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Introduction Complexity Classes Results End

Probabilistic Turing Machines I

After having studied deterministic and nondeterministic
complexity classes, we finish our study of complexity by taking
a closer look at probabilistic complexity classes.

First, we have to define probabilistic Turing machines. This is
done informally.
Probabilistic Turing machines (abbr. PTM) are defined as
deterministic Turing machines except that they have an
additional tape equipped with a one-way read-only head. On
this auxiliary tape, an infinite sequence of zeros and ones is
written. These zeros and ones are realizations of a sequence of
coin flips. It is assumed that zero and one each have probability
1/2. Moreover, the coin flips are independent of one another.
Furthermore, it assumed that each realization; i.e., each infinite
sequence of zeros and ones written on the auxiliary tape is
independent of all other such sequences.
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Probabilistic Turing Machines II

On input a string w, the PTM works as a deterministic Turing
machine. In each step of its computation it may read one
symbol from the auxiliary tape. If it does, the one-way
read-only head of the auxiliary tape moves one position to the
right. Consequently, a PTM may obtain different results on the
same input, but the result is determined for every random
sequence written on the auxiliary tape.

So, it remains to redefine the notion of acceptance. We present
here the usual definition found in the literature.
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Probabilistic Turing Machines III

Definition 1

Let p be a constant such that 1/2 < p 6 1, let P be a PTM and let
w ∈ Σ∗. The PTM P is said to accept w provided the probability
of the following event E is greater than or equal to p:
Event E. P stops in an accepting configuration.
Moreover, we write Lp(P) to denote the set of all strings w ∈ Σ∗

that are accepted by P with probability greater than or equal
to p.
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Probabilistic Turing Machines IV

The space and time complexity of a PTM P are defined by
requesting P to obey a space or time bound f(n) in the event E

defined above. That is, on all accepting computations P uses at
most f(n) cells on all its work tapes (for space complexity)
and/or works at most f(n) steps (for time complexity).

We are not going to provide a formal proof for the correctness
of our definition, since this is beyond the scope of this course.

Before discussing further issues of PTMs, we exemplify their
power by looking again at the language

L = {0n1n | n ∈N}.
The following theorem was found by Rūsiņš Freivalds:
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Probabilistic Turing Machines V

Theorem 1 (Freivalds (1981))

For every p with 1/2 < p < 1 there exists a constant κ > 0 and a
PTM P accepting L with probability p which uses only κ many cells
on all its work tapes.

Proof. Let p with 1/2 < p < 1 be given. First, we choose two
numbers c, d ∈N; c, d > 1, depending on p such that

1 − 2 ·
(

1
2

)d

> p and (1)

(
2c

2c + 1

)d

> 1 − p (2)

are satisfied.
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Probabilistic Turing Machines VI

We define the desired PTM P (again depending on p). On input
w ∈ {0, 1}∗ the PTM P does the following:
(1) The PTM P checks whether or not the input w has the form

0m1n for some m, n ∈N. If this is not the case, P rejects w.
Otherwise, P continues by executing (2).

(2) The PTM P checks whether or not (m − n) mod c = 0. If
this is not the case, P rejects w.
Otherwise, P continues by executing (3) (see below).

Note that P, while executing (1) and (2), does not read any
symbol on its auxiliary tape. Clearly, (1) can be performed
without using any cells on the work tapes. It suffices to scan the
input ones, and then to return the head of the input tape to the
first position of the input.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Complexity Classes Results End

Probabilistic Turing Machines VI

We define the desired PTM P (again depending on p). On input
w ∈ {0, 1}∗ the PTM P does the following:
(1) The PTM P checks whether or not the input w has the form

0m1n for some m, n ∈N. If this is not the case, P rejects w.
Otherwise, P continues by executing (2).

(2) The PTM P checks whether or not (m − n) mod c = 0. If
this is not the case, P rejects w.
Otherwise, P continues by executing (3) (see below).

Note that P, while executing (1) and (2), does not read any
symbol on its auxiliary tape. Clearly, (1) can be performed
without using any cells on the work tapes. It suffices to scan the
input ones, and then to return the head of the input tape to the
first position of the input.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Complexity Classes Results End

Probabilistic Turing Machines VII

For executing (2), P does not use any cell of its work tapes.
It suffices to count the number of zeros modulo c (by using
appropriate states), and then the number of ones, where P

memorizes the outcome of counting the zeros modulo c in an
appropriate state sr. Here r stands for the remainder, i.e., for
m mod c. From sr, the PTM P can switch to c different states
(all memorizing sr). If n mod c = r, then P switches to the
particular state in which it can start executing (3).
Otherwise, the input is already rejected, and P stops.

