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Fundamental Inclusions I

First we show that a logarithmic space bound can always be
combined with a polynomial time bound.

Theorem 1

(1) L ⊆ DTISP(nO(1), log n),
(2) NL ⊆ NDTISP(nO(1), log n),

Proof. Let M be a k-tape TM such that SM(n) = O(log n). That
is, there exists a constant c > 0 such that SM(n) 6 c · log n.
Recalling that a macro state consists of the head position on the
input tape, the actual state of M, and for every work tape the
content of all cells visited as well as the actual head position,
we can bound the total number of macro states as follows:
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Fundamental Inclusions II

n · |Z|
(
|B|

c·log n
c · log n

)k−1
= O(nO(1)) . (1)

Here n is the number of possibilities for the head position on
the input tape. Moreover, the machine M can be in at most |Z|

many different states. On each work tape, the head can have
visited at most c · log n many positions, and thus it can write
only strings of the same length on each of its work tapes. Since
we have |B| many symbols, and k − 1 many work tapes, the
formula displayed above follows.
It remains to show the estimate O(nO(1)).
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Fundamental Inclusions III

Recall that

log|B| n =
ln n

ln |B|
and log n =

ln n

ln 2
, and hence

c · log n = c · ln n

ln 2
= c · ln |B|

ln 2
· log|B| n = ĉ · log|B| n

Consequently, |B|
c·log n = |B|

ĉ·log|B| n = nĉ . Furthermore,
log n 6 n for n > 1, and therefore(

|B|
c·log n

c · log n
)k−1

6
(
c · nĉ+1

)k−1
= ck−1nc̃ .

for c̃ = (ĉ + 1)(k − 1). Additionally, for n > 2 there exists an m

such that nm > |Z| . Thus, the Estimate (1) is proved and the
theorem follows for the deterministic case.
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Fundamental Inclusions IV

For the nondeterministic case, we have additionally to take into
consideration that every polynomial is T -constructible. Hence,
the NTM M can be combined with a clock for the particular
polynomial time arising without changing the language
accepted. We leave it as an exercise to show that the amount of
space needed to implement the clock can be logarithmically
bounded. Thus, (2) follows.

The polynomial time bound just proved is essential to show the
following inclusion:

Theorem 2

NL ⊆ P.
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Fundamental Inclusions IV
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Fundamental Inclusions V

Proof. Let M be an NTM such that SM(n) 6 c · log n for a
suitably chosen constant c > 0. We have to construct a
deterministic TM M̃ that accepts the same language as M and
that uses at most polynomial time, i.e., TM̃(n) 6 nO(1).

The machine M̃ works as follows:
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Fundamental Inclusions VI

(1) M̃ uses the same input w as M does. First, it writes all
possible macro states of M on its first work tape. By
Theorem 1 we already know that there are only
polynomially many macro states.

(2) Next, M̃ marks the one macro state of all the macro states
written on its first work tape in which M starts its
computation.

(3) Then, M̃ marks all macro states that can be reached in one
step by M from one of those already marked. If this
increases the number of marked macro states, M̃ repeats
Stage (3).
Otherwise, M̃ checks whether or not there is marked
macro state in which M accepts the current input. If this is
the case, M̃ accepts the current input. Otherwise, the input
is rejected.
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Fundamental Inclusions VII

By construction, we directly obtain L(M) = L(M̃). Finally, there
are only polynomially many macro states to be read one time in
each execution of Stage (3). Hence, M̃ executes at most nO(1)

many steps.

Note that the deterministic TM provided in the proof above
also uses nO(1) many tape cells on its work tape.

Next, we aim to show that NPSPACE ⊆ PSPACE. This will be
done by proving the following more general theorem:
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Fundamental Inclusions VIII

Theorem 3 (Savitch (1970))

Let f(n) be an S-constructible function satisfying f(n) > log n.
Then, we have NSPACE(f(n)) ⊆ SPACE

(
(f(n))2

)
.

