
Introduction Background Advanced Encryption Standard End

Complexity and Cryptography

Thomas Zeugmann

Hokkaido University
Laboratory for Algorithmics

https://www-alg.ist.hokudai.ac.jp/∼thomas/COCRB/

Lecture 15: The Advanced Encryption Standard

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Motivation I

As we have seen, there is an unconditionally secure
cryptosystem, i.e., the one-time pads. But, as said before, its
usability is somehow restricted. All keys must be at least as
long as the message to be sent, and the keys must be equally
likely. It is not really clear how to achieve this in practice.

There are two main possibilities to recover. One can try to use
so-called pseudo-random keys, i.e., only a short true random
secret key is exchanged in advance. Furthermore, the parties
agree on a method how to generate long keys from this short
secret key. These long keys should be practically
indistinguishable from true random keys. This leads to
stream-ciphers.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Motivation I

As we have seen, there is an unconditionally secure
cryptosystem, i.e., the one-time pads. But, as said before, its
usability is somehow restricted. All keys must be at least as
long as the message to be sent, and the keys must be equally
likely. It is not really clear how to achieve this in practice.

There are two main possibilities to recover. One can try to use
so-called pseudo-random keys, i.e., only a short true random
secret key is exchanged in advance. Furthermore, the parties
agree on a method how to generate long keys from this short
secret key. These long keys should be practically
indistinguishable from true random keys. This leads to
stream-ciphers.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Motivation II

Second, one uses keys of a fixed length. Consequently, then one
has to use much more complicated encryption and decryption
techniques than in the one-time-pad cryptosystem. The
advantage is speed. From 1976 to 2001 the Data Encryption
Standard (DES) was widely used. But its key length is 56 bits
which is nowadays considered to be small.
We call such cryptosystems block ciphers.

Because of the weaknesses of the DES, in 1997 the National
Institute of Standards and Technology of the United States
called for proposals for a new block cipher that may serve as a
replacement of the DES. The selection process was much more
open and transparent than for its predecessor the DES. In
response to this call, fifteen different designs were submitted
and Rijndael won this competition in the years to follow. In
2001 it got adopted as Advanced Encryption Standard (AES).

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Motivation II

Second, one uses keys of a fixed length. Consequently, then one
has to use much more complicated encryption and decryption
techniques than in the one-time-pad cryptosystem. The
advantage is speed. From 1976 to 2001 the Data Encryption
Standard (DES) was widely used. But its key length is 56 bits
which is nowadays considered to be small.
We call such cryptosystems block ciphers.

Because of the weaknesses of the DES, in 1997 the National
Institute of Standards and Technology of the United States
called for proposals for a new block cipher that may serve as a
replacement of the DES. The selection process was much more
open and transparent than for its predecessor the DES. In
response to this call, fifteen different designs were submitted
and Rijndael won this competition in the years to follow. In
2001 it got adopted as Advanced Encryption Standard (AES).

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Motivation III

The call for proposals contained the following demands.
1 The cryptosystem should be a block cipher.
2 It should use a 128-bit block size and keys of length

128-bits, 192-bits, and 256-bits.
3 It should be easy to implement in hardware and software

and it should be very fast.
4 It should be usable in smartcards with low resources (short

code, low storage requirements).
5 The algorithm should be royalty-free and license-free for

any use.
6 Is should resist all known cryptanalytic methods.

Joan Daemon and Vincent Rijmen presented the winning
design which they called Rijndael.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Motivation IV

To understand the design of the AES it is helpful to look again
into Shannon’s (1949) paper Communication Theory of Secrecy
Systems. In this paper he identified two important criteria that
should be fulfilled by every “good” block cipher, i.e., confusion
and diffusion.

1 Confusion. The statistical properties of the ciphertext cannot
be derived from the statistical properties of the plaintext.
That is, a redundant plaintext should be encrypted in a
way such the ciphertext looks (almost) truly random.

2 Diffusion. Each bit of the plaintext and each bit of the key
should influence “many” bits of the cipher. Ideally, if one
bit of the plaintext or key is changed then the ciphertext
should change completely, in an unpredictable or
pseudorandom manner.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Motivation IV

To understand the design of the AES it is helpful to look again
into Shannon’s (1949) paper Communication Theory of Secrecy
Systems. In this paper he identified two important criteria that
should be fulfilled by every “good” block cipher, i.e., confusion
and diffusion.