Now, P has to figure out whether or not m = n. This is done by
performing the following probabilistic experiment:
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Probabilistic Turing Machines VIII

(3) P starts on the leftmost symbol of the input and reads the
whole input from left to right, thereby also reading in each
step a symbol from its auxiliary tape. This is done until the
last input symbol has been read. We refer to this procedure
as to a run of the experiment.
We refer to the string 0m as the left block and to 1n as the
right block of the input.
A run of the experiment is successful for the left block if P

reads only zeros on its auxiliary tape while reading the
zeros on its input tape.
A run of the experiment is successful for the right block if P

reads only ones on its auxiliary tape while reading the ones
on its input tape.
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Probabilistic Turing Machines IX

(3) A set of the experiment consists of successive runs. A set is
finished if either the run for the left block of the input was
successful or the run for the right block of the input was
successful. The set is then said to be won for the respective
block.
The experiment consists of d sets.
The PTM P accepts the input w iff each block could win at
least one set.
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Probabilistic Turing Machines X

When starting (3), there are only two cases left, i.e., m = n or
|m − n| > c. It is clear that for the execution of the experiment
only a constant number κ of tape cells is sufficient.

Also, it is clear that the probability to arrive at a run successful
for either the left of right block, say ε, satisfies ε > 0. Hence,
1 − ε < 1 is the probability that a run was neither successful for
the left block nor for the right block or it was successful for both
blocks. Since limn→∞(1 − ε)n = 0, we directly see that the
probability to finish a set tends to 1 if the number of steps
performed by P tends to infinity.
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Probabilistic Turing Machines XI

Consequently, it remains to calculate the probability of
acceptance for the input for both cases.

Case 1. n = m.
In this case, the probability to win is for each block the same,
i.e., 1/2. Therefore, the probability for the left block to win all d

sets is (1/2)d and so is the probability for the right block to win
all d sets. Thus, the probability that one of the blocks wins all d

sets is 2 · (1/2)d. By Inequality (1) we can conclude

1 − 2 ·
(

1
2

)d

> p ,

and thus, with probability greater than or equal to p the input is
accepted.
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Probabilistic Turing Machines XII

Case 2. |m − n| > c.
Without loss of generality, m < n, and thus, m + c 6 n.
Now, the conditional probability for the left block to win is

2−m(1 − 2−n)

2−m(1 − 2−n) + 2−n(1 − 2−m)
>

2−m

2−n + 2−m

=
2c

2c + 2−n+m+c
>

2c

2c + 1
.

Consequently, the probability for the left block to win all d sets
can be lower bounded by(

2c

2c + 1

)d

.
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Probabilistic Turing Machines XIII

Finally, by Inequality (2) we can conclude(
2c

2c + 1

)d

> 1 − p and, therefore

1 −

(
2c

2c + 1

)d

< 1 − (1 − p)

= p .

That is, the probability to accept a string of the form 0m1n with
m < n; i.e., not belonging to L, is less than p.
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Probabilistic Turing Machines XIV

So, we have just seen what amazing computational power
probabilism can provide if the computational resources are
severely restricted. But some remarks are in order here.

The PTM presented in the proof above is very space efficient,
but not time efficient. Performing the probabilistic experiment
described takes a huge amount of time.

In the following we are mainly interested in algorithms that
have an efficient run-time. Thus, we shall restrict ourselves to
consider PTMs obeying an (expected) polynomial bound for
their run time. This line of research was initiated by John Gill.
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The Complexity Class PP

Definition 2 (Gill (1977))

The probabilistic polynomial (PP) class is the set of languages L

for which there is a PTM P running in polynomial-time such
that for all strings x we have
(a) x ∈ L =⇒ Pr(x is accepted) > 1/2,
(b) x < L =⇒ Pr(x is rejected) > 1/2.

It can be said that PP is the weakest class of problems that can
be approximately solved in the very intuitive sense of the word.
Moreover, it seems that any problem not in PP will take more
than polynomial-time to be solved. However, no proof is
known.
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Remark

Requiring the majority of answers to be correct is a natural
idea. But if the correct solution is given with a probability close
to 1/2 it is hard to differentiate the incorrect solution from the
correct one.

Moreover, as the input size grows, we may be faced with the
problem that the probability of the correct solution tends more
and more to 1/2. Thus, such a machine will be hard to
distinguish from a machine that is simply guessing without
performing any computation. This gives way to a more
restrictive definition which we present next. Now, we are going
to bound away from 1/2 the margin of the solution.
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The Complexity Class BPP

Definition 3 (Gill (1977))

The bounded probabilistic polynomial (BPP) class is the set of
languages L for which there is a PTM P running in
polynomial-time and some constant ε > 0 such that for all
strings x we have
(a) x ∈ L =⇒ Pr(x is accepted) > 1/2 + ε,
(b) x < L =⇒ Pr(x is rejected) > 1/2 + ε.