We prove Savitch’s theorem in the book in a more general
context.

So far, we have obtained the following insight:

L ⊆ NL ⊆ P ⊆ NP ⊆ NPSPACE = PSPACE .

Moreover, by Theorem 8 in Lecture 8 we also know that at least
one of the inclusions must be proper. It is conjectured that all
inclusions are proper. However, despite many efforts, so far
none of the inclusions could be proved to be proper nor could
any equality be shown.
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Fundamental Inclusions VIII
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Motivation

Question
Do there exist problems which can be considered to be the most
difficult ones within their corresponding complexity class?

We shall prove the affirmative answer, and refer to these
problems as complete problems.

The importance of complete problems is easily explained. The
efficient solution of a complete problem for NL or NP could be
used to efficiently solve all of the problems in NL or NP,
respectively.

Next, we have to modify the deterministic TM model in a way
such that strings can be computed as output. We use Σ to
denote any fixed finite alphabet and Σ∗ for denoting the free
monoid over Σ.
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Reductions I

Definition 1

A function f : Σ∗ → Σ∗ is said to be log-space computable if there
exists a deterministic TM Mf satisfying the following
properties:
(1) Mf possesses an input tape with a two-way read-only

head, an output tape with a one-way write-only head and
finitely many work tapes each of which has a two-way
read-write head.

(2) On input w the machine Mf computes f(w) and writes it
on its output tape. While performing this computation, Mf

uses on each of its work tapes at most O(log |w|) many tape
cells.
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Reductions II

Log-space computable functions have an interesting property
which is stated as an exercise.
Exercise 1. Show that for each log-space computable function the
condition |f(w)| 6 |w|O(1) is satisfied.

Next, we define reductions.

Definition 2

Let A, B ⊆ Σ∗ be any two decidable languages. The language A

is said to be log-space reducible to the language B (abbr. A 6log B)
if there exists a log-space computable function f such that for all
w ∈ Σ∗ the condition w ∈ A if and only if f(w) ∈ B is satisfied.

Exercise 2. Let L1, L2, L3 ⊆ Σ∗ be any decidable languages. Then
we have: If L1 6log L2 and L2 6log L3 then L1 6log L3, i.e., log-space
reducibility is transitive.
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Reductions III

Now, we are ready to define the notions of hardness and
completeness.

Definition 3

Let S be a family of decidable languages over Σ∗ and let L0 be a
language such that L0 ⊆ Σ∗. The language L0 is said to be
log-space hard for S if L 6log L0 for every language L ∈ S.
If additionally L0 ∈ S is satisfied then the language L0 is said to
be log-space complete for S.

Next, we ask in which sense a language A ⊆ Σ∗ is easier than a
language B ⊆ Σ∗ provided A 6log B. This is done via the
following lemma:
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Reductions IV

Lemma 1

Let M be a TM such that SM(n) , o(log n). If a language L ⊆ Σ∗ is
log-space reducible to L(M) then there exists a TM M̃ such that
L = L(M̃) and S

M̃
(n) = O(SM(n)).

Proof. The proof idea is to combine the acceptor TM M with a
TM Mf that realizes the log-space translation of L into L(M).
But there is a problem. The space bound of M does not allow,
in general, to write the result f(w) of the translation of w via
Mf on M’s work tape(s). Hence, we have to modify Mf

appropriately. We define a deterministic TM M ′
f as follows:
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Reductions V

On input w and input bin(k) on an auxiliary work tape, M ′
f

works as Mf does but writes only the kth symbol of f(w) on its
output tape. Since |f(w)| 6 |w|O(1) the space bound O(log n)

for M ′
f is ensured. The TM M ′

f can count all attempts of Mf to
write a symbol on its output tape until the kth one is reached
which is then executed.
Finally, M is modified in way such that each change of the head
position on the input tape of M is accompanied by setting the
binary counter to the actual input head position and by
computing the symbol to be read by executing M ′

f on input w

and bin(k) as described above.