1 Confusion. The statistical properties of the ciphertext cannot
be derived from the statistical properties of the plaintext.
That is, a redundant plaintext should be encrypted in a
way such the ciphertext looks (almost) truly random.

2 Diffusion. Each bit of the plaintext and each bit of the key
should influence “many” bits of the cipher. Ideally, if one
bit of the plaintext or key is changed then the ciphertext
should change completely, in an unpredictable or
pseudorandom manner.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Motivation IV

To understand the design of the AES it is helpful to look again
into Shannon’s (1949) paper Communication Theory of Secrecy
Systems. In this paper he identified two important criteria that
should be fulfilled by every “good” block cipher, i.e., confusion
and diffusion.

1 Confusion. The statistical properties of the ciphertext cannot
be derived from the statistical properties of the plaintext.
That is, a redundant plaintext should be encrypted in a
way such the ciphertext looks (almost) truly random.

2 Diffusion. Each bit of the plaintext and each bit of the key
should influence “many” bits of the cipher. Ideally, if one
bit of the plaintext or key is changed then the ciphertext
should change completely, in an unpredictable or
pseudorandom manner.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Motivation V

More recently, the demands on diffusion were concretized as
follows.

Avalanche Criterion. Changing one input bit should change at
least half of the output bits. In its strict form, the avalanche
criterion demands that changing one input bit changes each bit
in the cipher with probability 1/2.
Furthermore, in addition to the two criteria given by Shannon
(1949), the state of the art also requires non-linearity defined as
follows.

Non-Linearity. None of the bits in the cipher depends linearly
on a single input bit.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background I

The basic unit for computations in the AES is the byte. Thus,
many operations are defined in F28 , i.e., the Galois field
having 28 many elements. To represent a byte we either use
binary numbers, hexadecimal numbers, or the polynomial
representation of the elements of F28 .

The AES uses the irreducible polynomial

m(x) = x8 + x4 + x3 + x + 1 . (1)

This polynomial m is irreducible, since
m(0) = m(1) = 1 mod 2.

The advantage is that addition in F28 corresponds to take the
bitwise EX-OR of the coefficients. Multiplication in F28 is then
just polynomial multiplication modulo m(x), where the
coefficients are taken modulo 2.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background I

The basic unit for computations in the AES is the byte. Thus,
many operations are defined in F28 , i.e., the Galois field
having 28 many elements. To represent a byte we either use
binary numbers, hexadecimal numbers, or the polynomial
representation of the elements of F28 .
The AES uses the irreducible polynomial

m(x) = x8 + x4 + x3 + x + 1 . (1)

This polynomial m is irreducible, since
m(0) = m(1) = 1 mod 2.

The advantage is that addition in F28 corresponds to take the
bitwise EX-OR of the coefficients. Multiplication in F28 is then
just polynomial multiplication modulo m(x), where the
coefficients are taken modulo 2.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background I

The basic unit for computations in the AES is the byte. Thus,
many operations are defined in F28 , i.e., the Galois field
having 28 many elements. To represent a byte we either use
binary numbers, hexadecimal numbers, or the polynomial
representation of the elements of F28 .
The AES uses the irreducible polynomial

m(x) = x8 + x4 + x3 + x + 1 . (1)

This polynomial m is irreducible, since
m(0) = m(1) = 1 mod 2.

The advantage is that addition in F28 corresponds to take the
bitwise EX-OR of the coefficients. Multiplication in F28 is then
just polynomial multiplication modulo m(x), where the
coefficients are taken modulo 2.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background II

For example, adding x7 + x6 + x2 + x + 1 and x6 + x5 + x3 + x

which gives x7 + x5 + x3 + x2 + 1 is performed as

11000111⊕ 01101010 = 10101101 . (2)

Multiplying (x6 + x4 + x2 + x + 1)(x7 + x + 1) modulo m(x)

results in x7 + x6 + 1.

