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Flipping a Coin Threshold Schemes End

Flipping a Coin per Telephone I

The coin flipping problem is the problem which initiated the
whole area (see M. Blum (1981)).

Blum described the scenario as follows. Suppose Alice and Bob
and are going to get a divorce. They already live in cities far
apart of each other and they don’t want to see each other again.
For deciding who will obtain the new car, they have agreed to
flip a coin. Of course, they don’t like to make their choice, say
choosing head, and then hearing from the other end of the
phone: “I am flipping the coin,. . . , the outcome is tail. I am so
sorry for you.”

So, we do not only have to realize the coin flip but also a
method for verifying its outcome by the other party.
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Flipping a Coin per Telephone II

Question
How can we attack this problem?

Let us have a look at the proposals made.

The first proposal was made by Blum and Micali.
Let X be a finite set of numbers containing as much even
numbers as odd ones, and let f : X → Y be a one-way function.

Furthermore, assume Alice and Bob have agreed to use f. Then,
the following protocol is used.
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Flipping a Coin per Telephone III

Proposal 1 (Blum/Micali)

Step 1: Alice chooses at random an element x ∈ X,
computes y = f(x) and sends y to Bob.

Step 2: Bob guesses whether or not x is even or odd and
sends his guess to Alice.

Step 3: Alice tells Bob whether or not his guess was right
and proves her claim by sending x to Bob, too.

Step 4: Bob verifies Alice’s claim by computing f(x) and
comparing it to y.

At first glance, this protocol looks good. But we are already
warned. So, let us ask if a participant of this protocol can cheat.
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Flipping a Coin per Telephone IV

We assume that f is indeed a one-way function. This is a good
place to see why we have required one-way functions to be
injective. If not, there could be two numbers x and x ′ such that
x is even, x ′ is odd and f(x) = f(x ′).

But still, the definition of one-way function does not imply that
we cannot compute that last bit of x. If we could, we already
have to whole information needed.

This is a subtle point. So, we cannot prove anything about the
protocol above.

Therefore, Blum (1981) proposed the following more advanced
Protocol CF for flipping a coin per telephone.
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Flipping a Coin per Telephone V
Protocol CF

Step 1: Alice chooses two huge primes p and q sends their product
n = pq to Bob.

Step 2: Bob chooses randomly a number s from {1, . . . , bn
2 c}.

Furthermore, he computes z = s2 mod n and sends z to Alice.
Step 3: Alice computes the four discrete roots ±x and ±y of z modulo n.

Let x ′ be the smaller number of x mod n and −x mod n and
let y ′ be defined analogously.

Step 4: Alice looks for the smallest bit position i in which x ′ and y ′

differ. Then she guesses one of these numbers and communicates
her guess to Bob by telling him: “The ith bit of your number
is 0” and “The ith bit of your number is 1,” respectively.

Step 5: Bob tells Alice whether or not her guess was correct (if it was
correct, she wins).

Step 6: Bob sends his number s to Alice.
Step 7: Alice tells Bob the factorization of n.
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Example 1
Here we keep p and q small for being able to follow the
computations.
(1) Alice chooses p = 5 and q = 13, and sends 65.
(2) Bob chooses 21, computes 51 ≡ 212 mod 65, and sends 51.
(3) Alice computes ±21 and ±31, chooses x ′ = 21 = 10101 and

y ′ = 31 = 11111.
(4) She guesses “The ith bit of your number is 1.”
(5) Bob tells her that she is wrong.
(6) Bob sends 21 to Alice.
(7) Alice sends 5 and 13 to Bob.
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Flipping a Coin per Telephone VI

This protocol looks more complex than the previous one. It is
also not obvious whether or not it is correct and fair. Thus, we
have do to the following.

1 Analyze the Protocol CF carefully.
2 Check whether or not it is fair and secure.
3 Finding out whether or not it can be executed efficiently.

If Alice is making her guess randomly and if Bob is choosing
his number s indeed randomly from the set {1, . . . , bn

2 c}, then
the probability that Alice wins is clearly 1/2.
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Flipping a Coin per Telephone VII

Furthermore, it is not a good idea for Bob not to choose his
number randomly (provided the protocol is executed
repeatedly), since a certain preference for some numbers would
offer Alice a possibility to possibly increase her chance of
winning.

So, the most important question we have to study right here is
whether or not Bob can possibly cheat, if he is changing s after
having sent z to Alice.

In order to avoid being detected as cheater, Bob should possess
x ′ as well as y ′.
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Flipping a Coin per Telephone VIII

Taking into account that

(x ′)2 ≡ z mod n

(y ′)2 ≡ z mod n , we get
(x ′)2 − (y ′)2 ≡ 0 mod n .