Please note that the condition SM(n) , o(log n) was essential
for proving the latter lemma, since otherwise we could not
have used the binary counter.
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Reductions VI

Lemma 1 allows for the following corollary:

Corollary 1

Let L, L ′ ⊆ Σ∗ be any languages.
(1) If L ∈ L and L ′ 6log L then L ′ ∈ L.
(2) If L ∈ L and ∅ , L ′ , Σ∗ then L 6log L ′.

Proof. We leave it as an exercise to prove this corollary.

Consequently, L constitutes the lowest level of log-space
reducibility.
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Remarks

It should also be noted that there are a couple of reducibility
notions around which have been intensively studied in the
literature. We mention here only polynomial-time reducibility
which is defined analogously as log-space reducibility.

The only difference to Definition 2 is that the function f is now
only required to be computable by a deterministic TM obeying
a polynomial time bound for its computation time instead of
the log-space bound required in Definition 1. If a language L1 is
polynomial-time reducible to a language L2 then we write
L1 6poly L2.

For getting a better understanding of polynomial-time
reducibility, we recommend to solve the following exercise:
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Reductions VII

Exercise 3. Let L1, L2 be any two languages. If L1 6log L2 then
L1 6poly L2.
The notion of reducibility also allows one to define an
equivalence relation.

Definition 4

Let L1, L2 ⊆ Σ∗ be any two decidable languages. The languages
L1 and L2 are said to be equivalent with respect to log-space
reducibility (polynomial-time reducibility) if L1 6log L2 and
L2 6log L1 (L1 6poly L2 and L2 6poly L1).
If L1 and L2 are equivalent with respect to log-space reducibility
and polynomial-time reducibility then we write L1 ≡log L2
and L1 ≡poly L2, respectively.
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GAP I

Our next goal is to establish the existence of complete problems
for the complexity class NL defined in the last lecture.
For that purpose, we define the graph accessibility problem
(abbr. GAP).
GAP
Input: A directed graph G = (V , E) with vertex set
V = {v1, . . . , vm} and a distinguished start node vs and a
distinguished end node ve.
Problem: Does there exist a path between vs and ve?
If the graph G is given by its adjacency-list, then the input
length n of GAP can be bounded by O(m2 log m). Moreover,
we can safely assume n > m.
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GAP II

Next, we show GAP to be NL-complete. This is done in two
steps; i.e., by first showing GAP to be NL-hard and then GAP
to be in NL.

Lemma 2

GAP is NL-hard.

Proof. Let M be a TM such that SM(n) ∈ O(log n) and let w be
an input to M. We define a graph Gw = (V , E) as follows:
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steps; i.e., by first showing GAP to be NL-hard and then GAP
to be in NL.

Lemma 2

GAP is NL-hard.

Proof. Let M be a TM such that SM(n) ∈ O(log n) and let w be
an input to M. We define a graph Gw = (V , E) as follows:
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GAP III

The nodes of Gw are all the macro states of M that can occur
under the space bound SM(|w|). Let v and v ′ be any two macro
states of M (i.e., any two nodes of Gw). We define (v, v ′) ∈ E iff
M can reach macro state v ′ from macro state v in one step.
Without loss of generality, we can assume that the macro state
at the beginning of M’s computation on input w is uniquely
determined. Also without loss of generality, we can assume
that, if M accepts w, then the accepting macro state of M is
uniquely determined, too.

Now, it is easy to see that the graph
Gw is log-space computable from input w, since the number of
nodes is uniformly polynomially bounded in |w|. If the nodes of
Gw are appropriately numbered, then our construction implies

w ∈ L(M) ⇐⇒ Gw ∈ GAP .

So, every language from NL is log-space reducible to GAP.
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GAP IV

Next, we show GAP to be acceptable by an NTM.

Lemma 3

GAP ∈ NL.