Note that this multiplication can be precomputed for all values
that may appear during the execution of the AES, and may be
thus realized by simple table look ups.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background II

For example, adding x7 + x6 + x2 + x + 1 and x6 + x5 + x3 + x

which gives x7 + x5 + x3 + x2 + 1 is performed as

11000111⊕ 01101010 = 10101101 . (2)

Multiplying (x6 + x4 + x2 + x + 1)(x7 + x + 1) modulo m(x)

results in x7 + x6 + 1.

Note that this multiplication can be precomputed for all values
that may appear during the execution of the AES, and may be
thus realized by simple table look ups.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background II

For example, adding x7 + x6 + x2 + x + 1 and x6 + x5 + x3 + x

which gives x7 + x5 + x3 + x2 + 1 is performed as

11000111⊕ 01101010 = 10101101 . (2)

Multiplying (x6 + x4 + x2 + x + 1)(x7 + x + 1) modulo m(x)

results in x7 + x6 + 1.

Note that this multiplication can be precomputed for all values
that may appear during the execution of the AES, and may be
thus realized by simple table look ups.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background III

Furthermore, the multiplicative inverse of an element in F28 can
be computed by using a straightforward modification of our
Algorithm ECL. That is, for p ∈ F28 , now we have to compute a
polynomial p−1 such that p(x) · p−1(x) = 1.

In dependence on the operation to be performed, sometimes
one has to convert a given representation of a byte into another
one.
If b7b6 · · ·b0 the representation of a byte in binary notation, then

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0 (3)

is the representation of the same byte as a polynomial (i.e., an
element of F28).

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background III

Furthermore, the multiplicative inverse of an element in F28 can
be computed by using a straightforward modification of our
Algorithm ECL. That is, for p ∈ F28 , now we have to compute a
polynomial p−1 such that p(x) · p−1(x) = 1.

In dependence on the operation to be performed, sometimes
one has to convert a given representation of a byte into another
one.
If b7b6 · · ·b0 the representation of a byte in binary notation, then

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0 (3)

is the representation of the same byte as a polynomial (i.e., an
element of F28).

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background IV

To convert the binary notation into hexadecimal notation, the
following table is used for b7b6b5b4 and b3b2b1b0, respectively.

00002 = 016 10002 = 816

00012 = 116 10012 = 916

00102 = 216 10102 = A16

00112 = 316 10112 = B16

01002 = 416 11002 = C16

01012 = 516 11012 = D16

01102 = 616 11102 = E16

01112 = 716 11112 = F16

Besides the elements of F28 the AES uses also polynomials of
degree 3 to realize certain operations. Note that these
polynomials do not form a subfield of F28 .

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background IV

To convert the binary notation into hexadecimal notation, the
following table is used for b7b6b5b4 and b3b2b1b0, respectively.

00002 = 016 10002 = 816

00012 = 116 10012 = 916

00102 = 216 10102 = A16

00112 = 316 10112 = B16

01002 = 416 11002 = C16

01012 = 516 11012 = D16

01102 = 616 11102 = E16

01112 = 716 11112 = F16

Besides the elements of F28 the AES uses also polynomials of
degree 3 to realize certain operations. Note that these
polynomials do not form a subfield of F28 .

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background V

Let a(x) = a3x
3 + a2x

2 + a1x + a0. For such a polynomial we
sometimes write [a0, a1, a2, a3].
Let a(x) = a3x

3 + a2x
2 + a1x + a0 and

b(x) = b3x
3 + b2x

2 + b1x + b0 be such polynomials. We define
addition as follows.

a(x) + b(x) = (a3 ⊕ b3)x
3 + (a2 ⊕ b2)x

2 + (a1 ⊕ b1)x + (a0 ⊕ b0) .

The multiplication is defined via polynomial multiplication
modulo x4 + 1.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background VI

Recall that xi ≡ xi mod 4 mod (x4 + 1). Thus, the multiplication
of these polynomials can be simplified as follows. Let
d(x) = d3x

3 + d2x
2 + d1x + d0 = a(x)⊗ b(x); then we have

d0
d1
d2
d3

 =


a0a3a2a1
a1a0a3a2
a2a1a0a3
a3a2a1a0

 ·


b0
b1
b2
b3

 .

Note that this multiplication is not always invertible, since the
inverse of the polynomial b may not be of degree 3.

