ICC End, Pics

LBA VI

Theorem 7

If L = L(M) for a linear bounded automaton M, then L ∈ CS.

The proof is not too hard and left as an exercise.

Thus we could characterize the context-sensitive languages as
the set of all those languages that are accepted by a linear
bounded automaton. Since a linear bounded automaton uses
space |w| + 2 on its tape, we can apply the
Immerman–Szelepcsényi Theorem and obtain the affirmative
answer to the problem whether or not CS is closed under
complement.

Corollary 3

CS is closed under complement.

Complexity and Cryptography c©Thomas Zeugmann



Tape Reductions Nonderterministic Time Immerman–Szelepcsényi LBA ICC End, Pics

Important Complexity Classes I

Now, we are ready to introduce the following important
complexity classes:

L =df SPACE(log n) ;
NL =df NSPACE(log n) ;

P =df TIME(nO(1)) =
⋃

c∈N
TIME(nc) ;

NP =df NTIME(nO(1)) =
⋃

c∈N
NTIME(nc) ;

PSPACE =df SPACE(nO(1)) =
⋃

c∈N
SPACE(nc) ;

NPSPACE =df NSPACE(nO(1)) =
⋃

c∈N
NSPACE(nc) .

Complexity and Cryptography c©Thomas Zeugmann



Tape Reductions Nonderterministic Time Immerman–Szelepcsényi LBA ICC End, Pics

Important Complexity Classes II

We can immediately make the following observations:

Theorem 2
(1) L ⊆ NL;
(2) P ⊆ NP;
(3) PSPACE ⊆ NPSPACE;
(4) P ⊆ PSPACE;
(5) NP ⊆ NPSPACE.

Moreover, we already know the following proper inclusion:

Theorem 8

L ⊂ PSPACE.

Complexity and Cryptography c©Thomas Zeugmann



Tape Reductions Nonderterministic Time Immerman–Szelepcsényi LBA ICC End, Pics

Important Complexity Classes II

We can immediately make the following observations:

Theorem 2
(1) L ⊆ NL;
(2) P ⊆ NP;
(3) PSPACE ⊆ NPSPACE;
(4) P ⊆ PSPACE;
(5) NP ⊆ NPSPACE.

Moreover, we already know the following proper inclusion:

Theorem 8

L ⊂ PSPACE.

Complexity and Cryptography c©Thomas Zeugmann



Tape Reductions Nonderterministic Time Immerman–Szelepcsényi LBA ICC End, Pics

Important Complexity Classes III

Furthermore, one is often interested in simultaneously bounding
the time and space resources needed to accept a language.
Thus, we shall also study the following complexity classes:

DTISP(f(n), g(n)) =df {L(M) | M is a DTM ∧ TM(n) 6 f(n)

∧ SM(n) 6 g(n)} ;
NDTISP(f(n), g(n)) =df {L(M) | M is an NDTM

∧ TM(n) 6 f(n) ∧ SM(n) 6 g(n)} ;

PLOPS =df DTISP
(
nO(1), (log n)O(1)

)
.
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Important Complexity Classes IV

Algorithms belonging to the complexity class PLOPS are
considered to be practically realizable using current computer
technology. Nevertheless, even this statement has to be read
with care, since in practice one has also to ensure that the
exponents and constants involved are moderate.
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Thank you!
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