Proof. Let any graph G = (V , E) with vertex set V = {v1, . . . , vm}

and a distinguished start node vs and a distinguished end node
ve be given as input. Let n be the length of the input. As shown
above, n can be bounded by O(m2 log m). Thus, the space
bound log n is sufficient to store any node number in binary.
The NTM M works as follows: First, it stores the number s of
the start node vs. Then, non-deterministically any successor
of vs, say vi, is chosen (that is, (vs, vi) ∈ E), s is erased, and the
number i is stored as actual node number.
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GAP V

Next, the process is iterated. That is, assuming j to be the actual
node number, any successor of vj, say vk, is chosen and its
number k is stored as actual node number and j is erased. The
storing and erasing is done in a way such that the total amount
of space used by M is O(log n).

The graph G is accepted, if e is reached as actual node number.
Otherwise, G is not accepted.
Clearly, if there is a path from vs to ve in G, then there is an
accepting computation of M on input G. Otherwise, no
computation can accept G.
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GAP VI

By Definition 3, the Lemmata 2 and 3 directly imply the
following corollary:

Corollary 2

GAP is NL-complete.

Moreover, we immediately obtain the following corollary:

Corollary 3

Let f(n) , o(log n) be a space bounding function. Then we have
GAP ∈ SPACE(f(n)) if and only if NL ⊆ SPACE(f(n)).

Further NL-complete problems are studied in the book.
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NP-complete Problems I

Now, we turn our attention to the class NP which contains
many important problems. We start with a list of examples for
decision problems that turn out to be all in NP. We define these
problems here as languages and assume any reasonable
encoding of the input.

Let G = (V , E) be an undirected graph. A complete subgraph of
size k of G is said to be a k-Clique. Here a graph is said to be
complete if every vertex is connected to any other vertex. We set

CLIQUE = {(G, k) | G possesses a k-Clique} .

Let G = (V , E) be an undirected graph. A set U ⊆ V is said to be
independent if (u, v) < E for all u, v ∈ U, u , v. We set

INDSET = {(G, k) | G possesses an independent set of size k} .
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NP-complete Problems II

Now, let G = (V , E) be a directed graph. A Hamiltonian path is a
path visiting all vertices of G exactly ones. We set

dHAMILTON = {G | G possesses a Hamiltonian path} .

A vertex cover of an undirected graph G = (V , E) is a subset
V ′ ⊆ V such that if (u, v) ∈ E, then u ∈ V ′ or v ∈ V ′. The size of
a vertex cover V ′ is the cardinality of V ′. We set

VCOVER = {(G, k) | G possesses a vertex cover of size k} .
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NP-complete Problems III

Subset Sum Problem
Input: a number M and a vector (a0, . . . , an−1) ∈Nn.
Problem: Decide whether there exists a vector

(b0, . . . , bn−1) ∈ {0, 1}n such that M =
n−1∑
j=0

ajbj.

As with any arithmetic problem, it is important to recall that
the input integers are coded in binary. Then we define
SUBSUM to be the language of all subset sum problems
((a0, . . . , an−1), M) for which there is a vector

(b0, . . . , bn−1) ∈ {0, 1}n such that M =
n−1∑
j=0

ajbj.
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NP-complete Problems IV

Finally, we define the famous satisfiability problem.

Definition 5
Let F = f(x1, . . . , xn) be a Boolean formula consisting of the
variables x1, . . . , xn and the Boolean operators ∨, ∧, ¬. F is said
to be satisfiable if there exists an assignment (a1, . . . , an) ∈ {0, 1}n

to the variables x1, . . . , xn such that F(a1, . . . , an) = 1.

The satisfiability problem is then the language

SAT = {F | F is a satisfiable formula}.
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NP-complete Problems V

Let us ask what all the languages defined above do have in
common. The general pattern is that it is presumably very hard
to find a witness that any of its instances belongs to them. For
example, in order to find a satisfying assignment one may have
to try all possible assignments, i.e., all 2n many Boolean vectors
a1, . . . , an ∈ {0, 1}n. The same clearly applies for SUBSUM.
As for dHAMILTON, one may be forced to try all n!
permutations of the vertices of G = (V , E), where |V | = n in
order to find a Hamiltonian path.