However, the AES uses here the multiplication with a fixed
polynomial c which has an inverse of degree 3, i.e., c is fixed as

c(x) = 0316x
3 + 0116x

2 + 0116x + 0216

c(x)−1 = 0B16x
3 + 0D16x

2 + 0916x + 0E16 .

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background VI

Recall that xi ≡ xi mod 4 mod (x4 + 1). Thus, the multiplication
of these polynomials can be simplified as follows. Let
d(x) = d3x

3 + d2x
2 + d1x + d0 = a(x)⊗ b(x); then we have

d0
d1
d2
d3

 =


a0a3a2a1
a1a0a3a2
a2a1a0a3
a3a2a1a0

 ·


b0
b1
b2
b3

 .

Note that this multiplication is not always invertible, since the
inverse of the polynomial b may not be of degree 3.
However, the AES uses here the multiplication with a fixed
polynomial c which has an inverse of degree 3, i.e., c is fixed as

c(x) = 0316x
3 + 0116x

2 + 0116x + 0216

c(x)−1 = 0B16x
3 + 0D16x

2 + 0916x + 0E16 .

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background VI

Note that the numbers in the definition of the polynomial c are
to be read as two half bytes, i.e., 0316 means that first four bits
are 0000 and the second four bits are 0011.
Note that the polynomial c has the multiplicative inverse given
above, since x4 + 1 and c(x) have the gcd 1.

Now we are ready to describe the AES.

The AES is based on a design principle known as a substitution
permutation network (abbr. SPN). An SPN takes a block of the
plaintext and the key as inputs, and applies several alternating
“rounds” or “layers” of substitution boxes (S-boxes) and
permutation boxes (P-boxes) to produce the ciphertext block.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Mathematical Background VI

Note that the numbers in the definition of the polynomial c are
to be read as two half bytes, i.e., 0316 means that first four bits
are 0000 and the second four bits are 0011.
Note that the polynomial c has the multiplicative inverse given
above, since x4 + 1 and c(x) have the gcd 1.

Now we are ready to describe the AES.

The AES is based on a design principle known as a substitution
permutation network (abbr. SPN). An SPN takes a block of the
plaintext and the key as inputs, and applies several alternating
“rounds” or “layers” of substitution boxes (S-boxes) and
permutation boxes (P-boxes) to produce the ciphertext block.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES I

We start with a high-level description. The input is a (plaintext)
block of 128-bits and a key. Possible keys length are 128 bits,
192 bits or 256 bits. Then the AES proceeds in rounds, where
the number of rounds depends on the key length (10 rounds, 12
rounds, 14 rounds, respectively).

1 KeyExpansion – the round keys are derived from the input
key.

2 Initial Round – AddRoundKey().
3 Rounds – SubBytes(), ShiftRows(), MixColumns(),

AddRoundKey() (* in this order *).
4 Final Round – SubBytes(), ShiftRows(), AddRoundKey().
5 Output the cipher

Note that all rounds in (3) do essentially the same. So, it
remains to explain what the different functions compute.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES II

Recall that the basis unit in the AES is the byte. Let b7, . . . , b0 be
the stored bits. Then we use (b7, . . . , b0)2 if we mean a binary
number and we write b7x

7 + · · ·+ b1x + b0 when dealing with
elements of F28 . If x is a block of n bytes then we write x{i} to
denote the ith byte of the block x.

The AES operates on states which are defined as follows. The
plaintext and the intermediate results are written as a
4× 4-matrix, whose entries are bytes. Thus we describe the
states as follows.

input state output
in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

→

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

→

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES II

Recall that the basis unit in the AES is the byte. Let b7, . . . , b0 be
the stored bits. Then we use (b7, . . . , b0)2 if we mean a binary
number and we write b7x

7 + · · ·+ b1x + b0 when dealing with
elements of F28 . If x is a block of n bytes then we write x{i} to
denote the ith byte of the block x.