Furthermore, we have x ′ . y ′ mod n. This clearly implies
x ′ − y ′ . 0 mod n. Additionally, it is not hard to see that we
also have x ′ + y ′ . 0 mod n. Thus, putting it all together we
directly arrive at

(x ′)2 − (y ′)2 ≡ (x ′ − y ′)(x ′ + y ′) ≡ 0 mod n .

This is possible if and only if

gcd(n, x ′ + y ′) = p or
gcd(n, x ′ + y ′) = q .
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Flipping a Coin per Telephone IX

Thus, if Bob is able to cheat he is able to factorize n, too.
Therefore, the security of our second protocol is based on the
difficulty to factorize. We summarize our knowledge by the
following theorem.

Theorem 1
The Protocol CF is secure provided factoring is difficult.

We have elaborated this point here in some more detail, since it
also shows why Alice is sending just one bit in Step 4 and not x ′

or y ′.

So, it remains to show that the protocol can be executed
efficiently.
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Flipping a Coin per Telephone X

Since Alice is knowing the factorization of n, it suffices to argue
that Alice can efficiently compute discrete square roots modulo
a prime. Again, we refer to Lecture 5, where we studied
Berlekamp’s (1970) procedure for taking discrete square roots
modulo a prime. This algorithm is a Las Vegas method and has
an expected running time that is polynomially bounded in the
length of the input a and the modulus p.

So, the whole Protocol CF relies on the assumption that
factoring is difficult.

Next, we look at another problem of high practical relevance,
i.e., how to share a secret.
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Threshold Schemes I

The problem we want to consider goes back to Liu (1968) who
stated it as follows.

Eleven scientists are working on a secret project. They wish
to lock up the documents in a cabinet so that the cabinet can
be opened if and only if six or more of the scientists are
present. What is the smallest number of keys to the locks
each scientists must carry?

Shamir (1979) showed that the smallest solution comprises 462
locks at all and 252 keys per scientist.
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Threshold Schemes II

Let us assume that all keys and all locks have numbers printed
on them. The locks are numbered by pairwise different
numbers, and without loss of generality we shall assume that
they are numbered ` = 1, . . . , n.

A key with number ` can open the lock with number m if and
only if ` = m.

Now, one can show:

Claim 1. The smallest number of locks needed is
(

n
k−1

)
and the

smallest number of keys needed is
(
n−1
k−1

)
.

The proof can be found in the script.
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Threshold Schemes III

Furthermore, it should be mentioned that
(
n
k

)
becomes

maximal for k = n/2, if n is even, and for k = (n + 1)/2, if k is
odd. Moreover,

(
n

n/2

)
= O(4n/2), and thus it grows

exponentially in n.

Thus, a (k, n) threshold scheme, for being practically applicable,
has to give up the intuitive appealing idea of locks and keys.
Instead, we shall look for different possibilities to share a secret.

For doing this, let us first give the general definition of a shared
secret and of a (k, n) threshold scheme given by Shamir (1978).
Assume we have n persons P1, . . . , Pn and a secret datum D

which we want to divide into n pieces D1, D2, . . . , Dn.
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Threshold Schemes IV

Definition 2

We say that n participants k-divide a secret, where 1 < k 6 n

provided the following 3 conditions are satisifed.
(1) Each participant Pi possesses an information Di which is

not known to any other participant Pj, i , j for
j ∈ {1, . . . , n}.

(2) The knowledge of any k or more of the D1, D2, . . . , Dn

pieces allows us to compute the whole datum D easily,
(3) the knowledge of any k − 1 or fewer D1, D2, . . . , Dn pieces

leaves D completely undetermined.
A set {D1, . . . , Dn} satisfying (2) and (3) is said to be a (k, n)

threshold scheme.
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Threshold Schemes V

The pieces Di of information are referred to as a share. The
example at the beginning of this chapter provides at least
evidence that (k, n) threshold schemes can be realized.

However, while the idea of using locks is intuitively appealing
we still have to outline how to simulate them by appropriately
chosen problems that meet the wanted complexity theoretic
requirements in Items (2) and (3). Furthermore, we aim to find
a simulation such that the the number of simulated “locks”
does no longer grow exponentially.

The following construction is based on Mignotte’s threshold
sequences.
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Threshold Schemes VI

A sequence m1 < · · · < mn of pairwise relatively prime and
positive numbers is said to be a (k, n) threshold sequence if

m1 ·m2 · · · · ·mk > mn ·mn−1 · · · · ·mn−k+2 (A)

Now, suppose, we have a (k, n) threshold sequence. We set

M = m1 ·m2 · · · · ·mk , and

N = mn ·mn−1 · · · · ·mn−k+2 .