On the other hand, it is for all the languages given above easy
to check whether or not a witness is given. For instance, for any
given assignment one can quickly check whether or not it is
satisfying a given Boolean formula by a deterministic TM.
Informally, this property may serve as a rule of thumb for
deciding whether or not any given language belongs to NP.
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NP-complete Problems VI

Next, we ask whether or not the class NP contains an
NP-complete language. The affirmative answer has been given
by Cook (1971) and Levin (1973), who could show the
following important theorem:

Theorem 4 (Cook (1971), Levin (1973))
SAT is NP-complete.

We are not going to prove this theorem here, since there are
many proofs in the literature. Furthermore, there is no need to
prove any problem to be NP-complete by using Cook’s (1971)
original proof technique.

Instead, to show the NP-completeness of any other language L

it suffices to reduce SAT or any other language known to be
NP-complete to L.
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NP-complete Problems VII

Next, we exemplify this proof technique here.
A formula F is said to be in `-CNF form if F is in conjunctive
normal form and each clause contains precisely ` literals.
Let `-SAT be the language of all satisfiable formulae in `-CNF
form. Then, we can show the following:

Theorem 5

`-SAT is NP-complete for all ` > 3.

Proof. Since SAT is in NP we have `-SAT ∈ NP, too. Thus, it
suffices to log-space reduce SAT to `-SAT.
First, we show that any formula F can be transformed into a
sat-equivalent formula F ′ in CNF. Here by sat-equivalent we
mean that F is satisfiable iff F ′ is satisfiable.
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NP-complete Problems VIII

Note that we cannot just transform F into its CNF, since the
length of the CNF may be exponential in the length of F, thus
violating our requirement to log-space reduce SAT to `-SAT.
For obtaining the desired transformation of F into a
sat-equivalent formula F ′ in CNF, in general we need new
auxiliary variables. Here by new we mean that these variables
do not occur in F. We proceed as follows: In our first step we
transform F into a logical equivalent formula F ′ by using de
Morgan’s rules as well as ¬¬x ≡ x. Note the we use both ¬x

and x to denote negation.

Step 1. Using de Morgan’s rules, we transform F into F ′ such
that all negations in F ′ appear at the variables.

After a bit of reflection it is easy to see that Step 1 can be
realized in log-space.
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NP-complete Problems IX

Let F ′ be the formula obtained so far. Next, we transform F ′

into a sat-equivalent CNF by using the following observation:
If F ′ = F1 ∨ F2 and F1, F2 are already in CNF, then we can
replace F ′ by

(F1 ∨ y) ∧ (F2 ∨ y) ,

where y is a new variable. Clearly, the new formula is
sat-equivalent to F ′. We refer to this rule as to Rule 1.
Furthermore, we need Rule 2 displayed below to transform
F1 ∨ y and F2 ∨ y into a CNF. This is done as follows: Let
Fi = G1 ∧ G2 ∧ . . . ∧ Gk. Then Fi ∨ yα is equivalent to

(G1 ∨ yα) ∧ (G2 ∨ yα) ∧ . . . ∧ (Gk ∨ yα) ,

and we have again a conjunction of clauses.
Step 2. Apply Rules 1 and 2 recursively until a CNF is obtained.
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NP-complete Problems X

Next, we have to show that any formula in CNF can be
transformed into a sat-equivalent formula in `-CNF form. For
the sake of presentation we handle here the case ` = 3, only.
Consider any clause C = (z1 ∨ · · ·∨ zk). In dependence on k we
replace C by the following formula by using new variables yi:

k = 1 : (z1 ∨ y1 ∨ y2) ∧ (z1 ∨ y1 ∨ y2) ∧ (z1 ∨ y1 ∨ y2) ∧ (z1 ∨ y1 ∨ y2)

k = 2 : (z1 ∨ z2 ∨ y1) ∧ (z1 ∨ z2 ∨ y1)

k = 3 : (z1 ∨ z2 ∨ z3) i.e., we do not change C

k > 3 : (z1 ∨ z2 ∨ y1) ∧ (y1 ∨ z3 ∨ y2) ∧ (y2 ∨ z4 ∨ y3)∧

. . . ∧ (yk−4 ∨ zk−2 ∨ yk−3) ∧ (yk−3 ∨ zk−1 ∨ zk) =: C̃ .