The AES operates on states which are defined as follows. The
plaintext and the intermediate results are written as a
4× 4-matrix, whose entries are bytes. Thus we describe the
states as follows.

input state output
in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

→

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

→

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES III

To convert a 1-dimensional array of 16 bytes in a 2-dimensional
4× 4-matrix the function Square : ({0, 1}8)16 → ({0, 1}8)4×4 is
used which is defined as follows. Let

s = (si,j)i,j∈{0,...,3} = Square(x) for x ∈ ({0, 1}8)16 ,

then si,j = x{i + 4 · j} for all i, j ∈ {0, . . . , 3}.

The function InvSquare : ({0, 1}8)4×4 → ({0, 1}8)16 computes the
inverse of Square, i.e., for

x = InvSquare(s)

we have x{i + 4 · j} = si,j for all i, j ∈ {0, . . . , 3}.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES III

To convert a 1-dimensional array of 16 bytes in a 2-dimensional
4× 4-matrix the function Square : ({0, 1}8)16 → ({0, 1}8)4×4 is
used which is defined as follows. Let

s = (si,j)i,j∈{0,...,3} = Square(x) for x ∈ ({0, 1}8)16 ,

then si,j = x{i + 4 · j} for all i, j ∈ {0, . . . , 3}.

The function InvSquare : ({0, 1}8)4×4 → ({0, 1}8)16 computes the
inverse of Square, i.e., for

x = InvSquare(s)

we have x{i + 4 · j} = si,j for all i, j ∈ {0, . . . , 3}.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES IV

Let s = (si,j)i,j∈{0,...,3} and s ′ = (s ′i,j)i,j∈{0,...,3}, then we define

s⊕ s ′ = (si,j ⊕ s ′i,j)i,j∈{0,...,3} , (4)

i.e., as element-wise addition in F28 .

Next, we describe the functions already mentioned in the
high-level description and their inverses.
We start with AddRoundKey() and InvAddRoundKey()

which are identical.

Input: 4× 4-matrix s and a 16-byte round key Ki.
Output: the 4× 4-matrix s⊕ Square(Ki).

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES IV

Let s = (si,j)i,j∈{0,...,3} and s ′ = (s ′i,j)i,j∈{0,...,3}, then we define

s⊕ s ′ = (si,j ⊕ s ′i,j)i,j∈{0,...,3} , (4)

i.e., as element-wise addition in F28 .

Next, we describe the functions already mentioned in the
high-level description and their inverses.
We start with AddRoundKey() and InvAddRoundKey()

which are identical.

Input: 4× 4-matrix s and a 16-byte round key Ki.
Output: the 4× 4-matrix s⊕ Square(Ki).

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES V

How the 16-byte round key Ki is computed will be explained
later. Note that the 16-bytes correspond to the size of a state.

If the key length is 128 bit, then in the initial round, the function
AddRoundKey() uses the main key, i.e., the key provided as
input.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES VI

Next, we consider the function SubBytes(), which is the
substitution mapping of the AES. It is the only non-linear part of
the AES and guarantees the necessary confusion.

Input: 4× 4-matrix s.
Output: the 4× 4-matrix s ′ = (s ′i,j)i,j∈{0,...,3}, where for

si,j = uv with u, v ∈ {0, 1}4 we define

s ′i,j = the entry in the uth-row and vth-column
from the S-Box table shown below .

To understand the table below, recall that each matrix entry is a
byte. So u and v are the first and last 4 bits of a byte,
respectively. Thus, u and v can be regarded as binary numbers
in the range from 0 to 15, which we write in hexadecimal
notation below.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The S-Box Table

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

The function InvSubBytes() is essentially the same with the
only difference that now the Inverse S-Box table is used.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The S-Box Table

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

The function InvSubBytes() is essentially the same with the
only difference that now the Inverse S-Box table is used.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The Inverse S-Box Table

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES VII

The entries in the S-Box table correspond to the following
operations. Let si,j be a byte for which we like to compute the
corresponding S-Box entry. Then

1 Compute the inverse s−1
i,j of si,j in F28 (∗ if si,j = 0 then we

set s−1
i,j = 0 ∗).

2 The new byte is transformed by the following affine
transformation s ′i,j = M · s−1

i,j ⊕ b.
It is known that the inverse is highly non-linear.