We get BPP ⊆ PP, since 1/2 + ε > 1/2 for all ε > 0. Note that
Definition 3 can be modified and still gives the same
complexity class. In particular, for any constant ε ∈ (0, 1/2) we
again arrive at BPP.
The class BPP contains all languages that can be accepted by
efficient Monte-Carlo algorithms.
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The Complexity Class RP

Moreover, we can further sharpen the definition of BPP by
requiring that the PTM is making only one type of error.

More precisely, we require that for all inputs x < L, the PTM for
accepting L makes no error. Furthermore, every string from L

must be accepted with probability at least 1/2. Again, we could
replace 1/2 by any constant greater than 1/2 and less than 1.
The resulting complexity class is denoted by RP. Intuitively,
RP stands for random polynomial time though this term may be a
bit misleading.

More formally, we arrive at the following definition:
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The Complexity Class RP

Definition 4 (Gill (1977))

The one-sided error probabilistic polynomial (RP) class is the set of
languages L for which there is a PTM P running in
polynomial-time such that for all strings x we have
(a) x ∈ L =⇒ Pr(x is accepted) > 1/2,
(b) x < L =⇒ x is rejected.

As a matter of fact, we already know an important problem
belonging to RP. Recalling our results obtained in Lecture 5,
we have seen that PRIM ∈ RP, where PRIM denotes the set of
all binary representations of prime numbers.
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The Complexity Class ZPP

The last probabilistic complexity class we are going to define
represents the efficient Las Vegas algorithms.

Here, no error whatsoever is allowed and the expected run time
must be uniformly bounded by a polynomial in the length of all
inputs over the underlying alphabet Σ.
This class is denoted by ZPP and it was also defined by Gill
(1977).
So, ZPP stands for “zero-error probabilistic polynomial time.”

Theorem 2 establishes the more obvious relations with respect
to set inclusion between the probabilistic complexity
complexity classes and some other previously defined
complexity classes.
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Results I

Let us recall the notion of a balanced TM.

Definition 5

An NTM is balanced if all computation paths over a string x are
of the same length and, moreover, each state is a guess state.

Now, it is easy to see that every NP machine M can be replaced
by a balanced NTM M ′ such that L(M) = L(M ′).
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Results II

Furthermore, the notion of a balanced NTM can be easily
adapted to a PTM. The only modification to be made is to
replace “guess state” by “coin-tossing” state.

Exercise 1. Prove that for every PTM P accepting a language L in
the sense of PP there is balanced PTM P ′ such that
L(P) = L(P ′) = L.
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Results III

Theorem 2

(1) P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ PP ⊆ PSPACE;
(2) RP ⊆ NP ⊆ PP;
(3) ZPP, RP and BPP are closed under union and intersection.

First, we prove Assertion (1). Clearly, by definition we have
P ⊆ ZPP ⊆ RP and BPP ⊆ PP (as already mentioned above).

For seeing that PP ⊆ PSPACE it suffices to notice that a PTM P

can be simulated by a deterministic TM M which performs all
possible computations of P. Additionally, M counts the number
of accepting computations and makes at the end a majority
vote. We omit the details.
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possible computations of P. Additionally, M counts the number
of accepting computations and makes at the end a majority
vote. We omit the details.
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Results IV

Claim: RP ⊆ BPP

Let L be accepted in the sense of RP by a PTM P. Thus, if x < L

then x is always rejected.
If x ∈ L, then Pr(x is accepted) > 1/2. Thus, we can construct a
PTM P ′ which behaves as follows: On every input x it runs the
PTM P exactly twice. The PTM P ′ accepts x, if x has been
accepted by P at least once. Hence, if x < L, then P ′ will never
accept x, too. On the other hand, if x ∈ L, then P ′ makes an error
if and only if P has made an error on x twice. The probability
that P is not accepting x twice is, however, less than 1/4. Hence
P ′ accepts L in the sense of BPP. This proves Assertion (1).
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RP ⊆ NP

Assume a language L that is accepted in the sense of RP by a
PTM P. Again, if x < L, then x is always rejected. Thus, we can
simply remove the coin-flips made by P and replace them by a
nondeterministic choice. Hence, the resulting machine M

nondeterministically accepts L. This proves RP ⊆ NP.
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NP ⊆ PP