Clearly, these formulae can be computed in log-space.
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NP-complete Problems XI

The sat-equivalence of the formulae obtained can be seen as
follows: In case k = 1, the four clauses can be simultaneously
satisfied if and only if z1 is assigned the value 1, since
independently of the assignments for y1, y2, in one of the four
clauses the resulting evaluation is 0.

Analogously, one directly sees that in case k = 2 the two clauses
can be simultaneously satisfied if and only if z1 or z2 is assigned
the value 1.

For k = 3 nothing has to be shown.
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NP-complete Problems XII

Finally, for k > 3 it remains to show that C is satisfiable if and
only if C̃ is satisfiable.

Assume (z1 ∨ · · ·∨ zk) is satisfied by zi = 1. If i = 1 or i = 2,
then we set yj = 0 for all j = 1, . . . , k − 3. So, the first clause in C̃

is satisfied by z1 or z2 and all remaining clauses in C̃ are
satisfied by yj, j = 1, . . . , k − 3.

If i > 3, then we set y1 = y2 = · · · = yi−2 = 1,
yi−1 = yi = · · ·yk−3 = 0. Now, by construction, in C̃ the first
i − 2 clauses are satisfied by by the yi, the (i − 1)st clause
(containing zi) is clearly satisfied by z1, and the remaining
k − (i − 2) − 3 clauses in C̃ are satisfied by yi.
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NP-complete Problems XIII

Next, assume C̃ to be satisfied. We distinguish the following 3
cases: If all yj = 0, then zk−1 ∨ zk must evaluate to 1, thus also
C is satisfied. Analogously, if all yj = 1, then z1 ∨ z2 must
evaluate to 1, and hence C is satisfied, too.

It remains to consider the case that up to some i, 1 6 i < k − 3
we have y1 = · · · = yi = 1 and yi+1 = 0. Now, the (i + 1)st
clause of C̃ can evaluate to 1 if and only if zi+2 = 1, that is, C is
again satisfied.

Complexity and Cryptography c©Thomas Zeugmann



Inclusions Completeness GAP NP-completeness l-SATISFIABILITY Remarks End

NP-complete Problems XIII

Next, assume C̃ to be satisfied. We distinguish the following 3
cases: If all yj = 0, then zk−1 ∨ zk must evaluate to 1, thus also
C is satisfied. Analogously, if all yj = 1, then z1 ∨ z2 must
evaluate to 1, and hence C is satisfied, too.

It remains to consider the case that up to some i, 1 6 i < k − 3
we have y1 = · · · = yi = 1 and yi+1 = 0. Now, the (i + 1)st
clause of C̃ can evaluate to 1 if and only if zi+2 = 1, that is, C is
again satisfied.

Complexity and Cryptography c©Thomas Zeugmann



Inclusions Completeness GAP NP-completeness l-SATISFIABILITY Remarks End

NP-complete Problems XIV

The importance of 3-SAT is its simple combinatorial structure
which allows to apply it to prove the NP-completeness of many
other problems as shown below. Note that the condition ` > 3
is essential.

Exercise 4. Prove or disprove 2-SAT ∈ P.

Next, by reducing 3-SAT to CLIQUE one can easily prove the
following theorem:

Theorem 6

CLIQUE is NP-complete.

The proof is given in the book.
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NP-complete Problems XV

Having shown CLIQUE to be NP-complete directly allows to
prove VCOVER to be NP-complete, too.