Here M and b are defined as follows by the AES. Note that we
have to write the bytes as column vectors.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES VIII

M =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


b =



1
1
0
0
0
1
1
0


Note that M is invertible.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES IX

We continue with ShiftRows() and InvShiftRows().
The function ShiftRows() executes a cyclic shift on the rows of
the state matrix. If the block length is 128 bit then row i is
shifted i positions. That is, formally we have:

Input: 4× 4-matrix s.
Output: the 4× 4-matrix s ′, where s ′i,j = si,(j+i) mod 4.

For InvShiftRows() we then clearly have:

Input: 4× 4-matrix s.
Output: the 4× 4-matrix s ′, where s ′i,(j+i) mod 4 = si,j.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES IX

We continue with ShiftRows() and InvShiftRows().
The function ShiftRows() executes a cyclic shift on the rows of
the state matrix. If the block length is 128 bit then row i is
shifted i positions. That is, formally we have:

Input: 4× 4-matrix s.
Output: the 4× 4-matrix s ′, where s ′i,j = si,(j+i) mod 4.

For InvShiftRows() we then clearly have:

Input: 4× 4-matrix s.
Output: the 4× 4-matrix s ′, where s ′i,(j+i) mod 4 = si,j.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES X

Next, let us look at MixColumns() and InvMixColumns(). The
function MixColumns() provides together with ShiftRows the
diffusion of the cipher. As its name says, it operates on the
columns of the state matrix.

MixColumns() interprets every column of the state matrix as a
polynomial of degree 3 with coefficients from F28 , i.e.,

sj = s3,jx
3 + s2,jx

2 + s1,jx + s0,j . (5)

Each of these polynomials is multiplied (⊗) by the fixed
polynomial c(x) and the result is taken modulo (x4 + 1). Recall
that

c(x) = 0316x
3 + 0116x

2 + 0116x + 0216 .

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES XI

So, we obtain the following.

Input: 4× 4-matrix s.
Output: the 4× 4-matrix s ′ with

s ′0,j
s ′1,j
s ′2,j
s ′3,j

 =


0216 0316 0116 0116
0116 0216 0316 0116
0116 0116 0216 0316
0316 0116 0116 0216

 ·


s0,j
s1,j
s2,j
s3,j


InvMixColumns() is obtained analogously, where one has to
use the polynomial c(x)−1 = 0B16x

3 + 0D16x
2 + 0916x + 0E16

instead of c.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES XII

The input key is called the main key. For each round, a subkey is
derived from the main key. The subkey has the same size as the
state. It remains to explain how the round keys are computed.
In order to do so, we need several auxillary functions that act
on a 4-byte word w = w{0}w{1}w{2}w{3}.

RotWord()

takes a word w{0}w{1}w{2}w{3} as input, performs a cyclic
permutation, and returns the word w{1}w{2}w{3}w{0}.

SubWord()

is a function that takes a four-byte input word
w{0}w{1}w{2}w{3} and applies the S-box to each of the four
bytes to produce an output word (* in the same way as
described for SubBytes() *). For example,
6C16761605162A16 is transformed into 501638166B16E516.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES XII

The input key is called the main key. For each round, a subkey is
derived from the main key. The subkey has the same size as the
state. It remains to explain how the round keys are computed.
In order to do so, we need several auxillary functions that act
on a 4-byte word w = w{0}w{1}w{2}w{3}.
RotWord()

takes a word w{0}w{1}w{2}w{3} as input, performs a cyclic
permutation, and returns the word w{1}w{2}w{3}w{0}.

SubWord()

is a function that takes a four-byte input word
w{0}w{1}w{2}w{3} and applies the S-box to each of the four
bytes to produce an output word (* in the same way as
described for SubBytes() *). For example,
6C16761605162A16 is transformed into 501638166B16E516.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES XII

The input key is called the main key. For each round, a subkey is
derived from the main key. The subkey has the same size as the
state. It remains to explain how the round keys are computed.
In order to do so, we need several auxillary functions that act
on a 4-byte word w = w{0}w{1}w{2}w{3}.
RotWord()

takes a word w{0}w{1}w{2}w{3} as input, performs a cyclic
permutation, and returns the word w{1}w{2}w{3}w{0}.