Next, we have to show that NP ⊆ PP. Let L ∈ NP be witnessed
by the NTM M.
First recall that for all x < L there is no accepting computation
of M for x.
But if x ∈ L, then at least one accepting computation of M for x

must exist. However, the desired PTM P has to accept/reject a
string x if the majority of the computations performed is
accepting/rejecting x. For reaching this goal, we proceed as
follows:

Let M be a balanced NTM and let L(M) be the language
accepted by M. Moreover, there exists a polynomial p such that
M takes time p(|x|) on all inputs x. Without loss generality we
can also assume that Σ = {0, 1}. We construct a balanced PTM P

from the machine M as follows:
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NP ⊆ PP

First, each guessing state is replaced by a coin-tossing state. The
outcome of a coin-toss then corresponds to a guess. Each
terminal node of the computation tree of M over a string x with
n = |x| is then reached with probability 1/2p(n).

Now, a further computation is carried out at each such leaf.
That is, the terminal leaves of M’s computation tree on x are no
longer terminal leaves for the computation tree of P over x.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Complexity Classes Results End

NP ⊆ PP

Let q be a polynomial such that p(n) 6 q(n) for all n ∈N.
If the terminal leaf of M’s computation tree on x is rejecting,
then P will toss its coin q(n) times. If not all outcomes of these
coin tosses are head, then P tosses the coin again.
It accepts if the last coin toss is head and rejects x otherwise.
If all outcomes of these q(n) coin tosses are head, then P tosses
the coin again (for being balanced) but rejects the input x

regardless of the outcome of the last coin toss.

On the other hand, if the reached terminal leaf in M’s
computation tree on x is accepting, then machine P tosses its
coin again q(n) + 1 times and accepts regardless of the outcome
(again this done only to make P balanced).
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NP ⊆ PP

Case 1. x < L(M).
Then, the definition of P directly implies that

Pr(x is rejected|x < L) =
2p(n)

(
2q(n) + 1

)
2p(n)+q(n)+1

=
1
2

+
1

2q(n)+1 .
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NP ⊆ PP

Case 2. x ∈ L(M).

Pr(x is acc.| x ∈ L) >

(
2p(n) − 1

) (
2q(n)− 1

)
2p(n)+q(n)+1 +

2q(n)+1

2p(n)+q(n)+1

=
1
2

+
2q(n) − 2p(n) + 1

2p(n)+q(n)+1

>
1
2

since q(n) > p(n) .

Hence P accepts L(M) in the sense of PP. This completes the
proof of Assertion (2).
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ZPP is closed under union and intersection

Consider two PTMs P and P ′ such that L(P) and L(P ′) are
accepted in the sense of ZPP.
Then it easy to see that a PTM P̂ accepts L(P) ∩ L(P ′)
( L(P) ∪ L(P ′) ) in the sense of ZPP if P̂ works as follows:
It simulates both P and P ′ and accepts its input x if P and P ′

accept x ( if P or P ′ accept x ).

We leave it as an exercise to show the closure with respect to
union and disjunction for the remaining classes mentioned in
Assertion (3).
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ZPP = RP ∩ co-RP

Next, we mention the following characterization for ZPP:

Theorem 3

ZPP = RP ∩ co-RP.

The proof is provided in the book.
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Final Remarks

We like to conclude our short excursion into the field of
randomized computations by mentioning that there is much
more.
In particular, it is not too hard to prove that there are complete
problems for PP. The perhaps easiest PP-complete problem is
MAJ defined as the set of all Boolean formulae that are satisfied
by the majority of possible assignments of the variables
occurring in them.

Furthermore, it has been a long standing open problem
whether or not PP is also closed under union and intersection.
This problem got solved in 1991, but the proof technique used
is too complex to be included here. We refer the reader to
Beigel et al. (1991).
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Final Remarks

But we do not know any problem that is complete for BPP

under polynomial time reductions.

One reason for the difficulty to find a problem that is complete
for BPP is that the defining property of the class BPP is
semantic. That is, for every string x over the underlying
alphabet, a Turing machine has either to accept x with
probability at least 1/2 + ε or it has to reject it with probability
at least 1/2 + ε. Given a description of a Turing machine, it is
undecidable whether or not it has this property.
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Summary

The following figure summarizes the known inclusions
between the probabilistic complexity classes and relates them
to P and PSPACE, where A → B stands for A ⊆ B:

ZPP

co-RP

RP

BPP

co-NP

NP

PP PSPACEP

Figure 1: Inclusions between complexity classes.
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Thank you!
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Rūsiņš Freivalds

Complexity and Cryptography c©Thomas Zeugmann



Introduction Complexity Classes Results End

John Gill

Complexity and Cryptography c©Thomas Zeugmann


	Introduction
	

	Complexity Classes
	

	Results
	

	End
	