Theorem 7

VCOVER is NP-complete.

Proof. It is easy to see that VCOVER ∈ NP. Next, we reduce
CLIQUE to VCOVER. The reduction is almost trivial. Let
G = (V , E) and k be given. We map G to its complement graph
G = (V , E), where E = {(u, v) | u, v ∈ V , u , v, (u, v) < E}.
Furthermore, k is mapped to |V | − k. We omit the details.

Exercise 5. Show SUBSUM to be NP-complete.
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Example

Example 6

F = ¬(¬(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ (x3 ∧ x5))).

Then, in Step 1, by using ¬(β1 ∧ β2) ≡ ¬β1 ∨ ¬β2 or
¬(β1 ∨ β2) ≡ ¬β1 ∧ ¬β2 we successively obtain:

¬(¬(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ (x3 ∧ x5)))

≡ ¬¬(x1 ∨ x2 ∨ x3) ∨ ¬(x4 ∨ (x3 ∧ x5))

≡ (x1 ∨ x2 ∨ x3) ∨ ¬(x4 ∨ (x3 ∧ x5))

≡ (x1 ∨ x2 ∨ x3) ∨ (x4 ∧ ¬(x3 ∧ x5))

≡ (x1 ∨ x2 ∨ x3) ∨ (x4 ∧ (x3 ∨ x5)) .
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Example continued

Continuing our example, we thus obtain (where ∼ denotes
sat-equivalence)

(x1 ∨ x2 ∨ x3) ∨ (x4 ∧ (x3 ∨ x5))

∼ (x1 ∨ x2 ∨ x3 ∨ y1) ∧ (x4 ∨ y1) ∧ (x3 ∨ x5 ∨ y1) . (2)
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Example continued

We finish our example here for the case of 3-CNF.

So, we have to apply the rules for k > 3 and k = 2. Applying
the rule for k > 3 requires the introduction of a new variable y2
and applying the rule for k = 2 requires the introduction of a
new variable y3. Thus, we finally obtain.

(x1 ∨ x2 ∨ x3 ∨ y1) ∧ (x4 ∨ y1) ∧ (x3 ∨ x5 ∨ y1)

∼ (x1 ∨ x2 ∨ y2) ∧ (y2 ∨ x3 ∨ y1) ∧ (x4 ∨ y1 ∨ y3) ∧ (x4 ∨ y1 ∨ y3)

∧ (x3 ∨ x5 ∨ y1) .
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Final Remarks I

As already mentioned, so far we do not know whether or not
P = NP. Resolving this problem remains a huge challenge.

So, let us shortly discuss consequences of the two possible
answers. If P , NP, then not much will change, since this
conjecture is favored by many scientists. The main change, of
course, is then the switch from conjecture to theorem, and all
the theorems having a “. . . if P , NP” in their statement would
be unconditionally true.
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Final Remarks II

What are the consequences if we could prove that P = NP?
Clearly this result would be also of fundamental
epistemological importance. But the practical consequences
may vary. If, for some important NP-complete problem like
3-SAT someone finds a very efficient algorithm, say having
running time O(n2), then the practical consequences would be
heaven and hell at the same time. Heaven for those who need
to find quickly solutions for NP-complete problems, e.g., for
many AI applications, for VLSI designers, for engineers.

On the other hand, all tools currently in use for privacy
protection, e.g., SSL, RSA, or PGP will become useless over
night. Also, much of what mathematician are doing could then
be done by a machine performing efficient theorem proving.
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Final Remarks III

But it is also possible that the best polynomial time algorithm
for any NP-complete problem has a running time of order
O(nc), where c is a six digit number, or even a 1000000 digit
number. Of course, in this case the practical consequences
would be much less dramatic, since the NP-complete problems
remain hard to solve for larger inputs. If the latter would be
true, this would also explain why we have not found any such
algorithm yet.

Last but not least, if P = NP then randomization would not
provide any principal gain.
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Thank you!
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