SubWord()

is a function that takes a four-byte input word
w{0}w{1}w{2}w{3} and applies the S-box to each of the four
bytes to produce an output word (* in the same way as
described for SubBytes() *). For example,
6C16761605162A16 is transformed into 501638166B16E516.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

The AES XIII

Rcon(i)

for i ∈Nwith i > 0 we define

Rcon(i) = ci001600160016 ,

where the round constant ci is determined by the operations
in F28 and the polynomial representation to be

ci = xi−1 mod m(x) .

For example, c2 = x and thus we get the byte 0116.

The complete key expansion algorithm is shown below.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Algorithm KeyExpansion(K)

Input: 4 · k-byte key K (* the main key *)
Output: The sequence (K0, . . . , K`) of round keys

1: ` := 6 + k

2: for i = 0 to k − 1 do hi := K{4i}K{4i + 1}K{4i + 2}K{4i + 3} end for
3: for i = k to 4 · ` do
4: t := hi−1
5: if (i mod k) = 0 then
6: t := SubWord(RotWord(t))⊕ Rcon(i/k)
7: else
8: if k = 8 ∧ (i mod k) = 4 then t := SubWord(t) end if
9: end if

10: hi := hi−k ⊕ t

11: end for
12: for i = 0 to ` do Ki := h4ih4i+1h4i+2h4i+3 end for
13: Return (K0, . . . , K`)

Note that k is determined by the length of the main key.
Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Remarks I

1 In the initial round, we only add the main key to the
plaintext. Since the AES is known, also the three functions
SubBytes(), ShiftRows(), and MixColumns() are known
and a cryptanalyst could compute their values without
knowing the key. So, if we add the key in the initial round
then a cryptanalyst does not know the input to the first
round.

2 The same reasoning applies to the last round. It can be
shown that changing the order of MixColumns() and
AddRoundKey() does not change the result. So, the last
security relevant operation is adding the key.

3 The deciphering is just done in reverse order and by using
the inverse functions.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Remarks II

1 The AES has a very transparent algebraic design and it
seems to be safe againt all known attacks to block ciphers.
In particular, it seems to be safe against differential and
linear cryptanalytic methods. This safety is caused by
order in which the single mappings are applied.

2 On the other hand, there is a debate in the literature
whether or not the clear, and in some sense simple
algebraic design, is also a weak point of the AES. Clearly,
in order to prove that the AES is safe against a particular
type of attack, it is an advantage to have a clear
mathematical description of the cipher. But it may also
ease potential attacks.
Some attacks were presented at Crypto 2009, Asiacrypt
2009, and Eurocrypt 2010.

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

Thank you!

Complexity and Cryptography c©Thomas Zeugmann



Introduction Background Advanced Encryption Standard End

F32 and its Multiplication Table

We need a polynomial f of degree 2 which is irreducible over
Z3. Here we take f(x) = x2 − x + 2. Then we can represent the
elements of F32 and its multiplication table as follows.

· 1 2 ϑ 2ϑ ϑ + 1 ϑ + 2 2ϑ + 1 2ϑ + 2
1 1 2 ϑ 2ϑ ϑ + 1 ϑ + 2 2ϑ + 1 2ϑ + 2
2 2 1 2ϑ ϑ 2ϑ + 2 2ϑ + 1 ϑ + 2 ϑ + 1
ϑ ϑ 2ϑ ϑ + 1 2ϑ + 2 2ϑ + 1 1 2 ϑ + 2
2ϑ 2ϑ ϑ 2ϑ + 2 ϑ + 1 ϑ + 2 2 1 2ϑ + 1

ϑ + 1 ϑ + 1 2ϑ + 2 2ϑ + 1 ϑ + 2 2 ϑ 2ϑ 1
ϑ + 2 ϑ + 2 2ϑ + 1 1 2 ϑ 2ϑ + 2 ϑ + 1 2ϑ

2ϑ + 1 2ϑ + 1 ϑ + 2 2 1 2ϑ ϑ + 1 2ϑ + 2 ϑ

2ϑ + 2 2ϑ + 2 ϑ + 1 ϑ + 2 2ϑ + 1 1 2ϑ ϑ 2

Complexity and Cryptography c©Thomas Zeugmann


	Introduction
	

	Background
	

	Advanced Encryption Standard
	

	End
	