The secret is then any number D satisfying N 6 D 6 M. Now,
the pieces for each participant are defined by

Di = D mod mi ,

that is, Pi obtains Di and nothing else, i = 1, . . . , n.
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Threshold Schemes VII

Thus, Condition (1) of Definition 2 is fulfilled by construction.

Claim 1. Condition (2) is satisfied.
Proof. Let Di1 , . . . , Dik

be any subset of k elements from
{D1, . . . , Dn}. By the Chinese remainder theorem, the system

x ≡ Di mod mi , i ∈ {i1, . . . , ik}

has a uniquely determined solution D̂ modulo
∏k

j=1 mij
.

By the definition of a (k, n) threshold sequence and the choice
of D we obtain

D 6 M = m1 ·m2 · · · · ·mk 6
k∏

j=1

mij
.

Since D̂ ≡ Di ≡ D mod mi for all i ∈ {i1, . . . , ik}, we see that
any k participants of the secret sharing scheme can compute the
secret datum D. This proves (2).

Complexity and Cryptography c©Thomas Zeugmann



Flipping a Coin Threshold Schemes End

Threshold Schemes VII

Thus, Condition (1) of Definition 2 is fulfilled by construction.

Claim 1. Condition (2) is satisfied.
Proof. Let Di1 , . . . , Dik

be any subset of k elements from
{D1, . . . , Dn}. By the Chinese remainder theorem, the system

x ≡ Di mod mi , i ∈ {i1, . . . , ik}

has a uniquely determined solution D̂ modulo
∏k

j=1 mij
.

By the definition of a (k, n) threshold sequence and the choice
of D we obtain

D 6 M = m1 ·m2 · · · · ·mk 6
k∏

j=1

mij
.

Since D̂ ≡ Di ≡ D mod mi for all i ∈ {i1, . . . , ik}, we see that
any k participants of the secret sharing scheme can compute the
secret datum D. This proves (2).

Complexity and Cryptography c©Thomas Zeugmann



Flipping a Coin Threshold Schemes End

Threshold Schemes VII

Thus, Condition (1) of Definition 2 is fulfilled by construction.

Claim 1. Condition (2) is satisfied.
Proof. Let Di1 , . . . , Dik

be any subset of k elements from
{D1, . . . , Dn}. By the Chinese remainder theorem, the system

x ≡ Di mod mi , i ∈ {i1, . . . , ik}

has a uniquely determined solution D̂ modulo
∏k

j=1 mij
.

By the definition of a (k, n) threshold sequence and the choice
of D we obtain

D 6 M = m1 ·m2 · · · · ·mk 6
k∏

j=1

mij
.

Since D̂ ≡ Di ≡ D mod mi for all i ∈ {i1, . . . , ik}, we see that
any k participants of the secret sharing scheme can compute the
secret datum D. This proves (2).

Complexity and Cryptography c©Thomas Zeugmann



Flipping a Coin Threshold Schemes End

Threshold Schemes VII

Thus, Condition (1) of Definition 2 is fulfilled by construction.

Claim 1. Condition (2) is satisfied.
Proof. Let Di1 , . . . , Dik

be any subset of k elements from
{D1, . . . , Dn}. By the Chinese remainder theorem, the system

x ≡ Di mod mi , i ∈ {i1, . . . , ik}

has a uniquely determined solution D̂ modulo
∏k

j=1 mij
.

By the definition of a (k, n) threshold sequence and the choice
of D we obtain

D 6 M = m1 ·m2 · · · · ·mk 6
k∏

j=1

mij
.

Since D̂ ≡ Di ≡ D mod mi for all i ∈ {i1, . . . , ik}, we see that
any k participants of the secret sharing scheme can compute the
secret datum D. This proves (2).

Complexity and Cryptography c©Thomas Zeugmann



Flipping a Coin Threshold Schemes End

Threshold Schemes VIII

Claim 2. Condition (3) is satisfied.

Proof. Let {Di1 , . . . , Dik−1} be any subset of k − 1 elements from
{D1, . . . , Dn}. Again, we may apply the Chinese remainder
theorem, and obtain

D̂ = ei1 ·Di1 + · · ·+ eik−1 ·Dik−1 mod
k−1∏
j=1

mij
(1)

Obviously, (1) is the congruence containing all information we
have. Nevertheless, (1) leaves many possibilities for D.
Therefore, we continue by estimating the number of
possibilities.
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The biggest product of k − 1 numbers chosen from {m1, . . . , mn}

is N. The smallest product of k numbers chosen from
{m1, . . . , mn} is M.
Since D ≡ D̂ mod mi for all i ∈ {i1, . . . , ik−1}, we also have

D ≡ D̂ mod
k−1∏
j=1

mij
,

(remember that the numbers mi, i ∈ {1, . . . , n} are relatively
prime), i.e., D and D̂ differ by a multiple of

∏k−1
j=1 mij

.
Consequently, one can try all

D = D̂ +

k−1∏
j=1

mij
, D = D̂ + 2 ·

k−1∏
j=1

mij
, . . . ,
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This gives a lower bound of

M − N − 1
N

many possibilities. Of course, the true value of D can be only
determined, if one has an oracle for testing these possibilities.
For example, it is well imaginable that one has only 3 trials to
test D (like passwords).

Thus, it remains to show that one can always choose (k, n)

threshold sequences in a way such that (M − N − 1)/N is large.
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Let π(x) be the number of all primes less than or equal to x.
The prime number theorem is telling us that

x

ln x
< π(x) <

5
4
· x

ln x
for all x > 114 ,

i.e., there is constant c such that

π(x) 6 c · x

log x
.

Now, let π(n, α) be the number of all primes in the interval
(pα

n, pn), where pn is the n-th prime number and α ∈ (0, 1).
Then, we can show the following lemma.
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Lemma 1

Let n ∈N with n > 2. For every k with 2 6 k 6 n there are
arbitrarily big numbers y such that

π

(
y,

k2 − 1
k2

)
> n .

Before proving the lemma, we show how to get the desired
result from it.
We choose y such that π(y, k2−1

k2 ) > n. That is, in the interval

(p
(k2−1)/k2

y , py]

there are at least n prime numbers. Let m1, . . . , mn be the first n

primes in this interval.
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Claim. m1, . . . , mn form a (k, n) threshold sequence.

The condition m1 < m2 < · · · < mn is obvious. Moreover,

M =

k∏
i=1

mi > mk
1 >

(
p

k2−1
k2

y

)k

= p
(k+1)(k−1)

k
y > pk−1

y

> mn ·mn−1 · · · · ·mn−k+2 = N ,

where the last inequality holds, since mn 6 py and thus
mk−1

n 6 pk−1
y . This proves the claim.

Complexity and Cryptography c©Thomas Zeugmann



Flipping a Coin Threshold Schemes End

Threshold Schemes XIII

Claim. m1, . . . , mn form a (k, n) threshold sequence.
The condition m1 < m2 < · · · < mn is obvious. Moreover,

M =

k∏
i=1

mi > mk
1 >

(
p

k2−1
k2

y

)k

= p
(k+1)(k−1)

k
y > pk−1

y

> mn ·mn−1 · · · · ·mn−k+2 = N ,

where the last inequality holds, since mn 6 py and thus
mk−1

n 6 pk−1
y . This proves the claim.

Complexity and Cryptography c©Thomas Zeugmann



Flipping a Coin Threshold Schemes End

Threshold Schemes XIV

Finally, we obtain

M − N

N
>

p
k2−1

k
y − pk−1

y

pk−1
y

= p
k−1

k
y − 1 .

Consequently, one can start with a lower bound B for
(M − N − 1)/N. Then one searches for pz such that

p
k−1

k
z − 1 > B .

By the lemma above, then there exists a y > z such that one can
form the wanted (k, n)-threshold sequence from m1, . . . , mn.
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Finally, we have to show Lemma 1 above.
Let k, n be arbitrarily fixed, and let α ∈ (0, 1). By the prime
number theorem we know that pm = O(m log m). Hence,
pα

m = O(mα(log m)α). Furthermore,

π(m, α) = π(pm) − π(pα
m) .

We choose c1 such that π(pm) > c1m and c2 such that

π(pα
m) 6 c2 ·

mα(log m)α

log(mα(log m)α)
6 c2 ·

mα(log m)α

log mα

= c2 ·
mα(log m)α

α · log m
.

Thus, we obtain:
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π(m, α) = π(pm) − π(pα
m) > c1 ·

m log m

log m
− c2 ·

mα(log m)α

α · log m

> c

(
m log m

log m
−

mα(log m)α

α · log m

)

=
c

log m

(
m log m −

mα(log m)α

α

)

=
c ·m log m

log m

(
1 −

1
α ·m1−α(log m)1−α

)

= c ·m
(

1 −
1

α ·m1−α(log m)1−α︸                               ︷︷                               ︸
=:X

)

The expression X converges to 1 as m tends to infinity.
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Consequently, for all sufficiently large values of m we see that
π(m, α) > n.

Thus, setting α = (k2 − 1)/k2, the lemma follows.

So, for threshold schemes we were able to prove a very
satisfactory result.
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Thank you!
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